jueves, 23 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hasta podría ser que la Vida, fuese igual en todas partes

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Astrobiologia

Uno de los supuestos implícitos en pro de la inevitabilidad de un Universo grande y frío es que cualquier vida es muy parecida a la nuestra. Los biólogos parecen admitir sun problemas la posibilidad de otras formas de vida, pero no están seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el Carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencia extraterrestre en el Universo se centran en formas de vida similares a nosotros que habiten en planetas y necesiten agua, atmósferas gaseosas y todo lo demás. Merece la pena abrir un poco nuestra imaginación para pensar a qué podría parecerse la vida si radicara en el espacio en lugar de radicar en un planeta.

Buscando indicios de la vida, Rosetta estudia la composición del polvo y gas que lanza un cometa.

                      Rosetta

Debido a que es un fenómeno que por el momento permanece esencialmente fuera del alcance de la ciencia (al no disponer de datos, y por tanto de la posibilidad de experimentar y refutar las hipótesis), no existe una disciplina “formal” que estudie la vida extraterrestre, ni ningún currículo académico que forme expertos en ello. Aquellos que se han aproximado al tema de manera científica son por lo general expertos en áreas diversas, que por interés meramente personal han elaborado hipótesis sobre las posibilidades de vida en otros mundos, y han compartido sus puntos de vista a través de algún medio. Pese a ello, ha surgido una enorme cantidad de trabajos y publicaciones serias sobre el tema, de modo que puede hablarse de una cuasi-ciencia dedicada a estudiar y teorizar sobre este fenómeno, a pesar de la ausencia de evidencias. La proto-ciencia que estudia la vida extraterrestre se llama exobiología o astrobiología, y esencialmente se dedica a especular sobre los límites en los que, según nuestro conocimientos científicos, podría darse la vida.

Herschel

Descripción Herschel es el mayor telescopio espacial en actividad. El espejo de 3,5 metros de diámetro de Herschel capta radiación infrarroja de longitud de onda larga de algunos de los objetos más fríos y alejados del Universo. El Herschel es el único observatorio espacial que abarca longitudes de onda desde el infrarrojo lejano hasta submilimétricas. Poco a poco, con estos sofisticados ingenios espaciales cada vez más precisos, nos vamos acercando al conocimiento del Universo y de los objetos que lo pueblan.

Herschel es un telescopio espacial que posee un impresionante espejo de 3,5 metros de diámetro (el mayor en telescopios espaciales de imagen). Fue lanzado al espacio en el 2007. Una de sus características es que puede “ver” un tipo de radiación que no ha sido detectado hasta ahora. Esta radiación cae dentro del espectro del infrarrojo lejano y de la luz con longitud de onda menor al milímetro, que son exactamente las radiaciones que es necesario detectar cuando se buscan compuestos químicos complejos como los de las moléculas orgánicas.

Noticias como esta son ya continuadas y cada día se están descubriendo en el espacio interestelar, en las nubes de gas y polvo que dejan las estrellas al final de sus vidas y de donde surgen nuevas estrellas y nuevos mundos, materiales orgánicos que, miles de millones de años más tarde, hacen que en los mundos pueda surgir la vida.

“Hemos detectado la presencia de moléculas de antraceno en una densa nube en la dirección de la estrella 52 en Cernis Perseo, a unos 700 años luz del Sol “ – explicó Susana Iglesias Groth, una de las autoras del estudio-. “Y también hemos encontrado pruebas de la existencia de otra molécula orgánica, el naftaleno, en el mismo lugar, así que todo indica que hemos descubierto una región de formación estelar rica en la química prebiótica. Hasta ahora, el antraceno se había detectado sólo en los meteoritos y nunca en el medio interestelar. Las formas oxidadas de esta molécula son comunes en los sistemas vivos y son bioquímicamente activas. En nuestro planeta, el antraceno oxidado es un componente básico de la sábila y tiene propiedades anti-inflamatorias.

En las últimas décadas los científicos y el público en general han imaginado que se podría encontrar vida inteligente en el universo. Es probable que no seamos la única civilización en esta galaxia, que incluso podría contener docenas o centenares de civilizaciones dispersas entre sus 200.000 millones de estrellas. Si recibiéramos un mensaje complejo y detallado surgido de una de estas civilizaciones, o tuviésemos otra forma de contacto con ella, los efectos sobre nuestra civilización podrían ser intensos y profundos.

  Muchos astrónomos, biólogos, filósofos, a los que se agrega ahora otra gente, creen que la existencia de la diversidad de la vida en el universo es un valor supremo. Es decir, en el universo entero, nada es de mayor valor, importancia o significación que las civilizaciones avanzadas y las especies inteligentes, incluyendo la nuestra, por supuesto. Si se preguntara “¿qué cosa o idea tiene más importancia o valor que la diversidad de la vida en el universo, incluyendo la civilización humana?” mucha gente contestaría: “Nada; el ser humano y cualquier otra vida inteligente son la cosa más importante del universo.

¿Cuán extensa y diversa es la vida inteligente que se ha desarrollado en nuestra galaxia? Se ha escrito una cantidad enorme de literatura científica sobre estas dos cuestiones. Estamos pensando aquí en las especies naturalmente desarrolladas que han alcanzado por lo menos nuestro nivel de inteligencia, penetración, conocimiento y cultura. Entre los científicos que han estudiado esta cuestión, el consenso general es que se deben haber desarrollado muchas especies inteligentes a través de nuestra galaxia, ahora y en otros tiempos, y que algunos de ellas pueden estar vivas hoy.

El revoltijo de complejidad que está presente en el Universo, nos lleva a pensar que, todo se ha fraguado a través de más de 13 mil millones de años, el tiempo necesartio de evolución de la materia en las estrellas y en el propio universo para que, la vida, pueda surgir en sistemas con las adecuadas condiciones para acogerla. Hasta el momento, que sepamos, es el Carbono el material que la hace posible y la alñternativa química sería el silicio que forma cadenas moleculares parecidas, pero por desgracia, tienden a ser , como el cuarzo y la arena, rígidas y poco interesantes como ladrillos para la biología.

 

Urónicamente, la revolución informática está demostrando que es la física del silicio más que la química del Carbono la que constituye la mayor promesa como alternativa para la vida artificial. Pero tales formas de vida e inteligencias no evolucionan espontáneamente como las nuestras sino que, deben ser fabricada por organismos basados en el Carbono para construir configuraciones altamente organizadas que, es probable quen un día de nuestro futuro, lleguen a poder auto-replicarse y, será entonces cuando podremos decir que ha nacido una nueva especie.

Está claro que hasta el momento todo ha sido especular pero,los hallazgos de moléculas orgánicas necesarias parsa la vida en el espacio exterior nos pone delante de los ojos un fuerte indicio de lo que puede ser, Todos esos materiales necesarios para la vida están esparcidos por el Universo, por los mundos y, cuando alguno de ellos, como la Tierra, está situado en la zona habitable de su estrella… ¡Vida a la vista!

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario…para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina con el hombre.”

 Un poco provinciano el pensamiento al pensar que el hombre puede ser la cumbre de todo y, ciertamente, no podemos descartar la presencia de otros seres inteligentes y más avanzados que nosotros en otros mundos situados hasta en nuestra propia Galaxia. No digamos ya en los cien mil millones de galaxias que en el Universo son.

Hoy no podemos hacernos eco de ese sentimiento que resulta de la cortedad de pensamientos, de mirarnos el ombligo y, de no ver más allá de nuestras propias narices. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísiticas de combinaciones químicas necesarias para el surgir de la vida. ¿Cómo la nuestra? ¿Quién puede saber eso?

Por mi parte creo que, en lo esencial, seres vivos organizados, donde quiera que puedan existir en el universo, deben ser fundamentalmente, y en su naturaleza esencial, también iguales y, si eso fuese así, creo que, sería muy beneficioso para nosotros cuando tengamos que tener encuentros futuros con la vida surgida en otros planetas de nuestra propia galaxia o de otras…¿quién lo puede saber?

emilio silvera

Sabemos cómo evoluciona el Universo, observando las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hace algún tiempo que salió la noticia en los medios: “Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hipergigante HR 8752, que han revelado el eslabón perdido en la evolución de este tipo de astros.Concretamente, han descubierto que, la región inestable conocida como Vacío Evolutivo Amarillo, puede cambiar profundamente la evolución de una estrella ya que, en estas tres décadas, HR 8752 ha aumentado de forma espectacular su temperatura superficial en 3.000 Kelvin (K) a su paso por esta región.”

Los resultados obtenidos venían a desvelar algunos misterios que antes, no tenían explicación.

Imagen ampliada
La estrella hipergigante HR 8752 atravesando el Vacío Evolutivo Amarillo (YEV, por sus siglas en inglés) en una recreación artística. La gráfica muestra el aumento de temperatura que ha sufrido la superficie de la estrella en las últimas décadas. /© A.Lobel-ROB. SRON.
Informaron sobre el hallazgo y dieron los detalles: “Las hipergigantes –de las que solo se conocen 12 en la Vía Láctea–son las estrellas más luminosas que se conocen en la actualidad en el universo. Pueden llegar a ser hasta millones de veces más brillantes que el Sol y tener un tamaño de varios cientos de radios solares, con temperaturas superficiales de entre los 3.500 K y los 35.000 K. En concreto, HR 8752 es unas 250.000 veces más luminosa que el Sol y puede ser observada con prismáticos en la constelación del hemisferio norte de Casiopea.”
File:Sun and VY Canis Majoris.svg
     Comparación entre los tamaños del Sol y VY Canis Majoris, una hipergigante. Se trata de la estrella roja más grande conocida. Cuando miramos la reseña de este tipo de estrellas, en casi cualquier sitio que podamos mirar nos dicen algo parecido a esto:
“Una hipergigante (hypergiant en inglés) es una estrella excepcionalmente grande y masiva, incluso mayor que una supergigante. Su masa puede ser de hasta 1000 veces la masa de nuestro Sol, próxima al límite máximo teórico, el cual establece que la cantidad de masa en una estrella no puede exceder las 120 M (masas solares). Este límite en masa está asociado a la luminosidad de Eddington, por el que estrellas más masivas simplemente no pueden estar en equilibrio al vencer la presión de radiación interna a la fuerza gravitacional: producirían tanta energía que se desprenderían de la masa en exceso de las 120 M. Aun así, algunas hipergigantes aparentan tener más de 100 M e, inclusive, haber tenido, inicialmente, entre 200 y 250 M, al contrario de lo que predicen las teorías actuales sobre la formación y evolución estelar.”
Lo que más arriba se explica, es decir, que cuando una estrella tiene más de 120 masas solares, su propia radiación la podría destruir y, para evitarlo, eyecta material estelar al espacio evitando su propia destrucción.
Eta Carinae podría estar a punto de explotar. Pero nadie sabe cuándo -lo mismo podría ser mañana que tardar cientos de miles o millones de años- Eta Carinae es una de edsas estrellas masiva  – aproximadamente 100 veces mayor que nuestro Sol – hace que sea un excelente candidato para una supernova que sembrará el espacio interestelar de gas y polvo y materiales complejos del que, de nuevo, volverán a surgir estrellas y mundos. Los registros históricos muestran que hace unos 150 años Eta Carinae sufrió una explosión inusual que la convirtió en una de las estrellas más brillantes del cielo austral.
Eta Carinae, en la Nebulosa Keyhole, es la única estrella en la que actualmente se han detectado emisiones de luz LASER de manera natural. La imagen de arriba fue tomada en 1996, fue resultado de sofisticadas combinaciones de procesamiento de imágenes y los procedimientos diseñados para llevar a cabo nuevos detalles de la nebulosa que rodea a esta inusual estrella perdida entre las brumas del material que eyecta para evitar su muerte. Ahora son claramente visibles dos lóbulos, una región central caliente, y extrañas rayas radiales. Los lóbulos están llenos de carriles de gas y polvo que absorben la luz azul y ultravioleta emitida cerca del centro. Las rayas siguen sin explicación. ¿Estos indicios nos dicen cómo se formó la nebulosa? ¿ Sabremos algún día cuando Eta Carinae explotará?
Debajo de estas imágenes, en la prensa se pudio leer: “Descubierta una estrella monstruosa con 300 veces la masa del Sol, el astro rompe todos los récords y previsiones teóricas. Una estrella de 300 veces la masa de nuestro Sol es algo no sólo nunca visto hasta ahora sino también completamente inesperado para los astrónomos, que estimaban el límite máximo de masa en unas 150 veces la solar. Pero la han encontrado. Todavía se la conoce sólo por su anodino nombre oficial, R136a, y la han localizado unos científicos en la nebulosa Tarántula, de la galaxia vecina Gran Nube de Magallanes, a unos 165.000 años luz de distancia de la Tierra. “La existencia de un monstruo así, millones de veces más luminoso que el Sol, y perdiendo peso por los intensos vientos estelares, puede ayudarnos a responder una pregunta clave. ¿Cómo de masivas pueden ser las estrellas?”.
Una estrella enana roja que son las más abundantes del Universo y las que tienen mayor edad. Otra estrella como nuestro Sol, una estrella celeste claro supermasiva y otra última de dimensiones inconmensurables. Las estrellas que han sido profundamente estudiadas en todas sus variantes, formas y colores, tienen aún algunos secretos que tenenos que desvelar.
Alguna vez me he referido aquí a R. Leporis, que es un capricho estelar. En el espacio existen muchas estrellas que, de poder saber de ellas nos dejarían sumidos en el mayor de los asombros. Las hay de Carbobo como R. Lepori, de Circonio, de Litio, de Manganeso, de estroncio, de Helio, de bario, de manganeso-mercurio, de metales pesados, de silicio, de tecnecio, de neutrones, y… ¿por qué no podría incluso existir algunas de Quarks?

 

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.

R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono-oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.
En la imagen podemos contemplar como algo que nos parece tan enorme como el Sol, puede quedar empequeñecido al lado de otros astros de cuya inmensidad ni podíamos imaginar que pudieran existir. Arriba Betelgeuse se exhibe presumida al lado de las otras estrellas que, siendo grandes y muy grandes, no piueden compararse a grandiosidad. Sin embargo, aún las hay mucho mása grandes que ella.
          Ahora es Antares la que se puede pavonear ante las demás

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla desde 520 a.l. de distancia y tiene una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aprpoximadamente la mitad de la distancia del cúmulo.

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces superior a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 siatuada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minúsculos como podemos ver en la imagen y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.

¡No por pequeño se es insignificante! Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

      El grupo de tres estrellas gigantes Pismis 24-1 (CSIC).

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Por ejemplo, de Eta Carinae (antes mencionada y cuya imagen tenéis arriba), es una variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, en tiempos se llegó a creer que era la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida de masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

Estrellas masivas como Eta Carionae, Betegeuse, Arthurus, Antares y tantas otras que ahora sabemos que existen nos llevan a saber que, cuando mueren, se pueden convertir en otros objetos distintos como, por ejemplo:

Estrellas de Neutrones

Estrellas que se forman a partir de estrellas amasivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la estrella comienza a contraerse bajo su propio peso, de forma tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de esclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de nweutrones de intensom campo electromagnético y rápida rotación. Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

¿Estrella de Quarks?

Es hipotética, aún no se ha observado ninguna pero se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad que sería frenada por los Quarks que también, son fermiones.

Si la estrella no es masiva, y tiene una masa como la del Sol, su final será la de convertirse en una ¡Estrella Enana Blanca!

Nuestro Sol es de esta clase de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo número cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

Nos despediremos con estas bellas imágenes de sendas Nebulosas Planetarias como, un día lejano aun en el futuro, nos mostrará nuestro Sol al llegar al término de su vida. Ese será su final: Una bonita Nebulosa Planetaria con una estrella enana blanca en en el centro.

Claro que, tampoco ese será el final para el Universo en el que, nuevas estrellas seguirán naciendo para hacer posible que, mundos como la Tierra puedan, con su luz y su calor, hacer surgir formas de vida que, como la nuestra, pueda alcanzar la consciencia de Ser y, a partir de ahí… comenzará otra nueva aventura que será digna de contar.

emilio silvera

Las cosas de la Naturaleza que tratamos de comprender

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Así, en el Universo primitivo, ambas clases de materia estuvieron un tiempo eliminándose la una a la otra y, por una razón que aún no es bien comprendida, la materia era más abundante que la antimateria, así que, lo que ahora vemos es todo materia. Bueno, al menos así se cree que pasó, lo que no impide que exista en el Universo antimateria que, aunque se ha buscado, nunca se encontró fuera de los Laboratorios.

Sobre esta disparidad inicial se ha experimentado mucho, y, en uno de estos experimentos se ha demostrado una pequeña – pero significativa – diferencia de un 1 por ciento entre la cantidad de materia y antimateriaproducida, lo cual podría apuntar a cómo llegó a producirse nuestra existencia dominada por la materia.

La teoría actual, conocida como Modelo Estándarde la física de partículas, ha predicho alguna violación de la simetría de materia-antimateria, pero no lo suficiente para explicar cómo surgió nuestro universo, que consta mayormente de materia y apenas unas trazas de antimateria.

Perro, como antes he dicho, ha sido en el Laboratorio donde se ha conseguido aislar y no es la primera vez que el CERN nos sorprende creando átomos de antimateria. Ya en 1995 se produjeron artificialmente los primeros nueve átomos de antihidrógeno. Pero ahora el experimento ALPHA del CERN ha dado un paso adelante, produciendo y mateneniendo con más tiempo átomos de antimateria, como apareció publicado en un artículo en Nature.

Sigamos. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo, La Bariónica que emite radiación electromagnética y está formada por Quarks y Leptones. La otra, esa que llamamos oscura, la dejaremos reposando allí donde se pueda encontrar (si se encuentra en alguna parte), toda vez que, de ella, no podemos decir mucho con cierta propiedad.

De esa manera se formaron, con esas partículas positivas y los electrones (hadrones -formados por Quarks- y leptones), se originaron grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas.

La Nebulosa del Águila, por CFHT

Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.

La galaxia

Dicho proceso fue mucho más eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en mayor número y, sus brazos, aparecen cuajados de azuladas y nuevas estrellas masivas que, con su radiante luminosidad ultravioleta, inundan grandes regiones que ionizan al gas y polvo que las circundan.

Leer más

Las cosas son como son y no de otra manera

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No es porder recordar,

sino todo lo contrario,

la condición necesaria

para nuestra existencia en paz.

Si el recuerdo es de la amada que se fue,

tendremos el dolor,

Si el recuerdo nos trae momentos amargos,

tendremos dolor.

Pero, si podemos olvidar, retomaremos una vida en paz.

Sin embargo, y, a pesar de todo, yo prefiero el dolor que me trae

ese recuerdo feliz, de otra manera, ¿qué vida sería la mía? No sería mi vida.

¡La Vida! amigos míos, no se nos ha regalado,

la vida la tenemos que pagar…¡De tántas maneras!

 

 

Siempre será de la misma manera. Apesar de nuestras similitudes, ninguno de nosotros seremos nunca exactamente igual a otro. Con los mundos pasa otro tanto de lo mismo, serán casí iguales, coincidiran en muchos de sus parámetros pero, siempre tendrán detalles grandes o pequeños que los diferenciaran a los unos de los otros. Creo que, lo único que podemos decir que son iguales, está situado en el mundo microscópico de las partículas: dos protones son exactos al igual que dos electrones o dos Quarks dowm. Ni las Nebulosas ni las Galaxias son nunca de la misma manera aunque ambas, puedan contener los mismos elementos.

Leer más

¿Nos arrepentiremos de crear la I.A.?

Autor por Emilio Silvera    ~    Archivo Clasificado en I. A.    ~    Comentarios Comments (24)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Inteligencia Artificial, dijo John McCarthy cuando acuñó el término en las conferencias de Darmouth de 1956, es: “…la ciencia e ingeniería de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes.” Ese sentido no ha cambiado desde entonces. En cambio, las técnicas y aplicaciones de la Inteligencia Artificial son cada más variadas, profundas y sorprendentes. A pasos exponenciales inundarán nuestras vidas y pronto serán tan omnipresentes que apenas las percibiremos, como hoy nos sucede con la televisión, los modernos teléfonos móviles y el Internet que forman parte de nuestras vidas y, de alguna manera nos podríamos preguntar: ¿Qué haríamos sin todo esto?

El punto muerto de la Inteligencia Artificial
                                                          Androide de la película «Yo, robot»

Puede que vivamos en un mundo donde cada persona se conectará mentalmente con una red de ordenadores con miles de mentes pensantes también conectadas. O puede que las máquinas realicen todas las tareas para nosotros y nos permitan vivir con total lujo durante toda nuestra vida. Pero ¿qué ocurriría si las máquinas nos vieran como algo innecesario – o algo peor-? Si las máquinas llegan al punto donde se puedan reparar ellas mismas o incluso crear versiones mucho mejores, ¿podrían llegar a la conclusión de los humanos son simplemente una molestia? Realmente es un escenario que asusta. ¿Podría ser cierta la versión de Vinge del futuro? ¿Hay alguna manera de evitarlo?

He dado muchas vueltas a la IA y a la consciencia de los seres vivos. Las conclusiones a las que he podido llegar son que el pensamiento consciente debe involucrar componentes que no pueden ser siquiera simulados adecuadamente por una mera computación; menos aún podría la computación por sí sola, provocar cualquier sentimiento o intención consciente. En consecuencia, la mente debe ser realmente algo que no puede describirse mediante ningún tipo de términos computacionales. Sin embargo, noticias que llegan de nuevos descubrimientos te hacen dudar de hasta dónde podrán llegar esos “seres” artificiales creados por el hombre.

¿Llegaremos a construir replicantes que, como el replicante Geminoid DK sean físicamente idénticos a los seres humanos?,  e incluso otros que, como Robonaut 2 que han salido de la Tierra en su primer viaje espacial; gracias a la fibra óptica incluso puedan llegar a sentir frío y calor, y, en general, ¿haremos infinidad de pequeñas máquinas capaces de hacer o imitar cualquier tipo de mocimiento humano con total fluidez? Algunas de esas cosas ya se han conseguido. Pero siguen teniendo un nivel muy bajo de inteligencia, insuficiente como para que gocen de autonomía. Sin embargo…

Da miedo pensar que esto llegue
¿Hasta dónde llegaremos?

De todas las maneras, no dejamos de insistir y queremos llegar a conseguir poder insertar los sentimientos en esos seres artificiales que cada día creamos con mayor perfección. ¿No somos conscientes del peligro que conlleva imitar a los humanos de esa manera? Las consecuencias son impredecibles y, como tántas otras cosas, cuando querámos darnos cuenta…será tarde.

Feelix Growing robot

Investigadores europeos están desarrollando un software que dará a los robots la capacidad de aprender cuándo una persona está triste, feliz o enfadada. El proyecto Feelix Growing está uniendo sencillos robots que pueden detectar diferentes parámetros (expresiones faciales, voz y cercanía) para determinar estados emocionales. El objetivo del proyecto es desarrollar un robot que pueda servir a los humanos con necesidades especiales, como los enfermos y los ancianos mediante redes neuronales adaptables, el robot puede aprender la manera correcta de responder a las emociones de la gente a partir de la experiencia. Por ejemplo, si alguien tiene miedo, el robot puede aprender a cambiar su comportamiento para parecer menos amenazante. Si alguien parece feliz, el robot puede tomar nota mental (¿positrónica, espintrónica…?) de lo que logró esa respuesta. Y si alguien parece enfadado o solitario, puede darle una palmadita en la espalda, ofrecerle una bebida fuerte y decir: “No te preocupes, te mereces a alguien mejor”. Sólo podemos esperar que no se hayan olvidado de las tres leyes de Asimov.

Bien es verdad que no tenemos una comprensión científica de la mente humana. Sin embargo, esto no quiere decir que el fenómeno de la consciencia deba permanecer fuera de la explicación científica. Ya se están buscando caminos científicos para dar esa explicación del misterio más profundo (seguramente) del Universo. Y, a pesar de no conocer a fondo nuestra mente, ya estamos tratando de incorporar, a mentes artificiales lo poco que de ella sabemos. ¿No será una temeridad?

                   A su imagen y semejanza.  La Geminoid F es la androide con apariencia femenina

Estamos en el camino: Prototipos al servicio de la sociedad, como una androide-enfermera, el robot-mayordomo para el hogar… Todo eso está a la vuelta de la esquina y, yo me pregunto: ¿Cómo será ese futuro nuestro?

La comprensión es, después de todo, de lo que trata la ciencia; y la ciencia es mucho más que la mera computación mecánico-electrónica. Sin embargo, parece que la realidad desmiente estos pensamientos y, podría llegar el momento en el que, la Inteligencia Artificial,  alcance niveles preocupantes al dotar, a esos “seres” artificiales de pensar por sí mismos y, si me apuran, hasta de tener sentimientos.

¿Cuál es el campo de acción de la ciencia? ¿Son solamente los atributos materiales de nuestro Universo los que son abordables con sus métodos, mientras nuestra existencia mental debe quedar para siempre fuera de su alcance? ¿O podríamos llegar algún día a una comprensión científica adecuada del profundo misterio de la mente? ¿Es el fenómeno de la consciencia humana algo que está más allá del dominio de la investigación científica, o podrá la potencia del método científico resolver algún día el problema de la propia existencia de nuestro yo consciente?

Claro que, hacemos estas preguntas y, por otro lado, al ver todo lo que está pasando y todo lo que pretendemos hacer, cabría preguntarse: ¿Somos en verdad conscientes?

Sí, tenemos la facultad de meditar profundamente y, a través de esas meditaciones alcanzar un estadio de mayor “consciencia” y comprensión, un estado tal que nos puede llevar a una conexión tan real con el Universo que es como si viajáramos fuera de este mundo para visitar, ese otro mundo hecho de pura luz donde podríamos encontrar la sabiduría que necesitamos. ¡Falta nos hace!

Creo que se avecina un cambio importante, y, nuestros cerebros que forman parte del mundo material del Universo, tiene un ingrediente que aún no hemos llegado a comprender. Incluso con nuestra limitada comprensión actual de la naturaleza de este ingrediente ausente en nuestro saber, sí podemos empezar a señalar donde debe estar dejando su huella, y como debería estar aportando una contribución vital a lo que quiera que sea en que subyacen nuestros sentimientos y acciones conscientes. ¿Por qué tratamos de regalar ese don? El que no lo comprendamos no quiere decir que lo tengamos que dar y, menos, a “seres aerificiales” de cuya evolución no podemos responder.

http://1.bp.blogspot.com/_xyYFMwz4t6g/S7-euKLPDFI/AAAAAAAACkY/ur2Aaiw1zHg/s1600/conciencia+03.jpg

Una visión científica del mundo que no trate de entender en profundidad el problema de la mente consciente no puede tener pretensiones serias de compleción. La consciencia es parte de nuestro Universo, de modo que cualquier teoría física que no le conceda un lugar apropiado se queda muy lejos de proporcionar una descripción auténtica del mundo que, nosotros (tan engreídos como siempre) queremos cambiar.

Claro que, todo conocimiento científico es un arma de dos filos. Lo que realmente hacemos con nuestro conocimiento científico es otra cuestión. Tratemos de ver hasta dónde pueden llevarnos nuestras visiones de la ciencia y la mente.

Pensemos que incluso en aquellos países afortunados donde hay una paz próspera y una libertad democrática, los recursos naturales y humanos son malgastados de formas aparentemente absurdas. ¿No es ésta una clara muestra de la estupidez general del hombre? Aunque creemos representar el pináculo de la inteligencia en el reino animal, esta inteligencia parece tristemente inadecuada para manejar muchos de los problemas a los que nuestra propia sociedad nos obliga a hacer frente.

https://lh3.googleusercontent.com/-3BqNOOb20GY/TYUWvqw79TI/AAAAAAAAC68/oCk83hNK6W8/s1600/recursos+naturales.jpg

  Esta simple escena, en algunos lugares, resulta una maravilla

Pese a todo, no pueden negarse los logros positivos de nuestra inteligencia. Entre dichos logros se encuentran nuestras impresionantes ciencia y tecnología. En realidad, algunos de estos logros son alto cuestionables a largo (o corto) plazo, así lo atestiguan múltiples problemas medioambientales y un genuino temor a una catástrofe mundial inducida por las nuevas tecnologías traídas de la mano por nuestra moderna sociedad (aquí mismo, en éste foro, nos hicimos eco del temor de muchos sobre las consecuencias que  podría traer el LHC) pero, y la IA ¿qué nos traerá?

Pero, no podemos mirar para otro lado sin ver que, nuestras tecnologías no sólo nos proporcionan una enorme expansión del dominio de nuestro yo físico sino que también amplia nuestras capacidades mentales mejorando en gran medida nuestras habilidades para realizar muchas tareas rutinarias. ¿Qué pasa con las tareas mentales que no son rutinarias, las tareas que requieren inteligencia genuina?

A veces me pregunto si podrían ser los Robots la respuesta. ¿No existe la posibilidad completamente diferente de una enorme expansión de una capacidad mental, a saber, esa inteligencia electrónica ajena que apenas está empezando a emerger de los extraordinarios avances en tecnología de ordenadores? De hecho, con frecuencia nos dirigimos ya a los ordenadores en busca de asistencia intelectual.

¿No os parece sorprendente que, de mecanismos como este podamos obtener información imposible por nuestros propios medios?

El mundo de la tecnología

No me gustaria dejar el mundo en estas manos

Hay muchas circunstancias en las que la inteligencia humana sin ayuda no resulta nada adecuada para prever las consecuencias probables de acciones alternativas. Tales consecuencias pueden quedar mucho más allá del alcance del poder computacional humano; así pues, cabe esperar que los ordenadores del futuro amplíen enormemente este papel, en donde la computación pura y dura proporcione una ayuda incalculable para la inteligencia humana.

Pero ¿no cabe la posibilidad de que los ordenadores lleguen finalmente a conseguir mucho más que todo esto? Muchos expertos afirman que los ordenadores nos ofrecen, al menos en principio, el potencial para una inteligencia artificial que al final superará a la nuestra. Una vez que los robots controlados por ordenador alcancen el nivel de “equivalencia humana”, entonces no pasará mucho tiempo, argumentan ellos, antes de que superen rápidamente nuestro propio y exiguo nivel. Sólo entonces, afirman estos expertos, tendremos una autoridad con inteligencia, sabiduría y entendimiento suficientes que sea capaz de resolver los problemas de este mundo que ha creado la humanidad pero que no sabe ni está capacitada para regular en la adecuada forma.

      Avanzamos en tecnología y no sabemos erradicar la inmigración del hambre

A todo esto señalan el rapidísimo crecimiento exponencial de la potencia de los ordenadores y basan sus estimaciones en comparación entre la velocidad y precisión de los transistores, y la relativa lentitud y poca sólida acción de las neuronas. De hecho, los circuitos electrónicos son ya más de un millón de veces más rápido que el disparo de las neuronas en el cerebro (siendo la velocidad de aproximadamente 109 segundos para los transistores y de 103 segundos para las neuronas, y tienen una exactitud cronométrica y una precisión de acción que de ningún modo comparten las neuronas.

El Chip Intel Pentium tiene más de tres millones de de transistores en una “rodaja de silicio” del tamaño aproximado de una uña del pulgar, capaz cada uno de ellos de realizar 113 millones de instrucciones por segundo (no se si cuando esto escribo ya estará superado ese record).


El microprocesador Pentium (que aquí se muestra con una ampliación de 2,5 veces) es fabricado por Intel Corporation. Contiene más de tres millones de transistores, y puede hacer que algunas partes de sus circuitos vayan más lentas o se detengan cuando no son necesarias, con lo que ahorra energía.
             Se argumenta que el número total de neuronas de un cerebro humano (unos cientos de miles de millones) supera absolutamente al número de transistores de un ordenador. Además, existen muchas más conexiones, en promedio, entre neuronas diferentes que las que existen entre los transistores de un ordenador. En particular las células de Purkinje en el cerebelo pueden tener hasta ochenta mil terminaciones sinápticas (uniones entre neuronas), mientras que para un ordenador, el número correspondiente es de tres o cuatro a lo sumo. Además, la mayoría de los transistores de los ordenadores actuales están relacionados solamente con la memoria y no directamente con la acción computacional, mientras que tal acción computacional podría estar mucho más extendida en el caso del cerebro.

Pueden apreciarse aquí, con el objetivo de 40x, las tres capas de células nerviosas que integran la corteza cerebelosa: capa molecular, capa de céula de Purkinje y capa granular.  Nótese la diferente densidad y tamaño de las neuronas de cada una, destacando los grandes somas de las células de Purkinje, apreciables a mayor aumento en otra microfotografía (zona encuadrada en rojo)

Si hiciéramos caso de las afirmaciones más extremas de los defensores más locuaces de la IA, y aceptáramos que los ordenadores y los robots guiados por ordenador superarán con el tiempo (quizá en relativo  poco tiempo) todas las capacidades humanas, entonces los ordenadores serían  capaces de hacer muchísimo más que ayudar simplemente a nuestras inteligencias. Podríamos entonces dirigirnos a estas inteligencias superiores en busca de consejo y autoridad en todas las cuestiones de interés; ¡y finalmente podrían resolverse los problemas del mundo generados por la humanidad!

Pero parece haber otra consecuencia lógica de estos desarrollos potenciales que muy bien podría producirnos una alarma genuina. ¿No harían estos ordenadores a la largo superfluos a los propios humanos? Si los robots guiados por ordenador resultaran ser superiores a nosotros en todos los aspectos, entonces ¿no descubrirían que pueden dirigir el mundo sin ninguna necesidad de nosotros? La propia humanidad se habría quedado obsoleta. Quizá si tenemos suerte, ellos podrían conservarnos como animales de compañía, incluso podrían exhibirnos en museos para recordar a sus creadores.

Imagen almacenada por ImageShack.us

Yo, como he dejado claro otras veces. Soy partidario de pensar que, una cosa es la Inteligencia Artificial y otra muy distinta es el pensamiento consciente, muy superior a aquella que trabaja sólo con los datos suministrados previamente, sin el poder de repentizar una solución que no esté en su programación. ¿Llegarán los robots algún día a pensar por sí mismos, como ahora lo hacemos nosotros?

La cuestión no es nada sencilla y plantea muchas variantes de entre las que, así, de momento, podríamos exponer aquí las siguientes:

  • Todo pensamiento es computación; en particular, las sensaciones de conocimiento consciente son provocadas simplemente por la ejecución de computaciones apropiadas.
  • El conocimiento es un aspecto de la acción física del cerebro; y si bien cualquier acción física puede ser simulada computacionalmente, la simulación computacional no puede por sí misma provocar conocimiento.
  • La acción física apropiada del cerebro provoca conocimiento, pero esta acción física nunca puede ser simulada adecuadamente de forma computacional.
  • El conocimiento no puede explicarse en términos físicos, computacionales o cualesquiera otros términos científicos.

 

 

http://djxhemary.files.wordpress.com/2010/10/atomic.jpg

                                             Materia, energía, luz… para llegar a ser conscientes

Está claro que adentrarnos aquí a ciertas profundidades del pensamiento, no parece adecuado ni al momento ni al lugar, sin embargo, debemos pensar en que, la propia materia parece tener una existencia meramente transitoria puesto que puede transformarse de una forma en otra. Incluso la masa de un cuerpo material , que proporciona una medida física precisa de la cantidad de materia que contiene el cuerpo, puede transformarse en circunstancias apropiadas en pura energía (según E=mc2) de modo que incluso la sustancia material parece ser capaz de transformarse en algo con una actualidad meramente matemática y teórica.

De todas las maneras, por mi parte, me quedo con el punto tercero de los enumerados anteriormente, es un punto de vista más operacional que el anterior, puesto que afirma que existen manifestaciones externas conscientes (por ejemplo, cerebros) que difieren de las manifestaciones externas de un ordenador: los efectos externos de la consciencia no pueden ser correctamente simulados por un ordenador (creo).

¿Permite la Física actual la posibilidad de una acción que, en principio, sea imposible de simular en un ordenador? La respuesta no está completamente clara, sin embargo, según creo, es que tal acción no computacional tendría que encontrarse en un área de la física que está fuera de las leyes físicas actualmente conocidas.

Claro que, en este simple comentario, no queda claro quien será el vencedor final:  Fisicalismo frente a Mentalismo. Seremos tan estúpidos como para poder crear máquinas que nos superen en inteligencia hasta el punto de que puedan dominarnos.

Ahí queda la pregunta del título del trabajo flotando en el aire. ¿Quién la quiere contestar?

emilio silvera

PD.

Dar las gracias a Penrose por sus ideas.