miércoles, 29 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Habeis pensado por qué hay vida en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

Cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino  

Robert Henry Dicke (6 de mayo de 1916 – 4 de marzo de 1997) fue un físico experimental estadounidense, que hizo importantes contribuciones en astrofísica, física atómica, cosmología y gravitación. Hombre inquieto, muy activo y, sobre todo, curioso por saber todo aquello que tuviera alguna señal de misterio.

Me referiré ahora aquí al extraño personaje que arriba podeis ver. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de  

Paul Adrien Maurice Dirac (8 de agosto de 1902 – 20 de octubre de 1984) fue un físico teórico británico que contribuyó de forma fundamental al desarrollo de la mecánica cuántica y la electrodinámica cuántica. Su electrón, en nada tiene que envidiar a los de Einstein.

Dirac, que predijo la existencia del positrón, le dedicó un estudio a la Grabevedadpor al hilo de una serie de números y teorías propuestas  Eddintong en aquellos tiempos y decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. veremos que  la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

 

 

 

Siempre hemos estado obsesionados con algunos números en los que creímos ver significados ocultos

 

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de Gran [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

 

La propuesta de Dirac levantó controversias los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

 

 

               Las constantes de la Naturaleza han sido medida de mil maneras

Dicke, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra Einstein que incluye una G variable. En efecto, Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía en cuentra la Pero, antes de comenzar con el tema central, hagamos una parada para hablar del “ 

Placa tomada por Eddintong en Puerto Principe, en la que se corroboraba la predicción de Einstein de la Teoría de Relatividad General. El Sol se curvaba en presencia de grandes masas. Al margen iaquierdo y derecho los dos protagonistas.

El universo conocido, es aquel que podemos observar, osea, la luz que nos ha llegado hasta protones en esa zona a donde “alcanza nuestra vista” protones aproximadamente, es decir, un 1 seguido de 80 ceros. Este número es el cuadrado de “10 elevado a 40”

 

A lo largo del Siglo XX se observó que algunas de las cifras que se dan en la naturaleza coinciden de manera sorprendente, y más extraño aún resultó el hecho de que se refieren a ámbitos físicos aparentemente independientes. Otro elemento insólito consistía en que todas ellas giraban alrededor de un  

Como acabamos de ver, el tamaño del Universo visible varía con el tiempo. Si dividimos su tamaño actual electrón obtenemos Razón entre Gravedad y Electromagnetismo del Electrón y el Protón.

Un electrón y un protón se atraen de dos maneras, por un lado a causa de que el primero tiene carga eléctrica positiva y el segundo negativa, y ya se sabe que cargas contrarias se atraen. Por el otro, a causa de sus propias masas, como efecto de la fuerza de la gravedad. Se  

Cuando un objeto de masa específica se libera en el aire, seguramente se caerá al suelo. Este fenómeno es debido a la Gravedad ejercida fuerza gravitacional es de suma importancia  

EL magnetismo, a su vez, es resultado del movimiento y la composición del núcleo de la Tierra, que tiene una parte sólida y otra líquida, que comprende las aleaciones de hierro. Por lo tanto, la Tierra tiene un campo magnético muy fuerte, comportándose como un enorme imán, donde los polos del imán se encuentran cerca de los polos de la Tierra geográfica.

De Estos son los principales resultados, los cuales impulsaron interesantes especulaciones que veremos enseguida, pero podemos añadir que, operando con fenómenos físicos, ese 10 elevado a 40 ha sido encontrado más veces, ya sea el propio

           Creo que las constantes de la Naturaleza permiten la presencia de la Vida en el Universo

Robert Dicke, que este era el Einstein a inexactitudes de nuestros intentos de medir el diámetro del Sol que hacían que este pareciera tener una De todas las maneras, lo anterior no quita importancia al  

                                                                   Cadenas de ADN en el Universo

“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único Cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los grandes números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza a cualquier  

Todos los procesos de la Naturaleza, requieren su tiempo. Desde un ambarazo a la evolución de las estrellast(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈ 10.000 millones de No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) Big Bang.

 

La escena de una estrella moribunda fue necesaria para que, los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin ese tiempo de t(estrellas) = a 10.000 millones de años, difícilmente podríamos estar Así pues, el valor que del gran Todo lo que la coincidencia de Dirac dice es que vivimos en un tiempo de la Historia Cósmica posterior a la formación de las estrellas y anterior a su muerte. Esto no es sorprendente. Dicke nos está diciendo que no podríamos dejar de observar la coincidencia de Dirac: es un requisito  [1269277012_g_0.jpg]

Transiciones de fase que son el pan de cada día de nuestro universo, posibilitan que, a partir de la muerte surja la nueva vida en toda su diversidad. Del casamiento de dos galaxias queda una sóla entidad, nueva, que suple a los dos existencias anteriores y, con los materiales, estrellas y mundos unidos De esta Big Bang contenga las ladrillos básicos necesarios para la evolución posterior de la complejidad biológica-química debe tener una edad al menos tan larga, Esto significa que el universo observable debe tener al ¿Por qué no hemos encontrado extraterrestres?

 

 

No parece tan difícil responder a esa pregunta si pensamos en el Tiempo y en la Distancia, es decir, el Espaciotiempo que habría que cubrir para encontrar a otros seres que pudieran ser, como nosotros, pobladores de mundos lejanos. Sin embargo, una duda siempre queda en el aire. Nuestros telescopios alcanzan galaxias situadas Un argumento hermosamente simple con respecto a la inevitabilidad del gran tamaño del universo Estimulado por las sugerencias Whitrow, escribe:

“Si tenemos tendencia a sentirnos intimidados sólo por el tamaño del universo, está bien recordar que en algunas teorías cosmológicas existe una conexión directa entre la cantidad de materia en el universo y las  

Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.

 

                      La Alquimia estelar está aquí presente por todas partes

El universo tiene la curiosa propiedad de hacer que los seres vivos piensen que sus inusuales propiedades son poco propicias  

¡Somos tan pequeños! ¡¡Podríamos llegar a ser tan grandes!! Parece que seguimos en aquella Torre de Babel en la que nadie se entendía

Sabemos aún muy poco sobre sus misterios, nuestras capacidades son limitadas y al nivel de nuestra tecnología actual estamos soportando el peso de una gran ignorancia sobre muchas cuestiones que necesitamos conocer. Con sus miles de millones de galaxias y sus cientos de miles de millones de estrellas, si niveláramos todo el material del universo para conseguir un mar uniforme de materia, nos daríamos cuenta de lo poco que existe de cualquier cosa. La media de materia del universo está en aproximadamente 1 átomo por

  Los precesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son  http://1.bp.blogspot.com/_uXKk8OXldZw/TKBNhPHG90I/AAAAAAAAHpk/QdQKGz0XB1k/s1600/ovni.jpg

Claro que, siempre tendremos la duda de cómo podrá ser esa posible vida extraterrestre. ¿Será mala Claro que, La baja densidad media de materia en el universo significa que si agregáramos material en estrellas o galaxias, deberíamos esperar que las distancias medias El universo visible contiene sólo: 1 átomo por metro cúbico 1 Tierra por (10 años luz)3 1 Estrella por (103 años luz)3 1 Galaxia por (107 años luz)3 1 “Universo” por (1010 años luz)3

El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar emilio silvera

Existen enigmas en el Sol que debemos conocer

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Gracias al Sol, podemos tener una serie de mejoras y tecnologías que aprovechan sus rayos de luz y su calor para obtener la energía limpia que necesitamos, y, cierto es que, teniendolo tan cerca (es la estrella más cercana a nosotros), aún nos quedan por desvelar muchos secretos que esconde. Pero veamoslo otras perspectivas.

Se han programado modelos donde la composición de la Corona del Sol ha sido alterada digitalmente y que, mediante la combinación de 30 fotografías se nos hace ver las periféricas olas y filamentos y, por mi , con el modelo por delante en la pantalla de mi ordenador, estoy viendo esa parte interior brillante de la corona (corona K), provocada por la luz del Sol difundida por electrones. Es la auténtica corona, al revés que la corona F, que es debida a la luz difundida por las partículas de polvo.

Debido a las velocidades extremadamente altas de los electrones libres (en promedio 10.000 Km/s para una temperatura coronal de unos 2 millones de K, las líneas de Fraunhofer del espectro fotosférico se encuentran difuminadas de manera que el espectro de la corona K es casi un puro continuo.

Yo, ante la imagen de arriba y las figuras que están presenten en ese resplandor de la corona del Sol, estoy viendo la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitacionales son intensos, es el caso de la fuerza de Gravedad que produce la inmensa masa de nuestro Sol y, a su alrededor, el espacio se curva y el tiempo se distorsiona.

En relatividad general la geometría del espacio-tiempo está íntimamente relacionada con la distribución de materia. En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría euclidea se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvarán. Esto es, en esencia, lo que ocurre en relatividad general.

Es un hecho comprobado que, la presencia de grandes masas como la de planetas (La Tierra) o estrellas (El Sol), distorsionan el espacio y dibujan la geometria del Universo gracias a la fuerza de Gravedad. Así nos lo explica la relatividad general de Einstein largamente comprobada.

En los modelos cosmológicos más sencillos, basados en el universo de Friedman, la curvatura del espacio-tiempo está relacionada simplemente con la densidad media de materia, y se describe por una función matemática exacta denominada métrica de Robertson-Walker.

     Métrica de Robert-Walker

Si un universo una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio tiempo está curvado sobre sí mismo, la superficie de una esfera; la suma de los ángulos de un triángulo dibujados sobre la esfera es entonces mayor que 180º. Dicho universo tiene tamaño y vida finita; se trata de un universo cerrado.

Un universo con menor densidad que la crítica se dice que tiene curvatura negativa, como la superficie de una silla de montar, en la que la suma de los ángulos de un triángulo es menor que 180º. Dicho universo sería infinito y se expandiría siempre, se trata de un universo abierto. El Universo del Einstein-de Sitter tiene densidad crítica y es, por consiguiente, especialmente plano (euclideo) e infinito tanto en el espacio como en el tiempo.

la distorsión del tiempo y la curvatura espacial no la podemos ver (sólo se dejan sentir sus efectos) al ver la Imagen distorsionada de la Corona me vino a la mente la curvatura espaciotemporal que producen las grandes masas en el espacio circundante, y, de ahí llegue a los tres modelos del universo abierto, cerrado y plano que arriba quedan significados.

En realidad, lo que aquí arriba estamos viendo es la corona visible en luz blanca, la Corona del Sol observada en longitudes de onda visibles los eclipses totales de Sol y con corónografos. La emisión en luz blanca tiene su origen en la luz de la fotosfera del Sol que se difunde por los electrones libres (la corona K) y el polvo (la corona F). Una pequeña cantidad de luz visible procede de las líneas de emisión (la corona E).

En presencia de grandes masas de materia, tales planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea. También, es la gravedad la que hace que se fusionen las galaxias vecinas que, con el tiempo, se unen en un matrimonio indisoluble.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

Es difícil imaginar que una partícula subatómica genere gravedad

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Cuando hablamos de la Corona del Sol nos estamos refiriendo a un gas altamente ionizado y extremadamente caliente (alrededor de los 2 millones de K) que rodea al Sol. Existen otras estrellas que presentan coronas. La corona solar (como podemos comprobar arriba) son visible durante los eclipses totales como una región blanca que se extiende varios radios solares, mostrando filamentos, penachos, plumas y burbujas o bucles.

La radiación de la corona en luz blanca componentes debidas a líneas de emisión (la corona E) a la difusión de electrones (la corona K) y a partículas de polvo (la corona F). La extensión externa de la corona es el viento solar.

Las imágenes de rayos X de la corona solar muestran estructuras complejas con bucles cerca de los grupos de manchas solares, y cerca de los puntos brillantes de rayos X, más pequeños. La emisión de rayos X, además de las líneas de emisión de los átomos altamente ionizados (líneas coronales), indican que la temperatura es de 2 millones de K; pueden ser encontradas temperaturas incluso mayores de 4 millones K en las condensaciones coronales.

Los campos magnéticos con una intensidad de 10 exp. -3 tesla, gobiernan la de la corona. Los campos magnéticos forman bucles cerrados en las regiones activas, y en la mayor parte de la corona tranquila (es decir, regiones no activas), si bien en los agujeros coronales las líneas de campo magnéticos son abiertas y se extienden por el espacio, no volviendo al Sol.

Por el , se desconoce como se calienta la corona, aunque el mecanismo probablemente está conectado con los fuertes campos magnéticos allí presentes. De todas las maneras de millones de K en la corona a 5.770 K en la superficie, 4.400 K en el mínimo de temperatura de la fotosfera y, una cromosfera de 20.000 K, nos da a entender que existe un aumento de temperatura con la altitud –en la región de transición- hacia la corona donde la tempera llega al máximo antes expresado de millones de K.

Está claro que, sobre el Sol debemos procurar profundizar en esas lagunas que se forman en nuestro entendimiento de los fenómenos que allí ocurren y, la temperatura de la Corana Solar, es una de ellas.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 tonelada.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 654 millones de toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

      La radiación solar incide en la Tierra y produce una serie de fenómenos que contribuyen a que las cosas sean tal las podemos ver

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

La complejidad que encierra los mecanismos de una simple estrella es tan profunda que, conocer los entrecijos de la más cercana a nosotros (el Sol, del que por cierto depende la vida en la Tierra), necesitamos investigar más, hacer nuevos midelos y nuevas observaciones que, a través de sondas espaciales robóticas nos puedan decir lo que realmente allí ocurre.

emilio silvera