sábado, 02 de agosto del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los neandertales revientan la ley de Margulis

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lynn Margulis.jpgVariedad surgida de las células eucariotas.  Lynn Margulis en 2005. Ya nos ha dejado pero, su trabajo, sigue vivo y alumbra a los científicos actuales que siguen buscando el origen de la vida y los caminos por los que ésta tuvo que caminar hasta llegar al punto en el que ahora la podemos contemplar. Encontré esta publicación relativa al tema y aquí os la dejo.

El hallazgo de que los neandertales dividían el trabajo por sexos se une a otros que amenazan con desplazarnos de la cúspide de la creación.

 

 

 

Recreación de la vida de una familia neandertal en el Museo del Neandertal de Krapina (Croacia). / REUTERS

La gran bióloga Lynn Margulis, que nos abandonó en 2011, sostenía con característica mala uva que la ciencia está lastrada por el mito de la gran cadena del ser. Los humanos ocupamos el penúltimo eslabón de esa cadena, a mitad de camino entre Dios y la piedra, y eso nos garantiza el lugar especial en el cosmos que la física y la biología se empeñan en hurtarnos con cada revolución copernicana de los lunes, miércoles y viernes. Si no somos dioses, seamos al menos lo más parecido a ellos que el universo es capaz de concebir.

¿No irá una nueva estirpe de humanos, una especie de Podemos de la biología, a ocupar nuestra posición estratégica en la gran cadena del ser?

 

 

Bien. Pero entonces ¿qué hacer con los neandertales, esos tipos tan parecidos a nosotros que da grima verlos comiendo carroña? ¿No pretenderán también ellos situarse en el centro exacto de la gran cadena del ser, a mitad de camino entre Dios y la piedra? Porque, de ser así, ¿qué vendrá después, cuando nosotros ya no estemos aquí? ¿No irá una nueva estirpe de humanos, una especie de Podemos de la biología, a ocupar nuestra posición estratégica en la gran cadena del ser? ¡Eso nunca! ¡Alambradas y concertinas contra el otro, contra la fiera corrupia, contra el extranjero del tiempo!

El proceso empezó en el mismo momento en que descubrimos al neandertal. La misma cuadrilla de obreros que, excavando una mina caliza el 9 de septiembre de 1856, encontró sus huesos en la cueva de Feldhof, junto a Dusseldorf, pensó que los restos eran de un oso. Por fortuna le entregaron los 16 huesos al maestro de un pueblo cercano, Johann Carl Fuhlrott, que tenía conocimientos de anatomía y se dio cuenta en seguida de que los restos eran muy antiguos y pertenecían a un ser humano, aunque muy diferente de nosotros.

 

 

 

 

Satisfechos de su hallazgo, los obreros siguieron con su trabajo y echaron abajo la cueva Feldhof y la montaña entera junto al valle de Neander, de las que hoy solo quedan unos cuantos lienzos pintados por los excursionistas holandeses de la época. En honor al maestro Fuhlrott, es preciso señalar que aún faltaban tres años para que Darwin publicara El origen de las especies. Cabe preguntarse quiénes serían los alumnos de aquel hombre extraordinario.

Rudolf Virchow, padre de una de las más esenciales unificaciones de la biología, echó encima todo el peso de su prestigio sobre los huesos fósiles dictaminando que aquello no era más que “un idiota con artrosis”

Pero los insultos para el hombre del valle de Neander no habían hecho más que empezar con el tema del oso. Uno de los grandes científicos de la época, Rudolf Virchow, padre de una de las más esenciales unificaciones de la biología –la teoría celular, Omnis cellula e cellula, toda célula proviene de otra—, echó encima todo el peso de su prestigio sobre los huesos fósiles dictaminando que aquello no era más que “un idiota con artrosis”. ¡Hala!

La historia se ha repetido a otras escalas en años recientes. Las evidencias de que los neandertales se cruzaron con los Homo sapiens recién salidos de África hace unos 50.000 años han sido numantinas. El descubridor de esos cruces, el genetista de la Universidad de Chicago Bruce Lahn, no pudo publicar el hallazgo en las revistas científicas de mayor impacto, Nature y Science, porque los paleontólogos que revisaron el trabajo decidieron que era absolutamente imposible que las dos especies hubieran producido descendencia fértiles. Hizo falta una proeza tecnológica –la lectura del genoma neandertal— para zanjar la cuestión, y ni siquiera así resultó fácil.

También los indicios genéticos de que los neandertales poseían la facultad del lenguaje (el gen FOXP2) fueron recibidos con escepticismo. Acabamos de saber ahora que los neandertales dividían el trabajo por sexos, unas evidencias que se unen a los indicios de que tenían cultura, manejaban símbolos y plantas medicinales y se aparearon con nosotros.

Si queremos seguir siendo la cúspide de la creación, vamos a tener que emplear a fondo esos sesos de los que estamos tan orgullosos. No vaya a ser que otra especie venga a ocupar el centro exacto de la cadena del ser, a medio camino entre Dios y la piedra, y nos vaya a robar la ley de Margulis para su uso y disfrute.

Fuente: El País.

¿Recordar? ¿Olvidar? Todo está dentro de nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Los recuerdos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La gran obra de al-Razi fue el AL-Hawi (El libro exhaustivo), una enciclopedia de veintitrés volúmenes de conocimientos médicos griegos, árabes, pre-islámicos, indios e incluso chinos.
El otro gran médico musulmán fue Ibn Sina, a quien conocemos mejor por su nombre latinizado, Avicena.  Al igual que al-Razi, Avicena escribio doscientos libros, destacando la obra más famosa AL-Qanun (El canon) muy documentado e importante tratado.

 

Alejandría, en el año 641, había caído en manos de los musulmanes que, durante muchos años había sido la ciudad capital-mundial de los estudios matemáticos, médicos y filósofos, y allí los musulmanes encontraron una ingente cantidad de libros y manuscritos griegos sobre estos temas.  Posteriormente, entre el profesorado de la Casa de la Sabiduría encontramos a un astrónomo y matemático cuyo nombre, como el de Euclides, se convertiría en palabra de uso cotidiano en todo el mundo culto: Muhammad ibn-Musa aL-khwarizmi.

 

 

 

 

 

 

foto de nuestra galaxia

 

Andrómeda (que no es la que arriba vemos), la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.

Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.

Sí, parece que todo estádentro de nosotros pero… cuando el tiempo transcurre se queda dormido. Como siempre pasa, nunca la cosa es tan sencilla y, unas veces necesitamos recordar y otras quisiéramos olvidar situaciones que nos desagradan y nos traen malos recuerdos. Claro que, tratar de olvidar a alguien es recordarlo para siempre y obtenemos el efecto contrario al que buscamos. La memoria, también, recorre misteriosos caminos que no siempre hemos sabido comprender.

Aunque nos cueste creerlo el Tiempo, se lo lleva todo y los recuerdos no son una excepción. Como las ondas que se producen en la superficie del agua y se alejan y alejan hasta desaparecer, así pasa con los recuerdos que cada vez se “ven” más borrosos en nuestra memoria. El más destacado explorador del oscuro continente del la memoria fue el inspirado vagabundo Giordano Bruno (1548-1600). Cuando era un jóven fraile en Nápoles se había iniciado en el famoso arte domínico de la memoria, y al abandonar la orden de santo Domingo, los legos esperaban que desvelara los secretos de estos religiosos.

Y no los decepcionó pues en sus obras De umbris idearum y Cantus circaeus (1582), Bruno explicó que la destreza en la memorización no era ni natural ni mágica, sino producto de una ciencia especial.  Giordano Bruno nos introduce en su ciencia de la memoria con un encantamiento de la propia Circe (¿Os acordáis de ella? Sí, aquella que llegado Ulises a la extraña isla, tenerlo enbrujado en las redes amorosas, convirtió a sus camaradas marinos aventureros en cerdos) con el que muestra el particular poder de las imágenes de los decanos del zodíaco.

Las imágenes estrella, las sombras de ideas, que representan objetos celestes, estaban más próxima a la realidad perdurable que las imágenes de este mundo transitorio e inferior. El sistema de Bruno para “recordar” estas “sombras de ideas utilizadas para la escritura interior” a partir de las imágenes celestes condujo a sus discípulos al conocimiento de una realidad más elevada.

“Sirve para dar al caos amorfo… Para controlar la memoria es necesario que los números y los elementos estén ordenados… según ciertas formas fáciles de recordar (las imágenes del zódíaco)… Os digo que si lo contempláis con atención seréis capaces de alcanzar un arte tan figurativo que no sólo facilitará la tarea de la memoria sino que también incrementará los poderes del alma de una manera maravillosa.”

 

¡Un camino garantizado hacia la unidad existe detrás de cada cosa!

El proceso de Giordano Bruno a cargo de la Inquisición romana. Relieve de bronce de Ettore Ferrari (1845-1929), Campo dei Fiori, Roma. Lo procesaron por decir que existían otros muchos mundos en los que, al igual que en la Tierra, vivían muchas criaturas. en prisión lo visitó un amigo, al despedirse el le dijo:

 

“No estamos separándonos Sagredo, la separación no existe, todos somos uno, para siempre … El único con el Alma”

 

Pero la necesidad cotidiana de recurrir a la memoria ya nunca fue tan importante en los días anteriores al papel y los libros impresos. La gloria de la memoria declinó. En 1580 Montaigne declaró que “una buena memoria va generalmente unida a la debilidad de juicio”. Y los enterados añadieron burlonamente: “No hay nada más corriente que un tonto con buena memoria.”

Mucho se ha discutido sobre la verdadera aportación de Gutenberg a la industria de las artes gráficas, aunque de ningún modo se le puede atribuir la invención de la , cuyos principios eran explotados con anterioridad a sus descubrimientos. Ya a comienzos del siglo XV se imprimían naipes y estampas con motivos religiosos, mediante la aplicación de una plancha de madera grabada y embadurnada con tinta grasa, sobre el papel o el pergamino. Este procedimiento de impresión, la xilografía, era originario de Extremo Oriente, China o Corea, y entró en Europa a través de Italia. Aquello cambió el mundo como ahora, también lo ha cambiado para nosotros Internet.

recordemos que en los siglos posteriores a la Imprenta, el interés pasó de la técnica de la memoria a su patología. A fines del siglo XX, el interés por la memoria se ve desplazado por el interés por la afasia, la amnesia, la histeria, la hipnosis y, por supuesto, el psicoanálisis. El interés pedagógico por el arte de la memoria fue desplazado por un interés en el arte de aprender, que pasó a ser considerado un proceso social.

                   Sí, hay veces que queremos dar la espalda al pasado

Y con ello nació un renovado interés por el arte de olvidar. Cuando Simónides se ofreció enseñar al estadista ateniense Temístocles el arte de la memoria, éste no aceptó, según informa Cicerón. “Enseñamé no el arte de recordar sino el de olvidar, pues recuerdo cosas que no deseo recordar y no puedo olvidar cosas que deseo olvidar.”

El estudio del olvido se convirtió en una meta de la psicología moderna, que examinó experimentalmente y midió los procesos mentales por primera vez. “La psicología un largo pasado; sin embargo, su historia real es breve”, observó Hermann Ebbinghaus (1850-1909). Sus sencillísimos experimentos, que William James calificó de “heróicos”, fueron descritos en Úber das Gedächttnis (La memoria, una contribución a la psicología experimental, 1885) y pusieron los cimientos de la psicología experimental moderna.

caleidoscopio-portada.jpg

                     Las técnicas hipnotizar han sido diferentes a lo largo del tiempo pero, no todos se dejan

Ebbinghaus creó elementos primitivos y carentes por sí mismos de significado para sus experimentos. Silabas sin sentido. Tomando dos consonantes cualesquiera y colocando una vocal en medio formó unas dos mil trescientas unidades recordables (y olvidables) y las ordenó en series. Para sus experimentos, las sílabas tenían la ventaja de que no provocaban asociaciones. Durante dos años se utilizó a sí mismo como sujeto con el que probar la capacidad de retención y reproducción de estas silabas anotándo escrupulosamente  las características y resultados de las pruebas y el de veces requerido para llegar a recordar y los intervcalos transcurridos entre los intentos.

Ebbinghaus confiaba en que también los fenómenos mentales podrían ser sometidos a un “tratamiento experimental y cuantitativo”, y no solamente las meras percepciones sensoriales (que Gustav Fechner [1801-1887], a quien Ebbinghaus dedicaba su obra, ya había comenzado a estudiar). La “curva de olvido” de Ebbinghaus relacionaba el olvido con el paso del tiempo. Sus conclusiones, que aún son válidas, demostraron que el olvido tiene lugar, en su mayor parte, poco después del “aprendizaje” si se dejaba de utilizar lo aprendido.

                      Hay que poseer sensibilidad para sentir la música, sus mensajes

De modo inesperado el mundo interior del pensamiento comenzó a ser explorado con los instrumentos de las matemáticas modernas. Pero otros exploradores, seguidores de la tradicción neoplatónica, mantiuvieron vivo el interés por los misterios de la memoria. El propio Ebbinghaus dijo que había estudiado “el resurgir involuntario a la luz de la conciencia de imágenes mentales procedentes de la oscuridad de la memoria”. Unos pocos Psicólogos más se precipitaron irreflexivamente en esa “oscuridad” del inconsciente, pero mientras lo hacían afirmaron haber inventado una nueva “ciencia”.

Los fundadores de la Psicología moderna se interesaban vez más por el olvido como proceso de la vida diaria. El incomparable William James (1842-1910) observó:

“En el uso práctico de nuestro intelecto olvidar es una función tan importante como recordar… Si lo recordáramos todo, en la mayoría de las ocasiones nos sentiríamos tan mal como si no recordáramos nada. Tardaríamos tanto en recordar un espacio de tiempo, como el tiempo original tardó en transcurrir, y nunca adelantaríamos en nuestro pensamiento. Todos los tiempos recordados sufren… una reducción; y tal reducción se debe a la omisión de un enorme de hechos que componían la totalidad del tiempo. Así pués, alcanzamos el paradógico resultado de que la condición del recuerdo es que olvidemos. Sin olvidar por completo un prodigioso número de estados de la conciencia y sin el olvido momentáneo de un gran número de éstos, no podríamos recordar nada en absoluto, como dice M. Ribot.”

 

 

 

  Encontrar quien te tienda una mano salvadora

No pocas veces tenemos en la punta de los “dedos del recuerdo” aquello que se nos escapa en la más profunda oscuridad de la mente y ni llegamos a poder tocarlo, aunque sabemos que está ahí… ¡se nos escapa! , en un siglo en el que el volumen del  conocimiento humano es inconmensurable y todo se guarda en una memoria colectiva de fácil acceso, la que llamamos Internet y a la que podemos acudir en busca de ayuda para recordar y obtener respuestas, parece menos importante que nunca el conservar en la memoria los hechos y los conocimientos que no nos son necesarios de manera habitual para nuestras vidas cotidianas y nuestros trabajos.

Como nuestra ignorancia es tan grande, no sabemos a qué lugar van a parar los recuerdos y, a veces, no puedo evitar pensar que todas las cosas que forman nuestra historia, los sucesos de nuestras vidas que pasan con el transcurrir del tiempo, van a parar a algún rincón de nuestras mentes que, como si de un agujero negro se tratara, allí los retiene siempre y, de vez en cuando, de manera extraña e inexplicable, alguno logra salir y se nos aparece en la superficie de la memoria, de esa manera, podemos contemplar el pasado y revivir experiencias y momentos.

Hay tántas cosas que no sabemos que nos pasamos la vida dando “palos de ciego” sobre lo que ésto o aquello podría ser y, finalmente, nos damos de que, nunca podremos saberlo todo y, aunque vayamos dejando a los que vienen los hechos más importantes que reflejamos en la Historia para que el olvido no se los lleve, aún así, siempre tendremos más preguntas que respuestas, ya que, el Universo, es demasiado grande para nosotros y, nuestras mentes se expanden a menor velocidad que el espacio-tiempo sin fin.

De todas las maneras, yo prefiero recordar lo que pasó, ya que, todos esos recuerdos son “mis recuerdos” y forman parte de mi vida. Algunos serán dolorosos y otros felices pero, entre todos ellos, se cuenta mi historia y, amigos míos, la vida no se nos ha dado como un regalo y, ¡tenemos que pagarla! ¡De tántas maneras!

emilio silvera

¿Sirve realmente orar pidiendo alguna cosa?

Autor por Emilio Silvera    ~    Archivo Clasificado en La Oración    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Rebuscando en los archivos, me encuentro con un correo del amigo Nelson, de Montevideo (Uruguay) que me ha llamado la atención y aquí os lo dejo para que saqueis vuestras propias conslusiones.

Preparativos para la celebración sagrada

Imagen de la Agencia EFE

Una reportera escuchó hablar de un anciano judío que había estado yendo a orar al Muro de los Lamentos durante muchos años, todos los días, sin faltar uno. Así que fue para allí a comprobarlo. Identificó al hombre fácilmente mientras se acercaba al Muro de los Lamentos.

Lo observó mientras oraba.

Después de 45 minutos y cuando el viejito se estaba dando vuelta para irse, ella se acercó para hacerle una entrevista.

“Discúlpeme, señor. Soy Rebecca Laskowsky, reportera. ¿Cuál es su nombre?”.

“Morris Fishbein,” respondió el hombre.

“¿Cuánto tiempo ha venido usted, señor, al Muro de los Lamentos?”.

“Alrededor de 60 años”.

“¡60 años! ¡Es asombroso! ¿Y por quién ó por qué reza?”.

“Rezo por la paz entre cristianos, judíos y musulmanes.”

“Rezo porque terminen todas las guerras y los odios entre la gente.”

“Rezo para que los niños crezcan como adultos responsables, amando a sus semejantes”.


“Rezo porque no haya pobres en el mundo, aunque para ello no tengan que haber ricos”

 

“¿Y cómo se siente usted después de estos 60 años?”


” ¡¡¡Como si le hubiera estado hablando a una pared!!!”

¡La Condición Humana! ¿Cuándo seremos conscientes para saber que, lo que queramos alcanzar tendrá que ser mediante el propio esfuerzo? Claro que, una cosa sí que la tengo clara, la persona que dirige sus oraciones con fervor y es creyente, está convencida de que, de alguna manera, sus rezos serán oidos. Respetemos sus sentimientos y creencias.

¡El complejo Universo! Los fractales.

Autor por Emilio Silvera    ~    Archivo Clasificado en Los Pensamientos    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es curioso los enunciados matemáticos que pueden pertener al mundo de Platón sean precisamente aquellos que son objetivamente verdaderos. Se podría considerar que la objetividad matemática es precisamente el objeto del platonismo matemático. Decir que una afirmación matemática tiene una existencia platónica es sencillamente decir que es verdadera en un sentido objetivo. Un comentario similar es aplicable a las nociones matemáticas -tales como el conepto del 7, por ejemplo, o la regla para la multiplicación de números enteros, o la idea de que cierto conjunto contiene infinitos elementos-, todas las cuales tienen una existencia platónica porque son nociones objetivas. Es decir, la existencia platónica, es simplemente una cuestión de objetividad y, en consecuencia, , no debería verse como algo “místico” o “acientífico”, pese a que así la consideran algunos.

No obstante, como sucede con el axioma de elección, las preguntas acerca de si debe considerar o no que cierta propuesta concreta de una entidad matemática tiene una existencia objetiva pueden ser delicadas y a veces muy técnicas. Pese a ello, ciertamente no necesitamos ser matemáticos apreciar la solidez general de muchos conceptos matemáticos.

Veamos la representación de algunas porciones pequeñas de esa famosa entidad matemática conocida el conjunto de Mandelbrot:

El conjunto de Mandelbrot.

Hace ya más de 40 años que el matemático Benoit Mandelbrot se planteó una interesante pregunta: ¿Cuanto mide la costa de Gran Bretaña?” La respuesta no es simple, ya que en realidad depende del instrumento con el que realicemos la medida. Descubrió también Mandelbrot que la costa de Inglaterra muestra la misma estructura a diferentes escalas, lo que hoy conocemos autosemejanza o invarianza de escala y que constituye la principal característica de los objetos fractales.Benoit Mandelbrot también estudió un amplio grupo de extraños conjuntos, ignorados a lo largo de la matemática de principios del siglo XX y pertenecientes a prestigiosos científicos como Cantor, Hilbert, Peano, Koch, Sierpinski o Julia y logró clasificarlos bajo un mismo epígrafe. Había nacido la Geometría Fractal, a la que Mandelbrot pronto añadiría su principal creación: el Conjunto de Mandelbrot.

Mandelbrot.png

Bueno, el conjunto tiene una estructura extraordinariamente complicada, pero no se debe a ningún diseño humano. Lo realmente notable es que esta estructura está definida por una regla matemática particularmente simple. El punto que vamos a señalar es que nadie, ni siquiera el propio Mandelbrot cuando vio por primera vez las increibles complicaciones en los detalles finos del conjunto, tuvo ninguna preconcepción real de la extraordinaria riqueza del conjunto. El conjunto de Maldelbrot no fue invención de ninguna mente humana: sencillamente, está ahí de manera objetiva, en las propias matemáticas. Si tiene significado atribuir una existencia real al conjunto de Maldelbrot, entonces dicha existencia no estádentro de nuestras mentes, pues nadie abarcar por completo la inalcanzable variedad y la ilimitada complejidad del conjunto.

A la izquierda tenemos, el romanescu, un híbrido del brócoli y la coliflor, ejemplo típico de estructura fractal natural

Al pesar de su complicada estructura, el Conjunto de Mandelbrot mostraba una inusitada simplicidad ser representado a través de un ordenador y una asombrosa belleza, mayor que cualquier otro objeto geométrico descubierto hasta entonces. Pronto algunos se atrevieron a calificar la Geometría Fractal como una rama artística emergente. Pero en realidad no fue hasta los años 90 cuando un grupo de programadores desarrollaron los algoritmos de color que otorgan a los fractales su potencial artístico. Durante los últimos años los concursos internacionales, especialmente el Benoit Mandelbrot International Fractal Art han mostrado el enorme caudal artístico que atesora rama de la matemática mediante publicaciones y exposiciones por todo mundo.

que su existencia no reside dentro de la multitud de representaciones gráficas impresas por un computador que empiezxa a captar algo de su increible sofisticación y detalle, pues, en el mejor de los casos, tales representaciones gráficas recogen tan solo una sombra de una aproximación al propio conjunto. Pese a todo, tiene una solidez que está más allá de cualquier duda, pues la misma estructura se revela -en todos sus detalles perceptibles, con finura cada vez mayor cuanto más de cerca se examina- independientemente del matemático o computador que la examine. Su existencia solo puede estar dentro del mundo platónico de las formas matemáticas.

Si miramos con atención estos conjuntos, podemos llegar a sentirnos partícipes de un fabuloso viaje por el conjunto de Mandelbrot, el interior de una figura fractal, un “universo alucinante” de endiablada y extraña belleza conformada por una simple complejidad repetitiva.

que, a muchos de ustedes les costará o encontrarán difícil atribuir cualquier tipo de existencia real a las estructuras matemáticas. Yo les pido que hagan un esfuerzo, que amplien su concepción, su idea de lo que significa la palabra “existencia”, lo que puede significar para ellos. Las formas matemáticas del mundo de Platón no tienen evidentemente el mismo tipo de existencia que los objetos físicos ordinarios tales como una mesa o un libro. Tenemos que pensar en las nociones matemáticas objetivas como entidades intemporales, y no debe considerarse que nacieron en el instante en que fueron humanamente percibidas por primera vez. Las espirales concretas del conjunto del Maldelbrot que se encuentran en las Figs. 1.2c o 1.2d no alcanzaron su existencia en el instante en que se vieron por primera vez en la pantalla o la impresora de un computador, Ni surgieron cuando la idea general que hay tras el Conjunto de Maldelbrot fue propuesta por primera vez por un ser humano -no por Maldelbrot, tal como sucedió, sino por R. Brooks y J. P. Matelski, ni siquiera al principio el propio Maldelbrot, tenía ninguna concepción real de los diseños detallados y complicados que vemos arriba. Dichos diseños ya “existían” desde el principio de los tiempos, en el sentido potencial e intemporal con que necesariamente se iban a revelar en la forma exacta en que hoy los percibimos, con independencia de qué momento o qué lugar eligiera cualquier ser perceptivo para examinarlos.

Universo Del Fractal

Las imágenes fractales están en la Naturaleza, siempre estuvieron allí.

La existencia matemática es diferente no solo de la existencia física, sino también de una existencia que es atribuida por nuestras percepciones mentales. Pese a todo, hay una conexión misteriosa y profunda con una de esas otras dos formas de existencia: la Física y la Mental. En la figura que sigue mostramos de manera esquemática estas tres formas de existencia -la física, la mental y la matemático-`latónica-

Como entidades que pertenecen a tres “mundos” separados, representados esquemáticamente como esferas. También están indicadas las misteriosas conexiones los mundos. Con respecto al primero de esos misterios -que relaciona el mundo matemático-platónico con el mundo físico-, puede advertirse que estamos admitiendo que solo uan pequeña parte del conjunto de las matemáticas tiene que tener relevancia para el funcionamiento del mundo físico. Sucede ciertamente que la gran mayoría de las actividades actuales de los matemáticos puros no tienen una conexión obvia con la física, ni con ninguna otra ciencia, aunque con frecuencia nos veamos sorprendidos por aplicaciones importantes e inesperadas. Análogamente, en relación al segundo misterio, por el que la mentalidad entra en asociación con ciertas estructuras físicas (más concretamente, los cerebros humanos vivos, sanos y despiertos).

En realidad no se trata de que nuestras mentes lleguen a conectarse con el Universo, lo cierto es que, nosotros, somos el Universo. Simplemente se trata de que lleguemos a ser conscientes de ello. En ese preciso instante, cuando sintamos que somos una parte importante del universo (la que puede observar y pensar), sólo entonces, podremos obtener todas esas respuestas que se nos resisten para llegar a comprender la complejidad del Universo, ¡nuestra complejidad!

Muchas personas, cuando he hablado con ellas en alguna charla o Seminario, se sienten incómodas con estas ideas que, al parecer, les producen una profunda desazón: ¡Ser partes del Universo! ¿Qué significa eso? Bueno, el significado es : de las Estrellas venimos y hacia las Estrellas nos dirigimos, allí está nuestra meta, en el origen mismo de nuestra creación.Así son mis pensamientos y, como todos ustedes, tengo miles de preguntas que plantear.

Algunos procesos ocurren siempre en un sentido y no en el contrario

Somos conscientes de que un sistema no es otra cosa que la subordinación de todos los aspectos del Universo a uno cualquiera de ellos. Ayer mismo hablamos de la Segunda Ley de la Termodinámica, de la Entropía destructora que, en simbiosis con el Tiempo, todo lo cambia, todo lo transforma y, de alguna manera, a ella quedamos supeditados salvo ciertas pequeñas excepciones que (también previstas por el Universo) van retrazando en algunas regiones o grupos, ese final irremediable al que nos lleva la Entropía. vereis arriba, también en el Universo están presente toda clase de figuras fractales que, al fin y al cabo, son creaciones de la Naturalezsa misma.

¿Qué es esto? ¿Una Galaxia? ¿El caparazón de un Trilobites? ¿Una Nebulosa de estrellas con vórtice central? Con imaginación, podría ser cualquiera de esas cosas que menciono. Muchas son las veces que hemos dicho aquí que, es la Naturaleza la que tiene el mérito de ser, la mejor “pintora”, “escultora” “creadora” transformadora” y, luego, la que mejor sabe crear laboratorios en los que se producen las mayores maravillas de las que podamos ser testigos. Nosotros, simples mortales, nos limitamos a contemplarla, observar con atención para ver como ella funciona y, de esa manera, poder aprender para poder implantar sus formas y sus reglas a nuestras vidas, en la seguridad de que, esa será, la única manera de poder cumplir con nuestro destino.

Algunos de los pasajes que aquí habeis podido leer los he obtenido de ese libro maravilloso que se titula “El camino a la realidad” su autor, Roger Penrose ha contribuido con sus obras a que, de alguna manera, gracias a sus ideas, podamos haber llegado a comprender muchos de los nuevos y modernos rocesos físicos que, en nuestro mundo están siendo desvelados. Hoy nos hemos limitado a reflejar una ínfima de esos pensamientos y, tiempo tendremos de tratar otros temas que, como el presente, despierten la curiosidad de los amigos de este lugar.

emilio silvera

El Universo dinámico

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nacimiento de una estrella (IRAS-Renacuajo) captado desde el Hubble.

            El Hubble captó el nacimientio de una estrella en el Espacio lejano. Lellaman renacuajo

En muchos de los trabajos aquí presentados he procurado explicaros lo que son las estrellaslas, como se forman, como evolucionan y finalmente mueren para convertirse en otro objeto distinto. Durante sus vidas, durante miles de millones de años, las estrellas hacen posible que mediante el proceso de fusión, unos elementos se conviertan en otros cada vez más complejos para que sea posible, como ahora sabemos, la existencia de todos esos elemtos que hemos relacionado en la Tabla Periódica, los más complejos formados en explosiones de Supernovas.

                              En nuestro Universo, el Plasma es el estado más común de la materia

Las estrellas son cuerpos celestes compuestos de materia del plasma, o de materia degenerada, que se concentra en un solo lugar por la fuerza de la gravedad. Están formadas principalmente por hidrógeno y helio. Estrella a lo largo de su vida produce la radiación electromagnética en forma de luz visible a través de los procesos de fusión de átomos de hidrógeno en el núcleo.

“Hoy en día, es muy fácil poder ver y disfrutar de hermosas imágenes astronómicas con mucho muy coloridas, que realmente parecen unas verdaderas obras de arte. Sin embargo, cuando tenemos la oportunidad de mirar estos objetos a través de un telescopio, se ven en “blanco y negro” lo que puede representar una decepción mayúscula para alguien que esperaba ver a todo locos un objeto del cielo profundo.”

Eta Carinae – NGC 3372

 

“¿Sera acaso que los astrónomos nos mienten mostrándonos imágenes falsas? La respuesta es la siguiente, los instrumentos actuales para fotografiar el cielo, son tan sensibles a la luz, que pueden captar el color real de los objetos que se encuentran a millones de años luz, almacenándola en medios digitales e interpretando el color, pero nuestros ojos, no son capaces de almacenar luz, como lo hacen los aparatos electrónicos, y debido a la poca cantidad de luz que nos llega a nuestra vista, solo vemos con los “bastones” de nuestros ojos, células que son más sensibles a la luz, pero que no captan el color.”

                                                       Esta es la Nebulosa Roseta. NGC 7635

¿Cómo estan formadas las estrellas? estan formadas en las nubes de materia interestelar, compuesta principalmente de hidrógeno. Una cuarta parte se compone de helio, mientras que el 1% restante es una mezcla de polvo y otros átomos. Esta nube es densa, y los átomos de hidrógeno mismo se combinan para hidrógeno molecular. Nube molecular se forma en fase terminal, lo que aumenta su tamaño y peso. La densidad de la nube está a unos pocos millones de partículas por centímetro cúbico, y el peso de 100 000 a 10 000 000 masas solares. El tamaño es enorme, de 50 a 300 años luz. Como una nube fría y fina, y el proceso de su creación, dura un tiempo relativamente corto.

https://upload.wikimedia.org/wikipedia/commons/7/7f/NGC_6745.jpg

                            El Colapso gravitatorio del Gas y el Polvo hae que nazcan nuevas estrellas

Estrellas masivas

 

“Cuando una estrella sobrepasa en masa el valor límite de Chandrasekhar, gasta rápidamente su combustible y empieza a comprimirse. No hay nada que detenga su colapso: la fuerza de compresión gravitacional es tan intensa que las partículas materiales que la conforman ya no obedecen el principio de exclusión y todas terminan por estar en la misma posición y con la misma velocidad, justamente, un punto sin masa, en el espacio.

Ese punto es una singularidad, con una densidad de cientos miles de millones toneladas por centímetros cúbicos. En este caso, la masa no se habría destruido porque sería una violación al principio de conservación de la materia, sino mas bien, transformada en energía gravitacional de acuerdo a la ecuación de Einstein E= mc2.”

El recorrido que hacen las estrellas desde que “nacen” en la Nebulosa, hasta que consumen su combustible nuclear de fusión, es fascinante. Y, según la masa que puedan contener, finalizarán sus vidas como enanas blancas, estrella de neutrones o agujeros negros.

¿Qué sucede a una estrella, cuando se “quema”? Núcleo de la estrella comienza a colapsar bajo su propio peso, mientras que las capas exteriores son violentamente expulsados​​. En función del peso que la estrella estaba en el principio, se puede transformar en una enana blanca (con aproximadamente el mismo tamaño de la Tierra), que después del enfriamiento se convierte en un enano negro. Si la masa de la estrella es de 8 masas solares, entonces tras el derrumbe occurre erupción, y una explosión crea supernova. Pero cuando la masa de la estrella supera las 10 masas solares, cuando colapsa forma un agujero negro.

También hemos hablado aquí, de las galaxias y sus diferentes tipos, de radiogalaxias y de los cuásares, además de otras cuestiones de interés que, en todo momento, he tratado de explicar de manera muy sencilla con el objeto de que su comprensión sea fácil para las personas no versadas en Astronomía.

Es preciso que todos sepais que, en cualquier región del Universo, por muchos años luz que de nuestra Galaxia esté alejada, las leyes que rigen son las mismas que aquí, en nuestra región, interaccionan con la materia. Todo el Cosmos es lo mismo en cualquier lugar. Los Cúmulos de Galaxias y los espacios “vacíos” que existen entre ellos, las Nebulosas, los Agujeros Negros que ocupan el corazón de las Galaxias, el gas y el polvo interestelar que forman nuevas estrellas, y, en fin, todas las maravillas que a través de los procesos nucleares, forman la materia compleja a partir del Hidrógeno y del Helio.

Descubren restos de la materia prima original del Universo

Simulación computacional del gas pristino. Cuando salió la noticia del descubrimiento, se pudo leer:

“Astrónomos de la Universidad de California en Santa Cruz han encontrado, por primera vez, restos de la materia prima original del Universo en nubes de gas que datan de la noche de los tiempos. Estas nubes contienen remanentes absolutamente intactos del gas «limpio» que apareció en los primeros minutos después del Big Bang y que nunca llegó a formar parte de las estrellas. El hallazgo, que aparece publicado en la revista Science, coincide con las predicciones teóricas sobre los orígenes de los elementos en el Cosmos.

Descubren restos de la materia prima original del Universo

Solo los elementos más ligeros, principalmente hidrógeno y helio, se crearon en el Big Bang. A continuación, tuvieron que pasar varios cientos de millones de años para que grupos de este gas primordial se condensaran para formar las primeras estrellas, momento en el que los elementos más pesados se forjaron. Hasta ahora, los astrónomos han detectado siempre «metales» (término para referirse a todos los elementos más pesados que el hidrógeno y el helio) en cualquier lugar que buscaran en el Universo.”

Antes de que se formaran las primeras estrellas, el 75% del material era Hidrógeno

Hidrógeno y Helio es el material primario del Universo y, a partir de ellos, se forman las estrellas que convierten ese material en una especie de plasma a altas temperaturas que en la superficie de la estrella puede ser de 6.000 grados y en el núcleo de 15 millones.

La fusión nuclear, convierte el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, y, de esta manera hasta llegar al hierro. Otros materiales más complejos se producen cuando las estrellas supermasivas explotan en supernovas sembrando el espacio con una nueva Nebulosa y, su núcleo se convierte en una estrella de neutrones o en un agujero negro.

Pero veamos algún objeto más de los que pueblan el inmenso espacio del Universo.

La luz está compuesta por fotones y precisamente ya se ha dicho que es la luz la que tiene el record de velocidad del universo al correr a unos 300.000 Km/s, exactamente 299.792’458 Km/s.

¿Y los neutrinos?

neutrinos

Existen 3 tipos de neutrinos y los científicos creen poco probable que haya algún otro «sabor», a menos que tenga propiedades muy diferentes a las de los encontrados. Estos se asocian con distintas partículas cargadas y de allí se derivan sus nombres: Están asociados al electrón (neutrino electrónico), al muón (neutrino muónico) y a la partícula Tau (neutrino tauónico).

Un grupo de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) determinó que la masa de los neutrinos no excede de 0,26 electronvoltios, dos millones de veces inferior a la masa del electrón. El equipo ha descubierto que la suma de las masas de los tres tipos de neutrinos que existen (electrónicos, muónicos y tauónicos) no representa más del 6 por mil del total de la masa-energía del cosmos.

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Los fotones son los cuantos de la luz y transmisores del electromagnetismo y de cualquier clase de radiación en el Universo.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados.

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Para capturarlos, han ideado grandes depósitos de agua pesada en las profundidades de la Tierra.

Los neutrinos atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa; son pura energía que viaja siempre por el espacio a la velocidad de la luz. En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula, pero no hay evidencia concluyente para eso.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico.

Evitamos fórmulas y explicaciones complejas.

Así fue como se dio a conocer al mundo la existencia de neutrinos.

Ahora para ir conociendo mejor el Universo, dejemos aquí explicados algunos conceptos:

Asteroide.

(Planetas menores; planetoides)

Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1’7 y 4’0 Unidades astronómicas del Sol (cinturón de asteroides).  El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km.), a los objetos con menos de 1 km. De diámetro.  Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km. Y unos 120 cuerpos con diámetros por encima de 130 km.

Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta, la colisión con uno de estos pedruscos enormes del espacio estelar.  La desaparición de los Dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre. Según algunos creen uno de estos cuerpos enormes cayó en Mexico y arrasó con la vida de los grandes reptiles.

Astrofísica.

 

Ciencia que estudia la física y la química de objetos extraterrestres.  La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están. Es una de las ciencias más antiguas, cuyo objetivo es explicar los fenómenos del Universo apoyándose en los conocimientos de la Física y otras ciencias afines. Asi también la astrofísica pretende determinar el origen, la formación y la evolución de los planetas, estrellas y galaxias.

Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra, y, de momento, se confirma que el material existente en el Universo entero, es igual en todas partes.

El Universo primitivo era un plasma, cuando se enfrió se convirtió en Hidrógeno y algo de Helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar,  en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxigeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio… uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el Universo.

Nosotros mismos, la especie humana, estamos hechos de un material que solo se puede producir en las estrellas, así qué, sin lugar a ninguna duda,  el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del Universo! Sin embargo, el hecho de pertenecer a él nos da cierta importancia, y, además, somos conscientes de Ser.

Astronomía invisible.

 

Estudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.

Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

Astronómica, unidad.

Distancia media de la Tierra al Sol, igual a 149.600 millones de km., ó 499,012 segundos-luz, ó 8’316 minutos-luz.  Cuando se utiliza para medir distancias entre Galaxias, se redondea en 150 millones de km.

Átomo.

 

La parte más pequeña que puede existir de un elemento.  Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose.  El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa, pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.

La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan.  Cada electrón puede ser caracterizado  por un conjunto de cuatro números cuánticos: el núm. Cuántico principal, el orbital, el magnético y el número cuántico de espín.

De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos.  Los números cuánticos definen el estado cuántico del electrón y explicar como son las estructuras electrónicas de los átomos.

En el núcleo reside casi por completo, la masa del átomo que esta compuesta, como se ha dicho por protones y neutrones que, a su vez, están hechos por quarks.

Se puede dar el caso  de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón.  En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X.  Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado.  Ese átomo exótico tiene que ser creado artificialmente y es inestable.

Big Bang.

 

Teoría cosmológica en la que toda la materia y energía del Universo se originó a partir de un estado de enorme densidad y temperatura que explotó en un momento finito en el pasado hace unos 15 mil millones de años.  Esta teoría explica de forma satisfactoria la expansión del Universo, la radiación de fondo de microondas observada, característica de la radiación de cuerpo negro a una temperatura de 3 K y la abundancia observada de helio en el Universo, formado por los primeros 100 segundos después de la explosión a partir del denterio a una temperatura de 10.000.000.000 K. Ahora es considerada generalmente como más satisfactoria que la teoría de estado estacionario de un Universo quieto e inamovible.  La teoría del Big Bang fue desarrollada por primera vez en 1.927 por A.G.E. Lamaitre (1894-1966) y retomada y revisada en 1.946 por George Camow (1904-1968). Han sido propuestas varias variantes de ella.

La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.  La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general deja de ser válida en el Universo muy primitiva, y que el comienzo mismo debe ser estudiado utilizando una teoría cosmológica cuántica.

Con el conocimiento actual de la física de partículas de altas energías, podemos hacer avanzar el reloj, hacia atrás y a través de las eras Leptónica y la hadrónica hasta una millonésima de segundo después del Big Bang cuando la temperatura era de 1013 k.  Utilizando una teoría más especulativa los cosmólogos han intentado llevar el modelo hasta 10-35 segundos después de la singularidad, cuando la temperatura estaba en 1018 K.

En el instante del Big Bang comenzó la expansión del Universo y en ese mismo momento, nació el espacio-tiempo. En un principio la simetría lo dominaba todo y reinaba una sola fuerza unificada.  Más tarde, a medida que el Universo se enfriaba, la simetría se rompió y surgió la materia y las 4 fuerzas fundamentales que rigen hoy, la opacidad desapareció y todo fue transparencia, surgieron los fotones que transportaron la luz a todos los rincones del cosmos. Doscientos mil años más tarde surgieron las primeras estrellas, se formaron las Galaxias y, partir de la materia inerte, nosotros, la especie humana que, hoy, tan pretenciosa, quiere explicar como ocurrió todo.

Todo esto quedó bien explicado en días anteriores, sin embargo, se deja aquí un resumen como recordatorio para que todos, sin excepción, se familiaricen con estos conceptos del Cosmos.

Carbono, reacción de.

 

Importante proceso de fusión nuclear que se produce en las estrellas.  Lo inicia, el carbono 12 y, después de interacciones con núcleos de nitrógeno, hidrógeno, oxígeno y otros elementos, reaparece al final. Este es el fenómeno que hace posible que las estrellas estén brillando en los cielos.

En la atmósfera, el aire que respiramos hay una reducida cantidad de carbono ( CO2). Pero es suficiente para que el cuerpo la inhale, las plantas que inhalan el carbono (CO2) el cual llega a formar parte del tejido de las plantas necesitan el carbono para formar cosas las cuales para ellas son de importancia, tales como los azucares. el carbono 14 permanece poco tiempo y después regresa a su estado anterior (nitrógeno).
El científico Willard Libby dice que el C14 rompe su equilibrio en una vida media predecible, aproximadamente la mitad cambia de regreso al N14 cada 5730 años.

Cefeida variable.

http://2.bp.blogspot.com/-7517fVQuF-E/Ui3zl04v0uI/AAAAAAAANEk/SWyPW1sNNe8/s1600/rspuppis_bryne-790227.jpg

Ahí la tenéis. Se trata de una de las estrellas más importantes del cielo. La estrella pulsante RS Puppis  es el astro más brillante en el centro de la imagen. Es aproximadamente diez veces más masiva que el Sol y, en promedio, quince mil veces más luminosa.

De hecho, RS Puppis es una estrella Cefeida,  es decir, una estrella cuyo brillo varia de manera regular y por esto mismo se la utiliza para estimar la distancia a las galaxias cercanas. Este es uno de los primeros pasos para establecer las escalas de las distancias cósmicas, y, este tipo de estrellas se denominan estrellas variables Cefeidas.

Una estrella variable pulsante cuya periocidad (esto es, el tiempo que su brillo tarde en variar) está directamente relacionada con su magnitud absoluta. Esta correlación entre el brillo y el período hace útiles las cefeidas para medir distancias intergalácticas.

Se han combinados datos sobre las curvas de luz de estrellas variables como Delta Cephei y Beta Lyrae

Uno de los grupos importantes de gigantes o supergigantes amarillas variables pulsantes, llamadas así por su prototipo, Delta Cephei.  Este término general y aplicado comúnmente a más de un tipo estelar, en particular a los cefeadas clásicas antes mencionadas Delta Cephei, y a los menos numerosas estrellas conocidas como W virginia. En su tamaño máximo, los Cefeidas son típicamente un 7-15% mayores que en su tamaño mínimo.

Centauros A.

 

Intensa radiofuente o fuente de rayos X situada en la constelación Centauros,  identificada con la Galaxia elíptica gigante de una magnitud 7 NGC 5128.  Centauros A es una radio galaxia clásica con dos pares de lóbulos radioemisores, el mayor de los cuales extendiéndose hasta a 1’5 millones de a.l. y con un chorro que unos 10.000 a.l. de longitud.  Estando situada a 15 millones de a.luz, se trata de la radiogalaxia más cercana al Sol.  Aunque la Galaxia madre se identifica como eliptica, tiene una banda de polvo poco característica cruzándola, que se cree es el resultado de la unión de una galaxia eliptica en otra espiral.

Esta situada entre el Grupo Local y el centro del supercúmulo de Virgo.

Colapso gravitacional

 

Fenómeno predicho por la teoría de la relatividad general en el que la materia comprimida más allá de una densidad crítica se colapsa como consecuencia de la atracción gravitacional hasta que aparece una singularidad puntual.

La singularidad resultante del colapso gravitacional puede ser interpretada como una indicación de que se ha llegado al límite de la teoría de la relatividad general y de la necesidad de construir una gravedad cuántica.

La hipótesis de la censura cósmica sugiere que el punto final del colapso gravitacional debe ser un agujero negro, pues las singularidades están siempre ocultas en astrofísica, pues suministra una evidencia indirecta de la existencia de los Agujeros negros.

También, dependiendo de la masa de la estrella, cuándo finalmente agotan su combustible nuclear de fusión (hidrógeno, helio, oxigeno, carbono, etc.) y la gravedad no encuentra oposición para realizar su trabajo, las estrellas colapsan bajo su propio peso, no siempre hasta agujeros negros, como nuestro Sol un día en el futuro, podrán colapsar a estrellas enanas blancas o estrellas de neutrones y los supermasivas, estas así, serán agujeros negros.

Cometas

 

Miembros secundarios del Sistema Solar que, según se cree, son montones de suciedad y hielo que son residuos de la formación del sistema solar.  Se cree que hay millones de cometas en la Nube de Oort, una región esférica con un radio de treinta mil a cien mil unidades astronómicas con centro en el Sol.  Los cometas que llegan de la Nube de Oort son calentados por el Sol y desarrollan colas brillantes que los hacen visibles en los cielos de la Tierra.

Corrimiento al rojo.

 

Desplazamiento de las líneas espectrales en la luz proveniente de las estrellas de las galaxias distantes, que se considera producido por la velocidad de alejamiento de las galaxias en un universo en expansión (ley de Hubble). Cuando las galaxias en lugar de alejarse se acercan (caso de Andrómeda), el corrimiento es hacia el azul.

Cósmica, densidad de la materia. (Densidad crítica)

 

Densidad de materia que se obtendría si toda la materia contenida en las Galaxias fuera distribuida uniformemente a lo largo de todo el Universo.  Aunque las estrellas y los planetas tienen densidades mayores que la densidad del agua (alrededor 1 gr/cm3),  la densidad media cosmológica es extremadamente baja (menos de 10-29 gr/cm3, o 10-5 átomos/cm3 ), ya que el Universo está formado casi exclusivamente por espacio virtualmente vacío entre galaxias.  La densidad media de materia determina si el Universo continuará expandiéndose o no.

La llamada densidad crítica, es la densidad media de materia requerida para que la Gravedad detenga la expansión del Universo. Un Universo con una densidad muy baja se expandirá por siempre, mientras que uno con una densidad muy alta colapsará finalmente.  Un Universo con exactamente la densidad crítica, alrededor de 10-29 gr/cm3, es descrito por el modelo Einstein- de Sitter, que se encuentra en la línea divisoria de estos dos extremos.

La densidad media de materia que puede ser observada directamente en nuestro Universo representa sólo el 20% del valor crítico.  Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico.  Las teorías de universo inflacionario predicen que la densidad presente debería ser muy próxima a la densidad crítica; estas teorías requieren la existencia de materia oscura que, hoy por hoy, es el misterio más grande de la Astrofísica.

Cósmicos, rayos.

 

Partículas subatómicas, principalmente protones,  que atraviesan velozmente el espacio y chocan con la Tierra.  El hecho de que sean masivas sumado a sus altas velocidades, hace que contengan considerable energía: de 108 a más de 1022 eV (electrón-voltios).

El 90% de los rayos cósmicos son protones (núcleos de hidrógeno) y partículas alfa (núcleos de helio) la mayor parte del resto.  Los núcleos más pesados son muy raros.   También están presentes un pequeño número de electrones, positrones, antiprotones y neutrinos y rayos gamma.

Los rayos cósmicos fueron detectados por primera vez durante el vuelo de un globo en 1.912 por V.F.Hess, y el término fue acuñado en 1.925 por el físico norteamericano Robert Andrews Millikan (1868-1953).

Cosmología.

 

  1. Ciencia que se ocupa de estudiar la estructura y la composición del Universo como un todo.  Combina la astronomía, la astrofísica y la física de partículas y una variedad de enfoques matemáticos que incluyen la geometría y la topología.
  2. Teoría cósmica particular.

 

 

 

Cosmología constante.

 

Un término empleado a veces en cosmología pasa expresar una fuerza de “repulsión” o “repulsión cósmica”, como la energía liberada por el falso vacío que los modelos del Universo inflacionario consideran que potenció exponencialmente la expansión del universo.  Que exista tal repulsión cósmica o que haya desempeñado alguna vez un papel en la historia cósmica es un problema aún no resuelto, como ocurre con la constante cosmológica de Einstein.

Cúmulo de estrellas.

 

Conjunto de estrellas unidas por la Gravitación, más pequeños y menos masivos que las Galaxias.  Los cúmulos “globulares” son más abundantes; son viejos y pueden contener de cientos de miles de millones de estrellas; se les encuentra dentro y lejos del disco Galactico.

Se extienden sobre un radio de unos pocos megaparsecs (también existen pequeños Grupos de Galaxias, como nuestro Grupo Local de solo unas pocas Galaxias.)

Este apartado final del trabajo de hoy, es debido a una petición de un profesor amigo que, me lo ha pedido para introducir a sus alumnos en el mundo de la Astronomía y que tomen conciencia del lugar en el que se encuentra,.

emilio silvera