miércoles, 22 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Horizonte de los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

El centro galáctico: un misterio en ondas de radio

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Nefro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

 

El Telescopio Espacio Hubble capta la Imagen de un chorro de 5000 años-luz de longitud que está siendo eyectado del núcleo activo de la galaxia M87  (una radiogalaxia). La radiación sincrotrón del chorro (azul) contrasta con la luz estelar de la galaxia albergadora (amarillo). Crédito: NASA/ESA.

 


Las galaxias activas tienen nucleos que brillan tanto, que pueden llegar a ser más luminosos que las galaxias que los alberga. Estas galaxias activas sae caracterizan porque en sus núcleos ocurren procesos no-térmicos que liberan enormes cantidades de energía que parece provenir de una región muy pequeña y brillante situada en el corazón de la galaxia.

Son muchos los indicios que favorecen la hipótesis de que tales objetos son agujeros negros muy masivos (del orden de 100-1000 millones de veces la masa del Sol), con un tamaño de 1 minuto-luz o varios días-luz. La enorme fuerza gravitatoria que ejercen estos agujeros negros atrae el gas y las estrellas de las inmediaciones, formando el denominado disco de acrecimiento que está en rotación diferencial en torno al objeto masivo.

El modelo de “Agujero Negro + disco de acrecimiento” es el más satisfactorio hoy día para explicar las propiedades de los núcleos activos de galaxias. Un aspecto muy destacado en la morfología de las regiones compactas de los núcleos activos es la presencia de una intensa emisión radio en forma de chorros (los denominados Jets relativistas), que están formados por un plasma de partículas relativistas que emanan del núcleo central y viajan hasta distancias de varios megaparsec.

Jet relativista de un AGN. Creditos: Pearson Education, Inc., Upper Saddle River, New Jersey

Estos Jets son los aceleradores de partículas más energéticos del Cosmos. Sin embargo, todavía se desconoce como se generan, aceleran y coliman, si bien a través de simulaciones magnetohidrodinámicas se conoce que el campo magnético juega un papel fundamental en estos procesos. La técnica de mm-VLBI proporciona imágenes directas y nítidas de las regiones nucleares de las galaxias activas y acotan tanto el tamaño de los núcleos como la anchura de los chorros en la vecindad del agujero negro supermasivo. De hecho, las resoluciones angulares proporcionadas por mm-VLBI corresponderían a escalas lineales del orden de miles, centenares y decenas de Radios de Schwarzschild dependiendo de la distancia y la masa del agujero negro.

Existen algunos casos espectaculares, las imágenes obtenidas con mm-VLBI trazán los chorros relativistas a escalas del subparsec, cartografiando los motores centrales de las fuentes compactas con una resolución lineal tal que nos permite acercarnos a la última órbita estable en torno al agujero negro supermasivo. Podemos mencionar algunos casos espectaculares que han dejado asombrados a propiso y extraños.

https://www.mpi-hd.mpg.de/hfm/HESS/pages/about/physics/images/cena_chandra.jpg

Mrk 501: Es una radiogalaxia situada a un corrimiento al rojo de z = 0.oo34. La masa del agujero negro central es del orden de mil millones de masas solares, por lo que el tamaño del radio de Schwarzschild es de 0,12 días-luz. Las observaciones con mm-VLBI a 86 GHz, muestra que su núcleo es muy compacto. El tamaño del núcleo de la radiofuente se puede establecer en 0,03 pc.

M87: La galaxia M87 está situada a la una distancia de 16,75 Mpc tiene un agujero negro situado en la región nuclear con una masa del orden de los 3.000 millones de masas solares, lo que implica que el tamaño del Radio de Schwarzschild es de 0,34 días-luz, Las observaciones interferométricas a 45 y 43 GHz han mostrado la presencia de un chorro relativista, en la que se observan dos fenómenos muy relevantes: i) en la base del jet, el ángulo de apertura es muy grande, lo que indicaría que el chorro vuelve a recolimarse a una cierta distancia del Agujero Negro central; ii) el chorro presenta fuerte emisión en sus bordes (fenómeno conocido como “edge brightening”, mientras que presenta emisión muy débil en su interior.

Todo esto lleva consigo una serie de implicaciones y parámetros de tipo técnicos que no son al caso destacar aquí.

 En el centro galáctico de la Vía Láctea ocurren fenómenos que han sido profundamente investigados y, allí habita un agujero negro que tiene 150 millones de kilómetros de diámetro. ¿Os podéis imaginar la cantidad de materia que la fuerza de gravedad que genera tal monstruo podrá engullir?

Las observaciones de VLBI a longitudes de onda centimétricas han mostrado que SgrA, la radiofuente compacta en el centro de nuestra Galaxia, tiene un tamaño angular que escala con la longitud de onda al cuadrado, resultado que se interpreta físicamente considerando que la estructura que detectamos para SgrA no es su estructura intrínseca sino la imagen resultado de la interacción de su emisión de radio con sus electrones interestelares de la región interna de la Galaxia (lo que técnicamente se conoce como el “disco de scattering”. Las observaciones con mm-VLBI a 86 GHz han permitido determinar por primera vez el tamaño intrínseco de SgrA que ha resultado ser de 1,01 Unidades Astronómicas.

Considerando que SgrA se encuentra a una distancia de 8 Kpc y que su masa es de 4 millones de masas solares, este tamaño lineal corresponde a 12,6 Radios de Schwarzschild. Con todo esto, vengo a decir que estamos ya en la misma vecindad de los agujeros negros y, lo único que tenemos que despejar es la incognita que nos pueda crear el efecto del que nos habla la Relatividad General cuando establece que la raqdiación proveniente de una superficie esférica a una cierta distancia del agujero negro, sufriría un proceso de lente gravitacional amplificadora dandonos un tamaño mayor que el real. Así, cualquier objeto emisor con un tamaño intrínseco inferior a 1,5 Radios de Schwarzschild tendría un diámetro aparente mayor que 5,2 R de Schwarzschild.

¡Es todo tan complejo!

emilio silvera

¿Dos verdades incompatibles? La Cuántica y la Relatividad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:

Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.

El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por el mismo Einstein, W. Heisemberg, Schrödinger, Dirac, Feynman, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.

Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.

Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.

Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que  será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.

No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.

Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.

Siempre hemos querido saber qué pasa dentro de un Agujero Negro. Sin embargo, nadie entró nunca y regresó para poder contarlo. Según todos los indicios, lo que pueda caer dentro del agujero negro, una vez pasado el límite de irás y no volverás del horizonte de sucesos, quedará allí “triturado” hasta densidades inimaginables. No sabemos qué clase de materia es la que pueda confiormar una singularidad y qué es lo que pasa con las partículas de materia que allí pudieron llegar atraídas por la inmensa fuerza gravitatoria que el A.N. genera.

Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.

¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.

No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.

La teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante las últimas décadas demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.

En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.

Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas.  Sin embargo, hay una curiosa coincidencia en todo esto, me explico:

Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdas, Einstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.

Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.

El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo. También la Luz acusa los efectos gravitatorios.

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.

   En el “universo” infinitesimal de las partículas ocurren cosas muy extrañas que no vemos en la vida cotidiana

El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.

Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrolar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.

emilio silvera

Nebulosas Moleculares Gigantes… ¡Y mucho más!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La familia de las Nebulosas es bastante amplia y de distintas configuraciones, composiciones, emisiones y reflexiones que tienen que ver con su masa y densidad, con las estrellas que allí están presentes y la radiación que emiten para ionizar algunas regiones con el ultravioleta… etc. Existen nebulosas bipolares, brillantes, de absorción, de emisión, de reflexión, difusas, filamentarias, oscura, planetaria y protoplanetaria que es la etapa de formación de aquella.

 

20130121-092526.jpg

 

Una nebulosa solar es aquella nube de gas y polvo a partir de la cual se forma un sistema planetario. Arriba podemos contemplar. El telescopio ALMA ha fotografiado por primera vez los incios de la formación de un sistema planetario alrededor de una estrella. El astro es HD 142527 y está situado a unos 450 años-luz de la tierra. Alrededor de él podemos observar un anillo de gas y polvo cósmico que con el paso del tiempo dará lugar a un sistema planetario.

De las Nebulosas y de sus diferentes tipos hemos hablado aquí de mabera amplia habiendo explicado en qué consistía cada una de ellas y, de qué materiales estaban formadas en función de las distintas circunstancias que en cada una de ellas estaba presente. Hoy estaremos con las Nebulosas moleculares gigantes.

 

 

http://news.sponli.com/es/wp-content/uploads/2014/06/7646c408f0c67d7f42aa842f2ab265b5.1824x0_q100_watermark.jpg

La nube de Rho Ophiuchi es una nube molecular gigante compuesta de hidrógeno ionizado y en gran parte del polvo oscuro; debe su nombre a la estrella ρ Ophiuchi, ubicada a tres grados al norte de Antares (estrella amarilla), en la constelación de Ofiuco. Es una de las regiones de la formación estelar más cercanas en el Sistema solar; se encuentra a tan sólo 130 parsecs (420 años luz).

Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares. Las NMGs (Nebulosas moleculares gigantes) consisten mayoritariamente  en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio (He, 25%), partículas de polvo 1%, Hidrógeno atómico neutro (H I, menos del 1%) y un rico cóctel de moléculas interestelares (menos  del 0,1 %).

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

Arriba podemos contemplar la grandiosa Nebulosa Molecular Orión. Nuestra Galaxia contiene más de 3 000 NMGs, estando las más masivas situadas cerca de la radiofuente Sagitario B2 en el Centro Galáctico. Comprenden la mitad de la masa de toda la materia interestelar, aunque ocupan menos del 1% de su volumen. La densidad de gas promedio es de unas pocas miles de moléculas por cm3.

Las Nebulosas Moleculares Gigantes se encuentran mayoritariamente en los Brazos Espirales de las galaxias de disco,  y son el lugar de mayor nacimioento de estrellas masivas. Este tipo de Nebulosas perduran durante más de 30 millones de años, tiempo durante el cual, sólo una pequeña fracción de su masa es convertida en estrellas. La Nebulosa Molecular Gigante más próxima a nosotros se encuentra en Orión, y está asociada a la Nebulosa de Orión que más arriba podéis ver con sus claros y llamativos colores rojo, azulado y el espeso marrón oscuro molecular, todo ello, adornado por estrellas que brillan ionizando extensas regiones con sus potentes radiaciones ultravioletas.

Arriba una de  NGC 7822 que se asemeja a una gran boca abierta llena de estrellas nuevas. Dentro de la nebulosa, bordes brillantes y formas oscuras se destacan en este paisaje colorido. Oxígeno atómico, hidrógeno y azufre en tonos azul, verde y rojo. Aquí se forman estrellas de manera continuada y van transformando el lugar con los fuertes vientos solares y la radiación de estrellas masivas. Con un diametro de 60 años-luz, la Nebulosa perdura en el espacio interestelar como si de un laboratorio natural se tratara, creando nuevos objetos y transformando la materia. Ahí se mezclan los gases Hidrógeno, Helio, Carbono, Nitrógeno, Oxígeno y otras pequeñas porciones de otros elementos que, forman moléculas que, a veces, alcanzar el nivel necesario para convertirse en los ladrillos necesarios para la vida.

http://www.caelumobservatory.com/mlsc/sh2136.jpg

Hermosa Nube Molecular en la Constelación de Cefeo donde ya se han creado cientos de miles de estrellas. Las Nebulosas son el producto residual de las estrellas gigantes y masivas cuando llegan al final de sus vidas y explotan en Súper-Novas, las capas exteriores de la estrella salen eyectadas hacia el espacio interestelar para formar la Nebulosa mientras que, la parte principal de la masa, implosiona, es decir, se contrae sobre sí misma bajo el peso de su propia masa para formar una estrella de neutrones o un agujero negro.

Descubren objetos de masa planetaria en Orión. Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple,  en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

Lo cierto es que es una maravilla que a partir de esa materia “inerte” la Naturaleza haga posible que evolucione hasta los pensamientos al llegar a formarse el protoplasma vivo que dará lugar a células replicantes que con el paso de miles millones de años se conforman en cerebros generadores de ideas y de consciencia. Y, a todo esto, el Carbono es el elemento que hace todo eso posible. No podemos olvidar la importancia que tiene el Carbono para la presencia de la Vida en nuestro planeta y, seguramente, en otros muchos también, y, ese elemento está abundantemente presente en esas Nebulosas moleculares gigantes.

metrico.jpg

Sólo por esto ya deberíamos asombrarnos por sus extraordinarias características. Pero esta es sólo una cara de las muchas que tiene este elemento fundamental de la tabla periódica. Dependiendo de cómo se distribuyan los átomos y formen diferentes estructuras, obtendremos resultados portentosos en cuanto a las peculiaridades que presenta el material. Si lo sometemos a enormes presiones y altas temperaturas, conseguimos diamantes. Si los átomos se unen en láminas planas, formando un panal de abejas hexagonal con un átomo en cada vértice y si colocamos muchos panales unos sobre otros, se tiene grafito (su uso más popular son las minas de los lápices)
Las buckyesferas, también conocidas como fullerenos, son moléculas con forma de balón de fútbol formadas por 60 átomos de carbono unidos. Y el espacio está lleno de ellas. Así lo han determinado los astrónomos mediante el Telescopio Espacial Spitzer de la NASA. Se han localizado estas pequeñas esferas de carbono por toda la Vía Láctea. Spitzer también detectó buckyesferas alrededor de una cuarta estrella moribunda, conocidas como nebulosas planetarias, y en cantidades ingentes (el equivalente en masa a 15 lunas como la nuestra).

Como decíamos antes si se enrolla una porción de una de esas láminas en forma de esfera, como un balón de fútbol, se producen fullerenos, unas moléculas de tan gran interés que a sus descubridores se les concedió el Nobel de Química del año 1996. Finalmente, si se enrolla una lámina de esas en forma de cilindro, lo que obtenemos son los famosos nanotubos de carbono.  El grafeno sería una de esas láminas extendida, con un espesor de sólo un átomo, siendo casi bidimensional, como una hoja de papel infinitamente delgada y de una dureza inimaginable en contraste con su densidad.

La nanotecnología puede servir de fuente de energía limpia después de los últimos adelantos científicos. El novedoso procedimiento de generación energética verde llega a producir baterias diez veces más pequeñas que las conocidas. El avance ha venido de la mano de un grupo de científicos de la Universidad del Instituto Tecnológico de Massachusetts, el famoso MIT. Gracias al uso de la nanotecnología, los científicos tienen al alcance reducir el universo diminuto de las baterías que hacen funcionar los equipos electrónicos. El método consiste en un de nanotubos o cables de  carbón que, envueltos en una pátina de combustible, canalizan ondas termoeléctricas, útiles abastecer de energía a electrónicos como los ordenadores o los teléfonos móviles.

Otra vez, como siempre me pasa, me desvío del tema principal, se ha cruzado una idea por mi mente y la sigo sin que caiga en la cuenta de que estaba en otros menesteres. A veces, cuando ocurren cosas así, uno se da cuenta de que muchas son las cosas que estan relacionadas y, esas conexiones te llevan de lugar a otro sin sentir.

Aquí tenenos la Nube molecular de Orión que es como un motor precursor de la Vida. En un lugar llamado Universitan he podido leere que:

“La Nebulosa de Orión, también conocida como M42, es una de las nebulosas más brillantes y más famosos en el cielo. La de estrellas brillantes, nubes de gas y una región de estrellas jóvenes y calientes están en la foto izquierda en este mosaico marco de fuerte colorido, que incluye a la nebulosa M43 cerca del centro de la polvorienta y azulada nebulosa de reflexión NGC 1977. Situado en el borde de una gigantesca e invisible nube molecular compleja, los astrónomos han identificado lo que parecen ser numerosos sistemas solares bebé.

Orion es un zoológico cósmico, con discos protoplanetarios, enanas marrones, movimientos intensos y turbulentos ded gas, y los efecto de foto-ionización de estrellas masivas cercanas, así como “balas” supersónicas  -diez veces el diámetro de la órbita de Plutón y con átomos de hierro al rojo vivo de color azul brillante, que se cree que se han formado hace unos mil años de un hecho violento desconocido.

Más de 13 millones de años por lo menos en uno de los ámbitos de la vida pudo haber comenzado en nubes nebulares. Si se restringe a la Vía Láctea, que es de 13,6 mil millones de años, las combinaciones químicas primero habrían pasado miles de millones de años para convertirse en un organismo auto-replicante, con un genoma de ADN mucho antes de la existencia de la Tierra.”

El Universo nunca dejará de asombrarnos.

emilio silvera