miércoles, 28 de octubre del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Misiones pasadas que darán paso a otras nuevas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Espacio Exterior y nosotros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                           La Mars Express visita Marte y de eso hace ya más de 10 años

“El 3 de Junio de 2003 Europa daba finalmente el salto hacia otro mundo, y su primera sonda interplanetaria desde los tiempos de la Giotto, que visitó el corazón del cometa Halley en 1986, iniciaba a bordo de un cohete ruso Soyuz-FG/Fregat su viaje hacia Marte. Algo más de 6 meses después entraba con éxito en órbita marciana…”

Ahora la NASA no estaba sola en su exploración del planeta hermano y también Europa se hizo con su parcela en esa investigación. De hecho pudo contribuir a conocer mejor el planeta rojo gracias a la Mars Express se pudo acercar a la Ciencia americana del espacio en un nivel de  “igualdad”.

Tambien la sonda espacial Opotunity ha cumplido los 10 años en la superficie de aquel planeta y sigue dándo buenas noticias aunque, esté ya, algo renqueante. Todos están sorprendidos del comportamiento de éste ingenio humano que partío de la Tierra en el año 2003, viajando hacia Marte en el que estaría 9o días pero, ¡lleva ya en él 3.200 durante los que ha podido recorrer más de 35 kilómetros.

Rebotó 26 veces contra el terreno rocoso antes de descender completamente. Casi lo dan por perdido, pero sobrevivió. No cayó donde se esperaba, sino en un cráter de 22 metros de diámetro y aunque sus circuitos se activaron exitosamente, al segundo día tenía problemas mecánicos en sus brazos y articulaciones. Hoy, se moviliza hacia atrás, porque tiene una rueda atorada y dos de sus instrumentos no funcionan. Pese a lo anterior, el Opportunity se ha convertido en un ícono tecnológico para la Nasa.

Señales de agua, viento y hielo en Marte

Región de Marte fotografiada por 'Mars Express'. | ESA

 

Región de Marte fotografiada por ‘Mars Express’. | ESA Europa Press | Madrid

No sólo porque fue (junto al Spirit) la primera nave que recorrió Marte y que comprobó que en ese planeta alguna vez el agua fluyó por su superficie. Sino también, porque es el vehículo más longevo de la exploración espacial: acaba de cumplir nueve años en suelo marciano, pese a que la misión inicial  sólo le daba 90 días de vida útil. Y ha recorrido más de 35 km del planeta: 50 veces más de lo planeado. “Nadie hubiese imaginado que este vehículo iba a realizar una exploración tan exhaustiva y menos tener tantos descubrimientos científicos”, dice a La Tercera  John Callas, jefe del programa de exploradores en Marte de la Nasa. Por eso, lejos de su jubilación, la agencia espacial prepara una nueva misión para el rover. Ahora, en busca de posibles rastros de vida microbiana.

El gran aporte de Opportunity ha sido entregar evidencia in situ de que Marte tuvo un pasado acuoso, es decir, que hace miles de millones de años fue un lugar cálido y húmedo por cuya superficie fluyó agua. Estos hallazgos los ha hecho siguiendo y examinando los minerales y arcillas de los rastros dejados en el suelo por lo que se creen fueron antiguos ríos o cursos de agua. Una labor que ha sido posible  gracias a su inesperada longevidad.

Uno de los técnicos de la NASA comentó:

“Los datos que encontramos a través del Opportunity confirman que antiguamente en Marte existió un ambiente con agua, lo que significa que el planeta tuvo un entorno favorable para la vida.”

 

Muchas son las imágenes de Marte que nos hablan de la presencia de agua

Los análisis del rover también han mostrado que el planeta rojo pasó por al menos tres etapas geológicas: la primera hace 4.000 años, que fue relativamente húmeda; otra hace 3.500 años, que se caracterizó por su actividad volcánica, y la actual, que no presenta señal de vida. Y al igual que en la Tierra, en Marte también se forman  nubes de cristales de hielo.

Su último descubrimiento fue un mes de agosto, cuando en pleno viaje hacia el sur del cráter Endeavour, halló un campo lleno de esferas, blandas en su interior y ricas en hierro, que llamó la atención de los científicos y que nunca antes se habían visto en ese planeta.

Callas, uno de los científicos seguidores de la misión, nos dice:

“El Opportunity ha sido una excelente experiencia para la Nasa. Ayudó a confirmar el valor de los exploradores básicos y marcó una línea para las futuras versiones, como el Curiosity”. No es lo único, dice. Este rover ya  marcó a toda una generación. “Inspiró a jóvenes a involucrarse en carreras de tecnología y ciencia, algo que tendrá beneficios incontables en las próximas décadas”.

 

 

Basado en aquellos dos legendarios Rovers, Oportunity y Spirit, se envió uno más moderno y sofisticado al planeta, Curiosity que, se ha quedado con la atención del público y está realizando nuevos descubrimientos que vendrán a enriqurecer lo que ya sabemos de aquel planeta, entre otras muchas cuestiones y datos enviados, aparece una gran clolección de imágenes que hay que examinar con atención para poder obtener de ellas, los mensajes que nos envían desde millones de años de distancia en el pasado.

              Curiosity nos ha enviado una buena colección de imágenes de aquella región de Marte
Muchas son las puertas que hemos podido abrir en quel planeta y, desde el descubrimiento de la presencia de agua en el presente que, congelada en la superficie podría estar líquida en el subsuelo, hasta los muchos lugares que tienen impresas las huellas de grandes correntías de ríos y arroyos, y, los mareales marcados en el suelo de algunas zonas que nos hablan de pasados océnaos y mares en aquel planeta.
Hace bastante tiempo que perseguimos la presencia de vida pasada, presente, o, incluso futuro en el planeta Marte y, todos los indicios nos hablan de que pudo haberla en algún tiempo pasado, que puede existir también en el presente en ciertos lugáres reconditos. Acordáos de aquel meteorito de Marte llegado a la Tierra: AL H-48001,1 se llama y, en él, muchos quisieron ver muchas cosas, como:

Granos de carbonato, en color naranja (100 a 200 micras de diámetro), indican que el meteorito estuvo una vez inmerso en el agua.

El meteorito destaca la presencia de lo que parecen ser microbios fosilizados.

                      ¿Microbios fosilizados? Eso dijeron algunos

Bueno, el presente trabajo que es un pequeño homenaje a los primeros Rovers que salieron desde la Tierra hacia Marte en una aventura indecisa, resultó que nos ha dado beneficios impensables y, ahora, sin lugar a ninguna duda podemos decir que tanto Oportunity como Spirit (y las que vinieron detrás), nos han dado conocimientos que no teníamos y, han ayudado grandemente a que conoczcamos aquel planeta que algún día, lejano aún en el futuro próximo (no creo que antes de 50 años) podamos visitar, para instalar una colonia de la Tierra.

Lo cierto amigos es que hay que felicitar a todos los que de una u otra forma contribuyeron con sus ideas y su trabajo a que todas estas misiones pudieran ser un hecho que, cuando se han ido produciendo no le hemos dado la importancia que realmente han tenido todas esas misiones al Espacio Exterior encamionadas al conocimiento de los planetas y lunas que situadas en el Sistema Solar, nos pueden dar algún día futuro, una gran sorpresa.

http://upload.wikimedia.org/wikipedia/commons/f/f7/Saturn%27s_Rings_PIA03550.jpg
Bueno, es casi un sistema planetario con sus pequeños mundos orbitando a ese planeta mayor que, si lo pudiémos colocar encima de un gran océano -en la Tierra no existe ninguna tan grande-, el planeta flotaria dada la baja densidad de la materia que lo conforma.

Recordemos aquellas primeras imágines de Titán y las primeras noticias que llegaron decían: “¡Huygens en Titán!” La Misión Cassini, qué tantos rendimientos científicos nos ha proporcionado, tiene aún, algunas cartas guardadas en la manga en forma de noticias nuevas y, asombrasas.


http://www.beugungsbild.de/huygens/povray/huygens_30km.jpg

                                      En su momento pudimos leer en todos los medios escritos y hablados:

“Hoy después de un viaje de siete años a través del sistema solar abordo de la nave Cassini, la sonda Huygens de la ESA ha descendido con éxito a través de la atmósfera de Titán, la mayor luna de Saturno y ha aterrizado a salvo en su superficie.

Los primeros datos científicos llegaron a el Centro de Operaciones Espaciales Europeo (ESOC) en Darmstadt, Alemania, esta tarde a las 17:19 CET. La sonda Huygens constituye el éxito de la humanidad en el intento de aterrizar una sonda en un mundo del Sistema Solar exterior. Según Jean-Jaques Dordain, Director General de la ESA:”Este es un gran logro para Europa y sus colegas de los Estados Unidos, en esta ambiciona empresa de explorar el sistema saturniano”.

 

Con los primeros datos se pudo llegar a  saber que la temperatura en el interior de la sonda rondaba los 25ºC cuando se encontraba a unos 50 km de altura. Por otra parte, la sonda contaba con dos canales (A y B) independientes para retransmitir los datos de manera redundante. Según parece el canal A no funcionó y tan sólo se lograron los datos del B del que sí, llegaron todos. El experimento de Doppler con Cassini si necesitaba del canal A por lo que habrá que esperar a la recepción de todos los datos. El paracaidas principal se abrió tan sólo 15 segundos despues de lo planeado y los acelerómetros han funcionado correctamente.”

La Huygens desciende sobre la superficie de Titán

¿Que sabemos de Titán?

Titán es el satélite mayor de Saturno y la segunda de las mayores lunas del Sistema Solar, la cual sólo rivaliza en tamaño con Ganimedes -satélite de Júpiter-. Este mundo siempre ha resultado de enorme interés a los científicos pues se considera un “laboratorio de la vida”, un lugar que podría ser reflejo -desde el punto de vista biológico- de lo que era el planeta Tierra hace más de 3500 millones de años.

Titán es un mundo único en el Sistema Solar y muy enigmático: su superficie es una incógnita, pues su densa atmósfera formada fundamentalmente por nitrógeno nunca nos ha permitido observar sus rasgos superficiales. A todo ello se le suman una gran cantidad de incógnitas: la posibilidad de existencia de mares o lagos superficiales de hidrocarburos, de materia orgánica e incluso de vida.

Océanos de metano en Titán que son contemplados por Saturno. La luna nos muestra los terrenos y atmósfera de la Tierra joven. Ahora están preparando un submarino en miniatura que navegará por los océanos de Titán.

submarino titan de la NASA

                     Este será el submarino que surcará las profundidades de algún océano de Titan

Todas las misiones que han estudiado con mayor o menor detalle este mundo -Pioneer 11 y sobre todo las Voyager 1 y 2- han obtenido datos de gran interés, aunque no han podido desentrañar muchos de los misterios que rodean a esta interesante luna. En 2004 comenzó la aproximación del orbitador Cassini al planeta Saturno y acto seguido su inserción orbital, lo que tuvo lugar en julio de 2006. Justo seis meses después, este orbitador dejó caer la sonda Huygens a través de la atmósfera de la luna Titán, hacia su superficie.

En este trabajo trataremos sobre el satélite Titán, realizando una revisión sobre los conocimientos acerca del mismo y las últimas hipótesis que los científicos tienen en mente, las cuales es fácil que den un vuelco cuando los técnicos de la misión Cassini-Huygens comience a estudiar con detalle este pequeño  mundo y todos los datos que han podido ser captados por nuestros ingenios.

           Un extraño pequeño mundo donde llueve metano y haría las delicias de las compañias petrolífieras


Titán, el mayor satélite de Saturno, es un lugar misterioso. Su gruesa atmósfera es rica en compuestos orgánicos, algunos de los cuales podrían implicar la presencia de signos de vida si se hallasen en nuestro planeta. ¿Cómo se han originado éstos? ¿Pueden ayudarnos a descubrir como la vida se formó en la Tierra? Y, estando ahí presentes estos compuestos bioquímicos, ¿estará presente allí alguna clase de vida?

La sonda Huygens de la Agencia Espacial Europea (ESA), que viajó junto a la Cassini en ruta hacia Saturno llegó a la superficie de Titán en el año 2005. Mientras tanto, en la Tierra, los estudios mediante telescopio  sirvieron para decidir en qué punto de Titán se efectuará el aterrizaje.

                            Pioneer 11 en 1979

- Estudian Júpiter, Saturno, Urano y Neptuno, sus lunas y sus anillos.
-  Son los más lejanos de la Tierra y también los qué más tiempo llevan en órbita.
-  Sus baterías tienen capacidad para aguantar en el espacio hasta el 2020.

http://img.irtve.es/imagenes/las-sondas-voyager-llevan-anos-espacio/1283431884594.jpg

Han cruzado la frontera más lejana que nunca ha atravesado el ingenio humano, 38 años en órbita sin interrupciones. Las sondas gemelas Voyager partieron de la Tierra el verano de 1977 y desde entonces envían información de todo aquello que se han encontrado a su paso. Las misiones espaciales Pioneer 11 en 1979 y Voyager 1 y 2 en 1980 realizaron sobrevuelos sel Sistema de Saturno. La Voyager 1, se desvió lo necesario para sobrevolar Titán.

            Así fue captado Titán por la Viyager 2

La sonda Voyager 1 de la NASA sirvió para obtener las primeras imágenes detalladas de Titán en 1980. En ellas se apreciaba sólo una atmósfera anaranjada, opaca y aparentemente homogenea, tan gruesa que no permitía ver la superficie de este mundo. De todas formas, a pesar de ello, otros datos revelaron interesantes aspectos de esta luna: de manera similar a la Tierra, su atmósfera estaba formada mayoritariamente por nitrógeno y también por algo de metano, así como otros compuestos orgánicos.

Titán es el mayor de los satélites conocidos de Saturno. En esta fotografía tomada a 12 millones de kilómetros se aprecian las capas nubosas exteriores que cubren la superficie de esta luna. La neblina anaranjada, formada por hidrocarburos producidos por fotólisis, nos esconde la superficie sólida de este mundo.

 

Así podía ser la Tierra Primitiva hace algunos miles de millones de años. Se cree que en la actualidad, en aquel ambiente de Titán y su espesa atmósfera, podría exisir alguna clase de vida.

Las sondas espaciales como la Cassini-Huygens y otras, nos han posibilitado para contemplar imágenes del espacio exterior que nunca habríamos imaginado ver. Si los descubridores de estas lunas de Saturno pudieran ver lo que nosotros hoy, creo que se llenarían de gozo al ver como su granito de arena siguió rodando por la ladera del conocimiento para hacerse mayor, una sólida y gran roca del conocimiento.

File:Titan in natural color Cassini.jpg

                                        Titán en color natural (sonda Cassini-Huygens 2005)

Titán es el mayor de los satélites de Saturno, siendo el único del Sistema Solar que posee una atmósfera importante. Según los datos disponibles su atmósfera podría estar compuesta principalmente de nitrógeno, pero hasta un 6% puede ser metano y compuestos complejos de hidrocarburos. En el año 2005, la sonda espacial Cassini-Huygens descendió en paracaídas por la atmósfera de Titán y aterrizó en su helada superficie para descubrir algunos de sus secretos.

¡Sigamos soñando con la realidad! En este presente que ya es futuro. si queréis más lectura:

emilio silvera

Colaboración en Física cuántica de JGVP

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

SUBFOTONES Y ONDAS ELECTROMAGNETICAS

José Germán Vidal Palencia

Investigador independiente

México, D.F., a 25 de noviembre de 2015


Conclusiones.

1.- Las ondas de REM no son un continuo de energía, se encuentran  discretizadas. Derivada de un fotón, cada onda va asociada a una partícula denominada subfotón. Éste está configurado como dipolo eléctrico de forma segmentaria a partir de energía magnética de alta densidad, mostrando en cada uno de sus dos extremos un campo eléctrico de forma lobular de diferente signo, como si de un imán recto se tratara. Este conjunto unitario de onda-partícula en movimiento, exhibe un cuerpo tridimensional. Su superficie o piel EM para sentido práctico suele esquematizarse con el contorno de una onda sinusoidal de interacción EM.

2.- Cuando oleadas de subfotones y sus respectivas ondas en fase atacan una antena vertical receptora “peinándola uniformemente”, cada uno de ellos resulta guiado con su cresta eléctrica positiva por delante. Esto es así debido a que los subfotones tienen que pasar entre las polarizantes cargas negativas de los electrones libres de un conductor-antena. Cada cresta positiva de los subfotones moviéndose rápidamente entre los electrones, desplaza en un sentido una corriente de ellos a lo largo del conductor. Dirección que va a cambiar cuando a continuación pase entre ellos la cresta eléctrica negativa correspondiente. Esto se debe a que las crestas positivas de las ondas atraen electrones y las crestas negativas los repelen dentro del conductor. Repitiéndose el ciclo oscilatorio electrónico de manera global cuando grandes cantidades de subfotones en fase atraviesan la antena. Esta corriente eléctrica oscilatoria de antena se amplifica en el receptor y se puede llevar a un osciloscopio para observar la oscilación electrónica generada. El efecto sinusoidal observado en la pantalla, fue provocado por la modulación de que fueron objeto los electrones en sus movimientos en el circuito de antena correspondiente, por parte de las ondas de REM que le estarían llegando.

Nota: La bobina de antena es otro caso de recepción EM no descrito aquí.

3.- Si a lo largo de una línea de desplazamiento de ondas EM se establece lateralmente frente a ellas un puesto de observación, limitado por una delgada rendija vertical para observar (con posibilidad de movimiento en cámara lenta) cómo se mueven cada una de sus secciones, se puede observar a través de ella sólo un punto de una onda bajo escrutinio. Un aparente punto se desplaza rítmicamente a lo largo de la rendija vertical, subiendo y bajando a medida que ondas van desplazándose alejándose de la fuente.

Si además de su desplazamiento horizontal a través de la línea de referencia, se usa la representación de la onda como una cuerda que es agitada desde un extremo, el observador no puede discernir mirando a través de la rendija, si el fenómeno de desplazamiento de ondas bajo observación ocurre de manera oscilatoria. Ya que, pudiera ocurrir, sin que él observador pudiera haberse enterado, de que la cuerda en cuestión pudo haberse congelado por un súbito descenso de temperatura. En este segundo caso, la cuerda se desplazaría ondulada como si de una sola pieza sólida se tratara.

Sería una experimentación de resultado ambiguo, ya que no se puede asegurar si se trata de un movimiento transversal de la onda en cuestión o de otro tipo de movimiento. Si este fuera verdaderamente transversal, la teoría que respalda el experimento mental de la cuerda que es agitada formando ondas, no podría deducir la existencia de un corpúsculo de radiación con sus intrínsecos campos de interacción, entrando en conflicto con la hipótesis del concepto dualidad onda-partícula que se podría aplicar a los fotones en movimiento a través del espacio. Quedando bloqueado el camino que podría ir más allá del sólo “comportamiento corpuscular” que se entiende manifiestan las REM, al considerar fotones en su interacción con la materia.

4.- “De modo semejante a la onda que se propaga en una cuerda, el campo eléctrico a lo largo de una línea trazada en el espacio muestra la historia pasada de la perturbación emitida por la fuente.”

Esta cita tomada de la obra Ciencias Físicas de F. Bueche de la Universidad de Dayton, páginas 185 y 186, permite evidenciar que una onda emitida por una fuente de radiación se conserva de manera permanente (la perturbación emitida). De otra manera no habría historia que considerar de la radiación indicada. Consecuentemente, cada onda de REM se traslada a través del espacio como un todo histórico invariable, incluso numerable. Y, si cada onda no varía su configuración en el espacio, la teoría moderna relativa está incompleta, pues no nos dice como se produce cada una de las ondas que hoy mismo viajan en cualquier parte del universo. La respuesta se da al considerar que cada onda se encuentra asociada a un corpúsculo de REM, nombrado subfotón en esta tesis. Particularmente cada uno de ellos puede ser emitido y/o absorbido por la materia sin perder su identidad numerable.

En alguna parte de la historia de un subfotón, podría estar a tu lado formando parte de un electrón cercano, más tarde en la Luna, o en alguna otra galaxia alejada formando parte de algún neutrón existente en ella. Este mismo subfotón en cualquier momento dado podría estar viajando con destino incierto a través del espacio a velocidad c, acompañado de otros subfotones, cada uno con número de identidad específico. Aun cuando individualmente no tienen ni firma ni huella, el hombre puede  predecir como cantidades importantes de ellos van modificando el entorno físico del mundo y del universo en general, gracias a la comprensión de los procesos de absorción y emisión espontánea y manipulada a que se pueden ver sujetos.

5.- En síntesis, en el universo existe una cantidad exacta de subfotones de REM, cada uno de ellos con una onda asociada.  Pueden estar en movimiento gracias a los procesos de emisión, o estacionados debido a la absorción a que son sujetos debido a la materia ya existente. Cada uno manifiesta un campo eléctrico  de energía h conocida (la constante de Planck). Su magnitud eléctrica es independiente del componente magnético perpendicular que se le suma cuando se mueve  al ser emitido al espacio. Fenómeno similar al campo magnético perpendicular que se genera alrededor de un alambre conductor recto cuando electrones se mueven a lo largo de su espacio atómico interno donde se encuentran confinados. Si los electrones libres no se mueven entrando en conducción, tampoco se genera el campo magnético alrededor del conductor. Subrayamos que los campos magnéticos generados tanto por electrones como por subfotones, se producen cuando ellos perturban la energía de vacío del universo donde se encuentran inmersos, que no es otra cosa que la estructura magnética del espacio-tiempo, identificado en esta tesis como campo de gravedad primario.

6.- La idea general está expuesta en mi tesis Física Global.

http://www.emiliosilveravazquez.com/blog/wp-content/uploads/FISICA%20GLOBAL.pdf

A la orden de las nuevas generaciones de físicos. Sus pensamientos serán fundamentales para moldear de mejor manera estos nuevos conocimientos. A pesar de un estira y afloja que se ha dado en el desarrollo de la ciencia, incluidos aciertos y desaciertos, todos estamos coludidos históricamente en un esfuerzo científico ya hecho. Como dijo Albert Einstein: La física es un sistema lógico de pensamiento en desarrollo. De esta idea se desprende que el avance científico sólo es posible con los esfuerzos humanos del pasado. El presente es sólo confusión, el futuro ni siquiera existe. Existe arduo trabajo pendiente para los investigadores científicos. Ellos son los que llevan la delantera en la brecha del trabajo hacia el porvenir.

Nadie ignora que el mundo ha entrado en el rápido deterioro de sus ecosistemas. Si científicamente no se domina la energía de nuestro entorno mundial, con tecnología apropiada, próximamente, la energía de las lágrimas, podrían ser los últimos vestigios de nuestra incapacidad para mantener la energía de la felicidad humana. No pocas de ellas, ya se derraman en diferentes regiones del planeta.

¡Saludos y buenos deseos para todos!

JGVP

 

 

 

 

 

Siempre buscaremos nuevas teorías de la Física y del Universo.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.

Photograph taken inside the ISOLDE experimental hall at CERN

La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Vista hemisférica de Venus. (Cortesía de NASA)

 

El segundo planeta a partir  del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.

La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.

 

 

 

 

 

Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar. Simplemete en una galaxia, por ejemplo la nuestra, existen cientos de miles de millones de planetas de los más diversos pelajes, y, no pocos, serán muy parecidos a nuestra Tierra y estarán situados en la zona adecuada para que, la vida, pudiera surgir en ellos como lo hizo aquí, toda vez que, tanto aquellos planetas como el nuestro, están sometidos a las mismas fuerzas, a las mismas constantes, y, en consecuencia, a situaciones iguales, ¡iguales resultados!

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariaciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo cientos de miles de millones de mundos, también debe estar abarrotados de una diversidad Biológica inimaginable. No creo que estémos sólos en tan vasto universo.

Hace algún tiempo que los medios publicaron la noticias:

“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”

 

 

 

Imagen de Archivo donde Einstein escribe una ecuación sobre la densidad de la Vía Láctea en el Instituto Carnegie en Pasadena (California)

“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einstein nunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”

Si hablamos de nuestra Galaxia, la Vía Láctea, lo havcemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlñsares, los agujeros negros o los manétares, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente “insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.

      Tenemos el Universo dentro de nuestras mentes

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 myst4

Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que tesolver. ¡Menos mal!

La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materia y los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

 

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

Comprender de manera armoniosa cómo se juntan las dos mejores teorías de la física que tenemos actualmente, la cuántica y la relatividad general… ¡Sin que surjan infinitos!

La armoniosa combinación de la relatividad general y la mecánica cuántica será un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones,  aparece el esquivo gravitón implicándo con ello que la teoría contiene implicitamente una teoría cuántica de la Gravedad.

         Ahora, en la nueva etapa del LHC, tratarán de buscar partículas Partículas Supersimétricas

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

¿Serán las cuerdas las que hacen de nuestro Universo el que es?

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.

          Muchos sueñan con encontrar esa Teoría del Todo

Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.

                                                                                                                GEO 600

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

 

Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.

         La relatividad general nos dijo cómo es la geometría del Universo

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

 

                   Pero… ¿somos en verdad tan insignificantes?

Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.

Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.

Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.

En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada,  (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación (Iv = 2hc-2v3/[exp(hv/KT)-1]), con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.

Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usadas principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad.  Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimiensionalidad, está presente en la constante de estructura fina (2πe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega α (alfa).

Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang. El tiempo de Planck por ejemplo, expresado por , tiene un valor del orden de 10-43 segundos, o lo que es lo mismo, el tiempo que pasó desde la explosión hasta el tiempo de Planck fue de: 0,000.000.000.000.000.000.000.000.000.000.000.000.000.001 de 1 segundo. En la fórmula, G es la constante universal de Newton, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

Es una unidad de tiempo infinitesimal, como lo es el límite de Planck que se refiere al espacio recorrido por un fotón (que viaja a la velocidad de la luz) durante una fracción de tiempo de ínfima duración y que es de 0,000.000.000.000.000.000.000.000.000.000.001 de cm.

Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…

Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratán de nbuscar partículas supersimñétricas y el origen de la “materia oscurta”.

Haber fabricado acelerados tan potentes como para poder detectar la partícula de Higgs, esa partícula responsable de proporcionar masa a todas las demás partículas, en tiempos pasados era un sueño que pudimos hacer realidad y, de la misma manera, soñamos ahora con tener un Acelerador tan Potente como para poder encontrar las cuerdas o las partículas simétricas de las que se cree están conformadas. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.

Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienem atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No todos vemos el mundo de la misma manera

Nuestra realidad es la que cada uno de nosotros percibimos, entendemos y actuamos de manera diferente en la vida. Cada uno poseemos nuestra propia realidad del mundo y de nosotros mismos. Estamos construidos a base de creencias, y esas creencias son las que influyen de manera decisiva en nuestra realidad y en nuestra conducta, por lo tanto, son las culpables de que consigamos o no nuestros objetivos. Básicamente nuestra realidad está formada por nuestras creencias.

“Nuestra tarea más urgente es dejar de identificarnos con el pensamiento, dejar de estar poseídos por él”     Eso nos aconseja Eckhart Tolle, y, no siempre resulta ser de esa manera, Hay ocasiones en la que, nuestros pensamientos son la guía que nos pueden llevar al buen destino, y, si lo que dice (que no lo aclara) está referido a los pensamientos de los otros, simplemente se trata de discernir dónde radica la verdad, en lo que nos dicen o en lo que nosotros creemos. Claro que, no todos creen siempre en lo correcto.

Lo cierto es que, la única realidad vendrá de los descubrimientos que son desvelados y nos muestran los secretos d ela Naturaleza.

Nosotros los humanos, nunca estamos seguros de nada y, buscando esa seguridad, creamos modelos con los que tratamos de acercarmos más y más a esa realidad que presentimos, y, para ello, encontramos las maneras de aproximarnos a esa realidad “presentida”.

Pero vayamos a algo concreto y pensemos, por ejemplo, en la técnica reiterativa que se utiliza para obtener “soluciones” en casos como el problema de los tres cuerpos (por ejemplo) tiene un inconveniente. A veces no funciona, no siempre podemos decir a priori si va a funcionar o no. La técnica que se aplica para “resolver” las ecuaciones diferenciales pertinentes (recordemos que no se pueden resolver analíticamente) implica realizar aproximaciones sucesivas, en las cuales, como es sabido, el primer paso del proceso de cálculo sólo da una solución aproximada; el segundo paso añade (con un poco de suerte) una correccción para obtener una aproximación más precisa de la realidad; el tercer paso nos da una aproximación aún mejor, y así sucesivamente hasta que nos parezca que la aproximación es lo suficientemente buena para el objetivo que nos hayamos propuesto. Pero nunca podremos conseguir con exactitud la “respuesta” que encaja a la perfección con el comportamiento de los objetos del mundo real en lo que se centra nuestro interés en ese determinado momento y sobre ese objetivo en particular.

Ninguna idea nos ha llegado de manera instantánea y depurada en todos sus conceptos, sino que, han sido ideas que han tenido que ir siendo depuradas más y más a conseguir esa realidad que buscábamos haciendo que, el esquema encontrado, se parezca lo más posible al mundo que nos rodea y que podemos observar. Esa es, en pocas palabras la historia de la Relatividad de Einstein que ajunto muchas ideas  y conceptos para conseguir sus teorías que están muy cercas de lo que el mundo es.

Lo que hacemos es sumar una serie de números -en principio, una serie de números infinitamente larga- A los matemáticos les interesa estas series infinitas para sus propios objetivos, independientemente de la importancia quer puedan tener para los estudios del comportamiento de las cosas tales como los planetas que orbitan alrededor del Sol, y conocen una gran cantidad de series infinitas cuyas sumas se comportan lo suficientemente bien como para ofrecer una aproximación cada vez mejor de un número concreto.

          En esta aproximación muestra la prueba de texturizado del modelo 3D finalmente seleccionado.

Un buen ejemplo lo constituye uno de los procedimientos que se utilizan habitualmente para calcular el valor aproximado de π, el cociente entre la circunferencia de un círculo y su diámetro. Se puede calcular realmente el valor de π/4, con tanta precisión como se desee, sumando la serie numérica:

1 – 1/3 + 1/5 – 1/7 ….

Esto nos da una primera aproximación del valor de π que sería (4 x 1), que no es muy brillante; una segunda aproximación cuyo valor sería 2,6666… (4 x 2/3), que es algo mejor, y que, curiosamente,  se encuentra al otro lado de la respuesta «correcta»; una tercera aproximación que sería 3,46666…, y así sucesivamente. Estas aproximaciones van siendo cada vez mejores y convergen en el verdadero valor de π, en este caso concreto desde ambos lados. Pero el proceso es tedioso -la suma del primer millón de términos de la serie nos da para pi (π) un valor de 3,1415937, que sólo es correcto en sus cinco primeras cinco cifras decimales, Ni obstante, se puede calcular π de este modo hasta el grado de precisión que se desee (hasta alguna cifra de los decimales), si tienes la paciencia necesaria.

Hacemos una parada aquí para dejar una nota que nos dice que  independiente de cualquier otra consdideración, lo cierto es que, en matemáticas y la teoría del caos y  entre otros temas. Si hablamos de Pi mos topamos con múltiples sorpresas y él está representado en el diseño de la doble espiral de ADN  el Efecto mariposa y la Torah, entre otras muchísimas cosas que  se escriben con Pi. Es un número misterioso que lo podemos ver por todas partes reopresentado de una u otra manera. Desde la más remota antigüedad, fascinó a los más grandes pensadores.

No pocos están convencisos de la existencia de patrones que se repiten en los distintos órdenes de la vida. Descubrirlos implicaría, nada más y nada menos, que deducir el mundo. Yo no dejaría de lado, en todo esto la Teoría del Caos que podría definirse (¡en forma muy simplona!) como el estudio de sistemas complejos siempre cambiantes. Los resultados que consideramos ´impredecibles´ ocurrirán en sistemas que son sensibles a los cambios pequeños en sus condiciones iniciales. El ejemplo más común es conocido como “el efecto mariposa” “. La teoría supone que el batir de alas de una mariposa en la China durante un determinado período de tiempo podría causar cambios atmosféricos imperceptibles en el clima de New York.

Pi es la decimosexta letra del alfabeto griego y el símbolo que representa el misterio matemático más viejo del mundo: la proporción de la circunferencia de un círculo a su diámetro.

El registro escrito conocido más temprano de la proporción viene del año 1650 antes de Cristo en Egipto, donde un escriba calculó el valor como 3.16 (con un pequeñísimo error). Aunque ahora, nosotros tenemos métodos para calcular los dígitos de pi (3.1415…) sus restos de valor exacto todavía son un misterio.

Desde 1794, cuando se estableció que Pi era irracional e infinita, las personas han estado buscando un patrón en el cordón interminable de números.

Cosa curiosa, Pi puede encontrarse por todas partes, en la astronomía, en la física, en la luz, en el sonido, en el suelo, etc. Algunos cálculos advierten que tendría más de 51 mil millones de dígitos, pero hasta el momento no se ha detectado un patrón discernible que surja de sus números. De hecho, la primera sucesión 123456789 aparece recién cerca de los 500 millones de dígitos en la proporción.

En la actualidad hay algunas computadoras superpoderosas tratando de resolver la cuestión. En el film, la computadora bautizada por Max como Euclid literalmente “estalla” al acercarse a la verdad del cálculo. ¿Y entonces?… Azar, fe, creencias, ciencia, métodos…y siempre un misterio último sin resolver.

¿El hallazgo de patrones será la respuesta? Tal vez por eso los pitagóricos amaban la forma/patrón espiral… porque ella está por todas partes en la naturaleza: en los caracoles, en los cuernos del carnero, en las volutas de humo, en la leche sobre el café, en la cara de un girasol, en las huellas digitales, en el ADN y en la Vía Láctea.

3.1415926535897932384626433832795028841971693993…

Resultado de imagen de Grandes computadoras que buscan los decimales de Pi

Sí, son muchas las mentes más claras que se han interesado por este fascinante número π. En su libro de 1989 “La nueva mente del emperador”, Roger Penrose comentó sobre las limitaciones en el conocimiento humano con un sorprendente ejemplo: Él conjeturó que nunca más probable es saber si una cadena de 10 7s consecutivo aparece en la expansión digital del número pi . A tan sólo 8 años más tarde, Yasumasa Kanada utiliza una computadora para encontrar exactamente esa cadena, empezando por el dígito de pi …. 17387594880th

Sin embargo, al final, algunos creen que, como todo esta relacionado, sabremos reconocer el mensaje que trata de enviarnos π y que, hasta el momento no hemos sabido comprender. Y, por otra parte, existen otras cuestiones que también estamos tratandode dilucidar para aproximarnos a esa realidad incomprendida que, estándo aquí, no podemos ver. Por ejmplo:

Roger Penrose dedicó bastante más tinta en defender  los argumentos de Shadows of Mind que en escribir dicha obra. En una de sus contrarréplicas, publicada en la revista Psyche (Enero, 1996), nos ofrece una de las versiones más claras de su famoso argumento.

Supongamos que todos los métodos de razonamiento matemático humanamente asequibles válidos para la demostración de cualquier tesis están contenidos en el conjunto F. Es más, en F no sólo introducimos lo que entenderíamos como lógica matemática (axiomas y reglas de inferencia) sino todo lo matemáticamente posible para tener un modelo matemático del cerebro que utiliza esa lógica (todos los algoritmos necesarios para simular un cerebro). F es, entonces, el modelo soñado por cualquier ingeniero de AI: un modelo del cerebro y su capacidad para realizar todo cálculo lógico imaginable para el hombre. Y, precisamente, ese es el modelo soñado porque la AI Fuerte piensa que eso es un ser humano inteligente. Así, cabe preguntarse: ¿Soy F? Y parece que todos contestaríamos, a priori, que sí.

                     ¿Es la verdad inalcanzable?

Sin embargo, Roger Penrose, piensa que no, y para demostrarlo utiliza el celebérrimo teorema de Gödel, que venimos a recordar a muy grosso modo: un sistema axiomático es incompleto si contiene enunciados que el sistema no puede demostrar ni refutar (en lógica se llaman enunciados indecidibles). Según el teorema de incompletitud, todo sistema axiomático consistente y recursivo para la aritmética tiene enunciados indecidibles. Concretamente, si los axiomas del sistema son verdaderos, puede exhibirse un enunciado verdadero y no decidible dentro del sistema.

Si yo soy F, como soy un conjunto de algoritmos (basados en sistemas axiomáticos consistentes y recursivos), contendré algún teorema (proposiciones que se infieren de los axiomas de mi sistema) que es indecidible. Los seres humanos nos damos cuenta, somos conscientes de que ese teorema es indecidible. De repente nos encontraríamos con algo dentro de nosotros mismos con lo que no sabríamos qué hacer. Pero en esto hay una contradicción con ser F, porque F, al ser un conjunto de algoritmos, no sería capaz de demostrar la indecibilidad de ninguno de sus teoremas por lo dicho por Gödel… Una máquina nunca podría darse cuenta de que está ante un teorema indecidible. Ergo, si nosotros somos capaces de descubrir teoremas indecidibles es porque, algunas veces, actuamos mediante algo diferente a un algoritmo: no sólo somos lógica matemática.

Claro que, cómo podría un robot imitar nuestros múltiples, locos  y dispares pensamientos:

  • Los Computadores nunca podrán reemplazar la estupidez humana.
  • El hombre nace ignorante,  la educación lo idiotiza.
  • Una persona inteligente resuelve problemas, el genio los evita.
  • Las mujeres consideran que guardar un secreto, es no revelar la fuente.
  • Todas las mujeres tienen algo bonito… así sea una prima lejana.
  • La felicidad es una lata de atún, pero con el abrelatas un poco distante.
  • El único animal que no resiste aplausos es el mosquito.
  • El amor está en el cerebro, no en el corazón.
  • Definición de nostalgia “es la alegría de estar triste”.
  • “Mi segundo órgano favorito es el cerebro”.

 

 

 

 

Vale, ¿y qué consecuencias tiene eso? Para la AI muy graves. Penrose piensa no sólo que no somos computadores sino que ni siquiera podemos tener un computador que pueda simular matemáticamente nuestros procesos mentales. Con esto Penrose no está diciendo que en múltiples ocasiones no utilicemos algoritmos (o no seamos algoritmos) cuando pensemos, sólo dice (lo cual es más que suficiente) que, habrá al menos algunas ocasiones, en las que no utilizamos algoritmos o, dicho de otro modo, hay algún componente en nuestra mente del cual no podemos hacer un modelo matemático, qué menos que replicarlo computacionalmente en un ordenador.

Además el asunto se hace más curioso cuanto más te adentras en él. ¿Cuáles podrían ser esos elementos no computables de nuestra mente? La respuesta ha de ser un rotundo no tenemos ni idea, porque no hay forma alguna de crear un método matemático para saber qué elementos de un sistema serán los indecidibles. Esto lo explicaba muy bien Turing con el famoso problema de la parada: si tenemos un ordenador que está procesando un problema matemático y vemos que no se para, es decir, que tarda un tiempo en resolverlo, no hay manera de saber si llegará un momento en el que se parará o si seguirá eternamente funcionando (y tendremos que darle al reset para que termine). Si programamos una máquina para que vaya sacando decimales a pi, no hay forma de saber si pi tiene una cantidad de decimales tal que nuestra máquina tardará una semana, seis meses o millones de años en sacarlos todos o si los decimales de pi son infinitos. De esta misma forma, no podemos saber, por definición, qué elementos de nuestra mente son no computables. A pesar de ello, Penrose insiste en que lo no computable en nuestra mente es, nada más y nada menos, que la conciencia, ya que, explica él, mediante ella percibimos la indecibilidad de los teoremas. Es posible, ya que, aunque a priori no pudiéramos saber qué elementos no son decidibles, podríamos encontrarnos casualmente con alguno de ellos y podría ser que fuera la conciencia. Pero, ¿cómo es posible que nuestro cerebro genere conciencia siendo el cerebro algo aparentemente sujeto a computación? Penrose tiene que irse al mundo cuántico, en el que casi todo lo extraño sucede, para encontrar fenómenos no modelizables por las matemáticas y, de paso, resolver el problema del origen físico de la conciencia.

Las neuronas no nos valen. Son demasiado grandes y pueden ser modelizadas por la mecánica clásica. Hace falta algo más pequeño, algo que, por su naturaleza, exprese la incomputabilidad de la conciencia. Penrose se fija en el citoesqueleto de las neuronas formado por unas estructuras llamadas microtúbulos. Este micronivel está empapado de fenómenos cuánticos no computables, siendo el funcionamiento a nivel neuronal, si acaso, una sombra amplificadora suya, un reflejo de la auténtica actividad generadora de conciencia. ¡Qué emocionante! Pero, ¿cómo generan estos microtúbulos empapados de efectos cuánticos la conciencia? Penrose dice que no lo sabe, que ya bastante ha dicho…

O sea señor Penrose, que después de todo el camino hecho, al final, estamos cómo al principio: no tenemos ni idea de qué es lo que genera la conciencia. Sólo hemos cambiado el problema de lugar. Si antes nos preguntábamos cómo cien mil millones de neuronas generaban conciencia, ahora nos preguntamos cómo los efectos cuánticos no computables generan conciencia. Penrose dice que habrá que esperar a que la mecánica cuántica se desarrolle más. Crick o Searle nos dicen que habrá que esperar a ver lo que nos dice la neurología… ¡Pero yo no puedo esperar!

Además, ¿no parece extraño que la conciencia tenga algo que ver con el citoesqueleto de las neuronas? La función del citoesqueleto celular suele ser sustentar la célula, hacerla estable en su locomoción… ¿qué tendrá que ver eso con ser consciente? Claro que en el estado actual de la ciencia igual podría decirse: ¿qué tendrá que ver la actividad eléctrica de cien mil millones de neuronas con que yo sienta que me duele una muela?

     Todo eso está bien pero, ¿Qué es PI?

Desde hace aproximadamente unos 5000 años, el hombre ha utilizado  objetos que ruedan para ayudarse en sus tareas, por eso es muy probable que haya descubierto ese “3 y pico” hace muchos años, pues es imprescindible para calcular y resolver problemas que involucraran estos cuerpos. Cuenta la historia, que los antiguos egipcios en el 1600 a. de C. ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente:
“Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo”.
Si llamamos A al área del círculo, ésta será igual a 8/9 del diámetro al cuadrado
     A=(8/9 d)^2
Como   d=2r entonces   A= 2r^2 x 64/81  = 4r2 x 64/81  = r2 x 256/81
Así vemos como  π adoptaba el valor 256/81, aproximadamente 3,16.  En Mesopotamia, más o menos por la misma época, los babilonios utilizaban el valor 3,125 (3+1/8) según  la Tablilla de Susa.
Mientras que los geómetras de la Grecia clásica sabían que la razón entre la longitud de una circunferencia cualquiera y su diámetro es siempre una constante (el número al que ahora llamamos pi). También conocían y habían conseguido demostrar que tanto la razón entre el área de un círculo y su diámetro al cuadrado, como la del volumen de una esfera y el cubo de su diámetro eran constantes (desconocidas en aquel momento, libro XII de “Los Elementos” de Euclides).
Fue Arquímedes en el siglo III a. de C. quien determinó que estas constantes estaban estrechamente relacionadas con π. Además, utilizó el método de exhaución, inscribiendo y circunscribiendo en una circunferencia, polígonos de hasta 96 lados y consiguiendo una magnífica aproximación para la época.
Lo cierto es que, desde tiempos inmemoriales, vamos tras la huella del saber, tratando de adentrarnos en el conocimiento de las cosas que nos rodean, del mundo en el que vivímos, de la Galaxias que nos acoge y en fin, del Universo y la Naturaleza que guarda todos los secretos que deseamos desvelar y, como nosotros somos parte de esa Naturaleza, es posible, quer todas las respuestas que buscamos esté, desde el principio, gravada en nosotros y, sólo con el tiempo, podrán aflorar y llegar a nuestras mentes que tratamos de comprender a veces, con frustración y sufrimiento ante la impotencia de no saber…lo que pueda haber en el interios de tan complejo “universo”.
Nos queda mucho tiempo de evolución de nuestras mentes para que, algún día, podamos dejar las creencias ancestrales a un lado, y, saber donde está esa realidad que, incansables buscamos. Claro que, algunos, cuando la encuentran, no la quieren reconocer.
emilio silvera

La vida media de las partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugieren. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les trae a la Mente. Un paisaje puede ser descrito de muy distintas maneras según quién nos lo pueda contar.

 

 

 

Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La  Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.

Pero entremos en el fascinante “universo” de las partículas subatómicas y veámos que vida tienen y que tiempo están entre nosotros antes de destruirse y desaparecer.

Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

http://www.monografias.com/trabajos75/agua-pesada/image003.gif

Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

http://nuclear.fis.ucm.es/FERIA/IMAGENES/TAB_ISOTOPOS.JPG

¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

 

Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN. Lanzan haces de partículas a velocidades relativistas para hacerlas chocar y saber que sale de su interior, es la manera de conocer de qué está hecha la materia.

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

Colisionando particulas leptones tau positivos y negativos encontraron los Bosones W+ y W-.

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

http://i.livescience.com/images/i/22669/i02/cms-higgs.jpg

Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.

Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro,  se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.

emilio silvera