sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hay que recorrer un largo camino para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                                                La estrella Betelgeuse

“La masa con la que nace una estrella determina su historia y, sobre todo, la duración de su vida. Llamamos estrellas masivas a todas aquellas estrellas aisladas que explotan como supernovas al final de su existencia debido al colapso gravitatorio. Para que exploten como supernovas deben tener un mínimo de alrededor de ocho masas solares. Estrellas con menos masa pueden explotar, pero no por sí mismas (deben darse otras condiciones). Y hay parámetros secundarios que pueden introducir cambios, pero la masa es determinante.”

“En cuanto al máximo, el límite está en lo que la naturaleza sea capaz de producir. Hasta hace poco se creía que este límite estaba en torno a monstruos de 150 masas solares, aunque recientes trabajos lo elevan hasta 300. No obstante, no es un dato seguro ya que, cuanto más masiva es una estrella, menos vive, con lo cual estrellas más grandes serían difíciles de observar, ya que, su propia radiación las destruye.”

Verdaderamente si pudiéramos contemplar de cerca, el comportamiento de una estrella cuando llega el final de su vida, veríamos como es, especialmente intrigante las transiciones de fase de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría. Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas que aplicaron Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica y, dependiendo de su masa, explosiona como supernova para formar una inmensa nebulosa o, se tranforma en nebulosa planetaria, más pequeña.

Ahí podemos observar a una estrella muy joven, de dos o tres millones de años que, en un futuro lejano será una gran Supernova. Los procesos que podríamos observar al final de la vida de una estrella gigante… ¡Son fascinantes! Arriba, envuelta en una nube de gas y polvo contemplamos a Eta Carinae.

En la escena que antes explicabámos, por mucho tiempo que nos quedemos esperando y comtemplando el suceso, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Ese fue el mensaje inequívoco que Oppenheimer y Snyder nos enviaron. Para poder ver eso, habría que estar dentro de la estrella, instalado en la materia que está sufriendo la contracción y, no sabemos por qué eso es así.

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurre sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si el movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pueda parecer, aún había otra predicción más extrañas de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

Allá por el año 1939, cuando Oppenheimer y Snyder descubrieron estas cosas, los físicos ya se habían acostumbrados al hecho de que el tiempo es relativo; el flujo del tiempo es diferente medido en diferentes sistemas de referencia que se mueven de diferentes formas a través del Universo. Claro que, nunca antes había encontrado nadie una diferencia tan extrema entre sistemas de referencia. Que la implosión se congele para siempre medida en el sistema externo estático, pero continúe avanzando rápidamente superando al punto de congelación medida en el sistema desde la superficie de la estrella era extraordinariamente difícil de comprender. Nadie que estudiara las matemáticas de Oppenheimer y Snyder se sentía cómodo con semejante distorsión extrema del tiempo. Pero ahí estaba, en sus fórmulas. Algunos podían agitar sus brazos con explicaciones heurísticas, pero ninguna explicación parecía muy satisfactoria. No sería completamente entendido hasta finales de los cincuenta.

Fue Wheeler el que discrepó del trabajo de Oppenheimer y Snyder, alegando, con toda la razón que, cuando ellos habían realizado su trabajo, habría sido imposible calcular los detalles de la implosión con una presión realista (presión térmica, presión de degeneración y presión producida por la fuerza nuclear), y con reacciones nucleares, ondas de choque, calor, radiación y expulsión de masa. Sin embargo, los trabajos desde las armas nucleares de los veinte años posteriores proporcionaron justamente las herramientas necesarias.

Presión, reacciones nucleares, ondas de choque, calor radiación y expulsión de masa eran todas ellas características fundamentales de una bomba de hidrógeno; sin ellas, una bomba no explosionaría. A finales de los años cincuenta, Stirling Colgate quedó fascinado por el problema de la implosión estelar. Con el apoyo de Edward Teller, y en colaboración con Richard White y posteriormente Michael May, Colgate se propuso simular semejante implosión en un ordenador. Sin embargo, cometieron un error, mantuvieron algunas de las simplificaciones de Oppenheimer al insistir desde el principio en que la estrella fuera esférica y sin rotación, y, aunque tuvieron en cuenta todos los argumentos que preocupaban a Wheeler, aquello no quedó perfeccionado hasta después de varios años de esfuerzo y, a comienzo de los años sesenta ya estaban funcionando correctamente.

Un día a principio de los años sesenta, John Wheeler entró corriendo en la clase de relatividad de la Universidad de Princeton. Llegaba un poco tarde, pero sonreía con placer. Acababa de regresar de una visita a Livermore donde había visto los resultados de las simulaciones recientes de Colgate y su equipo. Con excitación en su voz dibujó en la pizarra un diagrama tras otro explicando lo que sus amigos de Livermore habían aprendido.

Estrella

Cuando la estrella en implosión tenía una masa pequeña, desencadenaba una implosión de supernova y formaba una estrella de neutrones precisamente en la forma que Fritz Wicky había especulado treinta años antes. Sin embargo, si la estrella original era más masiva lo que allí se producía (aparte de la explosión supernova) era un agujero negro notablemente similar al altamente simplificado  modelo que veinticinco años  calcularon Oppenheimer y Snyder. Vista desde fuera, la implosión se frenaba y se quedaba congelada en la circunferencia crítica, pero vista por alguien en la superficie de la estrella, la implosión no se congelaba en absoluto. La superficie de la estrella se contraía a través de la circunferencia crítica y seguía hacia adentro sin vacilación.

Lo cierto fue que allí, por primera vez, se consiguió simular por ordenador la implosión que debía producir agujeros negros. Está claro que la historia de todo esto es mucho más larga y contiene muchos más detalles que me he saltado para no hacer largo el trabajo que, en realidad, sólo persigue explicar a ustedes de la manera más simple posible, el trabajo que cuesta obtener los conocimientos que no llegan (casi nunca) a través de ideas luminosas, sino que, son el resultado del trabajo de muchos.

Hoy, sabemos mucho más de cómo finaliza sus días una estrella y, dependiendo de su masa, podemos decir de manera precisa que clase de Nebulosa formará, que clase de explosión (si la hay) se producirá, y, finalmente, si el resultado de todo ello será una estrella enana blanca que encuentra su estabilidad final por medio del Principio de exclusión de Pauli (en mecánica cuántica)que se aplica a los fermiones pero no a los Bosones (son fermiones los quarks, electrones, protones y neutrones), en virtud del cual dos partículas idénticas en un sistema, como los electrones en un átomo o quarks en un hadrón (protón o neutrón, por ejemplo), no pueden poseer un conjunto idéntico de números cuánticos.

La estrella azul cerca del centro de esta imagen es Zeta Ophiuchi. Cuando se ve en luz visible aparece como una estrella roja relativamente débil rodeada de otras estrellas tenues y sin polvo. Sin embargo, en esta imagen infrarroja tomada con campo amplio por el Explorador Infrared Survey de la NASA, o WISE, un punto de vista completamente diferente emerge. Zeta Ophiuchi es en realidad una muy masiva y caliente estrella azul, brillante que traza su camino a través de una gran nube de polvo y gas interestelar.

Una estrella masiva alejándose de su antiguo compañero se manifiesta haciendo un imponente surco a través de polvo espacial, como si se tratase de la proa de un barco. La estrella, llamada Zeta Ophiuchi, es enorme, con una masa de cerca de 20 veces la de nuestro Sol. En esta imagen, en los que se ha traducido la luz infrarroja a colores visibles que vemos con nuestros ojos, la estrella aparece como el punto azul en el interior del arco de choque. Zeta Ophiuchi orbitó una vez alrededor de una estrella aún más grande. Pero cuando la estrella explotó en una supernova, Zeta Ophiuchi se disparó como una bala. Viaja a la friolera velocidad de 24 kilómetros por segundo arrastrando con ella un conglomerado de polvo que distorsiona la región por la que pasa.

Mientras la estrella se mueve través del espacio, sus poderosos vientos empujan el gas y el polvo a lo largo de su camino en lo que se llama un arco de choque. El material en el arco de choque está tan comprimido que brilla con luz infrarroja que  WISE puede captar. El efecto es similar a lo que ocurre cuando un barco cobra velocidad a través del agua, impulsando una ola delante de él.  Esta onda de choque queda completamente oculta a la luz visible. Las imágenes infrarrojas como esta son importantes para arrojar nueva luz sobre lo que ocurre en situaciones similares.

Una estrella como el Sol, al final de su existencia en la secuencia principal, forma una nebulosa planetaria y se convierte en una estrella enana blanca. En la imagen de la derecha vemos como queda lo que fue una estrella normal. En el centro, ese puntito blanco, es la enana blanca que emite radiación gamma con tanta violencia que ioniza todo el material que la circunda.

Pero, siguiendo con el tema de las implosiones de las estrellas, ¿cuál es la razón por la que la materia no se colapsa, totalmente, sobre sí misma? El mismo principio que impide que las estrellas de neutrones y las estrellas enanas blancas implosionen totalmente y que, llegado un momento, en las primeras se degeneran los neutrones y en las segundas los electrones, y, de esa manera, se frena la compresión que producía la gravedad y quedan estabilizadas gracias a un principio natural que hace que la materia normal sea en su mayor parte espacio vacio también permite la existencia de los seres vivos. El nombre técnico es: El Principio de Exclusión de Pauli y dice que dos fermiones (un tipo de partículas fundamentales) idénticos y con la misma orientación no pueden ocupar simultáneamente el mismo lugar en el espacio. Por el contrario, los bosones (otro tipo de partículas, el fotón, por ejemplo) no se comportan así, tal y como se ha demostrado recientemente por medio de la creación en el laboratorio de los condensados de Bose-Einstein.

¿Cuál es la diferencia?

Los bosones son sociables; les gusta estar juntos. Como regla general, cualquier átomo con un número par de electrones+protones+neutrones es un bosón. Así, por ejemplo, los átomos del sodio ordinario son bosones, y pueden unirse para formar condensados Bose-Einstein.

Izquierda: Los bosones son sociables; los fermiones son antisociales.

Los fermiones, por otro lado, son antisociales. No pueden juntarse en el mismo estado cuántico (por el “Principio de Exclusión de Pauli” de la mecánica cuántica). Cualquier átomo con un número impar de electrones+protones+neutrones, como el potasio-40, es un fermión.

Pero, estábamos diciendo: “…no pueden poseer un conjunto idéntico de números cuánticos.” A partir de ese principio, sabemos que, cuando una estrella como nuestro Sol deja de fusionar Hidrógeno en Helio que hace que la estrella deje de expandirse y quede a merced de la Gravedad, ésta implosionará bajo el peso de su propia masa, es decir, se contraerá sobre sí misma por la fuerza gravitatoria pero, llegará un momento en el cual, los electrones, debido a ese principio de exclusión de Pauli que les impide estar juntos, se degeneran y se moverán de manera aleatoria con velocidades relativista hasta el punto de ser capaces de frenar la fuerza provocada por la gravedad, y, de esa manera, quedará estabilizada finalmente una estrella enana blanca.

Si hablamos de una estrella supermasiva, su produce la implosión arrojando las capas externas al espacio interestelar mientras que el grueso de la estrella se comprime más y más sin que nada la pueda frenar, aquí no sirve el Principipo de exclusión de Pauli para los fermiones y, es tal la fuerza gravitatoria que se desencadena como consecuencia de que la estrella supergigante no puede seguir fusionando y queda a merce4d de una sola fiuerza: La Gravedad, que ésta, la comprime hasta lo inimaginable para convertir toda aquella ingente masa en una singularidad, es decir, un punto de densidad y energía “infinitas” que ni la luz puede escapar de allí, y, el tiempo se ralentiza y el espacio se curva a su alrededor.

Si la estrella original es más masiva, la degeneración de los electrones no será suficiente para frenar la fuerza gravitatoria y, los electrones se fusionaran con los protones para convertirse en neutrones que, bajo el mismo principio de exclusión sufrirán la degeneración que frenará la fuerza de gravedad quedando entonces una estrella de neutrones. Por último, si la estrella es, aún más masiva, ni la degeneración de los neutrones será suficiente para frenar la inmensa fuerza gravitatoria generada por la masa de la estrella que, continuará la implosión contrayéndose cada vez más hasta desaparecer de nuestra vista convertida en un agujero negro.

¿Qué forma adoptará, qué transición de fase se produce en la materia dentro de una Singularidad?

¡Resulta todo tan complejo! Sin embargo, nuestra curiosidad nos lleva, imparables, hacia el conocimiento del que carecemos.

emilio silvera

Creemos cosas que…, ¿serán ciertas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Ecos del Big Bang    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Esta es la nueva instatánea del universo poco después de la gran explosión conocida como Big Bang. El mapa revela las fluctuaciones de temperatura apenas 380.000 años después. La ha realizado el satélite Planck. Está formada por 15 millones de pixels y envejece la edad de nuestro universo unos 80 millones de años hasta colocarlo en 13.890 millones de años.

Hubo un tiempo, el el Universo muy temprano, en el que la temperatura estaba encima de algunos cientos de veces la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y electromagnética no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hibiera podido estar allí presente, en aquellos primeros momento, no habría podido observar ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

Muchas son las sorpresas que nos podríamso encontrar en el universo primitivo, hasta la presencia de agua ha sido detectadamediante la técnica de lentes gravitacionales en la galaxia denominada MG J0414+0534 que está situada en un tiempo en el que el Universo sólo tenía dos mil quinientos millones de años de edad. El equipo investigador pudo detectar el vapor de agua presente en los chorros de emisión de un agujero negro supermasivo. Este tipo de objeto es bastante raro en el universo actual. El agua fue observada en forma de mases, una emisión de radiación de microondas provocada por las moléculas (en este caso de agua) al ser amplificadas por una onda o un campo magnético.

Siguiendo con el trabajo, dejemos la noticia de más arriba (sólo insertada por su curiosidad y rareza), y, sigamos con lo que decíamos al principio de las duerzas y la simetría antes de que, el universo se expandiera y enfriara para que, de una sóla, surgieran las cuatro fuerzas que ahora conocemos.

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

De manera similar, aunque menos clara, las teorías de supersimetrías conjeturaban que las cuatro fuerzas tal vez estaban ligadas por una simitría que se manifestaba en los niveles de energía aún mayores que caracterizaban al universo ya antes del big bang. La intodución de un eje histórico en la cosmolo´gia y la física de particulas (como decía ayer en uno de los trabajos), beneficio a ambos campos. Los físicos proporcionaron a los cosmólogos una amplia gama de herramientas útiles para saber cómo se desarrolló el universo primitivo. Evidentemente, el Big Bang no fue una muralla de fuego de la que se burló Hoyle, sino un ámbito de suscesos de altas energías que muy posiblemente pueden ser comprensibles en términos de teoría de campo relativista y cuántica.

La cosmología, por su parte, dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún acelerador concebible podrían alcanzar las titánicaqs energías supuestas por las grandes teorías unificadas y de la supersimetría, esas exóticas ideas aún  pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Gell-Mann, el premio Nobel de física, al respeto de todo esto decía: “Las partículas elementales aparentemente proporcionan las claves de algunos de los misterios fundamentales de la Cosmología temprana… y resulta que la Cosmología brinda una especia de terreno de prueba para alguna de las ideas de la física de partículas elementales.”

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

       Moléculas, átomos y conexiones para formar pensamientos

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero en las energías extremadamente altas del big bang original  y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así (que lo es), cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

              Abajo vemos el dorso de la mano algo aumentado

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados a átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿qué podrá haber más allá de los Quarks?

¿Qué no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón,  ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo. Esa imagen de arriba que está inmersa en nosotros en en todo el Universo, es la sencilles de la complejidad. A partir de ella, se forma todo: la muy pequeño y lo muy grande.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos y átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones. Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quark que constituyen cada nucleón.

Uno de los misterios de la naturaza, están dentro de los protomes y netrones que, confromados por Quarks, resulta que, si estos fueran liberados, tendrían independientemente, más energía que el protón que conformaban. ?cómo es posible eso?

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. El acelerador de 200 Kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang. Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más esclarecedora del Universo primitivo que la que teníamos antes.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

Anti-hidrógeno

He aquí la primera imagen jamás obtenida de antimateria, específicamente un “anti-átomo” de anti-hidrógeno. Este experimento se realizó en el Aparato ALPHA de CERN, en donde los anti-átomos fueron retenidos por un récord de 170 milisegundos (se atraparon el 0.005% de los anti-átomos generados).

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quasar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Claro que, nuestra historia está relacionada con todo lo que antes de llegar la vida al Universo pudo pasar. ¡Aquella primera célula! Se replicó en la sopa primordial llamada Protoplasma vivo y, sigguió evolucionando hasta conformar seres de diversos tipos y, algunos, llegaron a adquirir la conciencia.

                       Macromolécula

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

   Célula cerebral

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas de una rareza y de una incleible y extraña belleza que sólo la Naturaleza es capaz de conformar.

          Molécula de ADN

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que se  constituyen en protones y neutrones.

                          Átomo de Carbono

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los antiquarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrayeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro unioverso.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleaones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. En aquel suceso la materia se podría haber formado así:

PRIMER CAMINO

Los núcleos de deuterio colisionan con un protón formando 3He, y seguidamente con un neutrón formando 4He

 

 

SEGUNDO CAMINO

El deuterio colisiona primero con un neutrón formando 3H (habitualmente conocido como tritio), y posteriormente con un protón para formar de nuevo 4He

“Este núcleo fue el más pesado que se formó en el universo primitivo, debido a que en el momento en que esto fue posible, la densidad de energía ya era demasiado baja para permitir que los núcleos colisonarán con suficiente energía para fundirse. En el momento en que comenzó la nucleosíntesis, la abundancia relativa de protones y neutrones era: 13% de neutrones y 87% de protones. Todos los neutrones fueron utilizados para formar los núcleos de Helio. Los protones quedarían de esa manera como núcleos de hidrógeno. Por lo tanto, tenemos que en el momento en que se completó la nucleosíntesis primigenia, el universo consistía en prácticamente un 25% de He y un 75% H (en peso) con ligeras trazas de otros elementos ligeros.”

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 KeV diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

foto

Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo supercolisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

El Tevatrón del Fermilab ya estaba en el camino de la modernidad en los avances de la Física

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

Recreación del Universo primitivo

 Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exisitir. Otro día, seguiremos abundando en el tema apasionante  que aquí tratamos.

emilio silvera

El LHC descubre el pentaquark

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LHC.svg

“El LHCb (que procede de las siglas “Large Hadron Collider beauty experiment”, donde “beauty” se refiere al quark bottom) es uno de los seis detectores de partículas, actualmente en construcción, instalados en el LHC (Large Hadron Collider) del CERN. LHCb es un experimento especializado en física del quark b, algunos de cuyos objetivos son la medida de parámetros de violación de simetría CP en las desintegraciones de hadrones que contengan dicho quark o la medida de precisión de las fracciones de desintegración (“branching ratios”) de algunos procesos extremadamente infrecuentes.”

La noticia del descubrimiento del Pentaquark, nos la cuentan así:

 

Científicos en el mayor acelerador de partículas del mundo anuncian el hallazgo de una exótica partícula compuesta de cinco quarks cuya existencia fue predicha hace medio siglo

 

14 JUL 2015 – 11:59 CEST

 

Un operario examina el experimento LHCb / NSF

Los científicos del mayor acelerador de partículas del mundo, el LHC de Ginebra, han descubierto una nueva partícula: el pentaquark.

El hallazgo, anunciado hoy por el laboratorio europeo de física de partículas CERN, lo ha hecho el equipo del experimento LHCb y confirma la existencia de una nueva forma de organizar la materia a nivel subatómico. El pentaquark recibe su nombre porque está compuesto de cinco partículas fundamentales.

Toda la materia que conocemos se organiza a nivel subatómico de diferentes maneras. Los protones y los neutrones, por ejemplo, están formados por tres quarks. Otro tipo de ensamblaje lo componen los mesones, formados por pares de quarks hechos de materia y antimateria. Más allá de estas dos categorías, se sabía que la materia podía componer otras variantes más exóticas que, sin embargo, nunca habían sido observadas.

Una posible estructura del pentaquark / CERN

 

El experimento LHCb ha permitido ahora encontrar una nueva variante formada de cuatro quarks de materia convencional y un antiquark, hecho de antimateria.

“Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto”, explica a Materia Guy Wilkinson, portavoz del experimento, uno de los cuatro grandes del CERN.

Curiosamente los datos aparecieron en la primera ronda de experimentos en el CERN, que terminó hace dos años. No fue hasta hace tres o cuatro meses que los científicos se toparon con esos datos. Hasta hace muy poco se estuvo comprobando que lo que veían no podía deberse a otra cosa sino a la existencia de una nueva partícula, explica Wilkinson. Ahora, el nivel de confianza está alrededor de nueve sigma, muy por encima de los cinco que se necesitan en física para reclamar un descubrimiento, resalta. Los detalles del hallazgo, anunciado hoy, están disponibles en arxiv.org y se han enviado a la revista Physical Review Letters.

Dentro del estándar

Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto

 

El primero en proponer la existencia de mesones y bariones hacia más de medio siglo fue Murray Gell-Mann en 1964, lo que le valió el Nobel de Física en 1969. Su modelo también predecía la existencia de partículas compuestas más exóticas como la recién descubierta. Esta nueva partícula “nos puede permitir entender de qué está compuesta la materia ordinaria, los protones y neutrones de los que estamos hechos”, dice Wilkinson.Probablemente, añade, no haya solo un tipo de pentaquark sino varios, y ahora toca buscarlos durante la presente ronda de experimentos en el LHC.

El objetivo más preciado del LHC, que ha empezado a funcionar al doble de potencia, es encontrar física más allá del llamado modelo estándar, que describe las leyes físicas que gobiernan la materia conocida. El nuevo hallazgo no llega a tanto, aunque es de gran importancia. “El modelo de quarks, propuesto hace más de 50 años no excluye la posibilidad de que existan partículas formadas por más de tres quarks, pero estos llamados hadrones exóticos solo empezaron a dar muestras de su existencia hace pocos años”, ha explicado Juan Saborido, responsable del grupo de la Universidad de Santiago de Compostela participante en LHCb, en una nota de prensa del CPAN. Para el investigador español, el descubrimiento de estas nuevas partículas formadas por cinco quarks, “no implica física más allá del Modelo Estándar, pero es un hallazgo muy importante para el entendimiento de la estructura de los hadrones”.

El pentaquark ha sido descubierto observando los productos de colisiones entre bariones y estudiando las partículas resultantes. Así han desvelado la existencia de dos estados intermedios de la materia cantidad de datos acumulada por el LHV indican la existencia de la nueva partícula.

“Hemos aprovechado la gran cantidad de datos acumulada por el LHC y la excelente precisión de nuestro detector para comprobar a qué se deben esas señales”, ha explicado Tomasz Skwarnicki , científico del LHCb, en una nota de prensa del CERN. “Nuestra conclusión es que solo pueden explicarse por la existencia de pentaquarks”, añade.

Ahora el gran misterio es cómo se sostienen los pentaquarks. Una posibilidad es que sus cinco componentes estén bien unidos. La otra es que sean el producto de la unión entre una barión y un mesón.

Fuente: El País