Sep
21
El mundo que nos rodea
por Emilio Silvera ~
Clasificado en Física ~
Comments (4)
No siempre sabemos ver el mundo que nos rodea. El que miremos no significa que estemos viendo lo que realmente hay delante de nuestros ojos y, muchas veces, no son los ojos los únicos que pueden “ver” lo que hay más allá de lo que la vista puede alcanzar. Anoche, hasta una hora avanzada, estuve releyendo el Libro “Así de Simple” de John Gribbin, y, pareciéndome interesante os saqué un pequeño resumen del comienzo. Aquí os lo dejo.
El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.
Sobre la posición de la salida del sol
Desde la época de Galileo (más o menos, a comienzos del siglo XVII) la ciencia ha hecho progresos –enormes-, ignorando en gran medida estas complejidades y centrándose en cuestiones sencillas, intentando explicar por qué las manzanas caen al suelo y por qué el Sol se levanta por el este. Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.
Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética.
No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que existe en el universo. La razón es que, a escalas más reducidas, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos.
Pero este proceso no puede continuar indefinidamente, ya que, si se unen cada vez más átomos, su masa total aumenta hasta tal punto que la Gravedad aplasta toda la estructura importante y la aniquila. Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que un ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla. Esta es la razón por la cual la ciencia puede decirnos más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas o los planetas que sobre el modo en que las personas nos comportamos.
Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos interiores y exteriores, de las ráfagas de partículas que en sus épocas activas, nos envía continuamente hacía la superficie del planeta y, que no sólo provoca esas bonitas Auroras, sino que, su intensa radiación y magnetismo incide en todos los atilugios que tenemos para leer los datos de… ¡tántas cosas!
Cuando los problemas sencillos se rindieron ante el empuje de la investigación, fue algo natural que los científicos abordaran rompecabezas más complicados que iban asociados con sistemas complejos, para que por fin fuera posible comenzar a comprender el funcionamiento del mundo a una escala más humana compleja y, para ello, hubo que esperar hasta la década de 1960, que fue cuando aparecieron los poderosos y rápidos (para lo que se estilaba en aquella época) ordenadores electrónicos. Estos nuevos inventos empezaron a ser conocidos por un público más amplio entre mediados y finales de la década de 1980, primero con la publicación del libro, ahora convertido en un clásico, Order out of Chaos, de Ilya Prigogine e Isabelle Stergers, y luego, con Chaos, de James Gleick.
Las personas sencillas que, aunque tengan una educación aceptable, no están inmersas en el ámbito de la ciencia, cuando oyen hablar de Complejidad y Caos en esas áreas, sienten, de primeras, una especie de rechazo por aquello que (ellos creen) no van a comprender. Sin embargo, la cuestión no es tan difícil como a primera vista pudiera parecer, todo consiste en tener la posibilidad de que alguien, de manera “sencilla” (dentro de lo posible), nos explique las cosas dejando a un lado las matemáticas que, aunque describen de manera más amplia y pura aquellos conceptos que tratamos, también es verdad que, no siempre, están al alcance de todos. Un conocimiento básico de las cosas más complicadas, es posible. También la relatividad general y la mecánica cuántica, se consideraron, cuando eran nuevas, como unas ideas demasiado difíciles para que cualquiera las entendiera, salvo los expertos –pero ambas se basan en conceptos sencillos que son inteligibles para cualquier persona lega en la materia, siempre que esté dispuesta a aceptar su parte matemática con los ojos cerrados-. E la misma manera, el Caos y la Complejidad, también pueden ser entendidos y, si tenemos la suerte de tener un buen interlocutor que nos sepa explicar, aquellos conceptos básicos sobre los que se asientan tanto el Caos como la Complejidad, veremos maravillados como, de manera natural, la luz se hace en nosotros y podemos entender lo que antes nos parecía inalcanzable.
Se cree que las galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lenta como para permitir crecer de forma significativa un disco de gas.
Nubes moleculares en Orión que son los materiales primigenios para complejidades futuras
Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.
NGC 5426 y NGC 5427 son dos galaxias espirales de tamaños similares involucradas en una danza espectacular. No es seguro que esta interacción culmine en una colisión y a la larga en la fusión de las dos galaxias, aunque éstas ya han sido ya afectadas. Conocidas ambas con el nombre de Arp 271, su danza perdurará por decenas de millones de años, creando nuevas estrellas como resultado de la mutua atracción gravitacional entre las galaxias, un tirón observable en el borde de las estrellas que ya conectan a ambas. Ubicada a 90 millones de años-luz de distancia hacia la constelación de Virgo (la Virgen), el par Arp 271 tiene unos 130.000 años-luz de extensión. Fue descubierta originalmente en 1785 por William Herschel. Muy posiblemente nuestra Vía Láctea sufrirá una colisión similar en unos cinco mil millones de años más con la galaxia vecina Andrómeda, que ahora está ubicada a cerca de 2,6 millones de años-luz de la Vía Láctea.
Sí, mirando las imagenes nos da la sensación de cierto Caos y Complejidad
Tenemos que entender que, algunos sistemas (“sistema” no es más que una palabra de la jerga científica para asignar cualquier cosa, como un péndulo que oscila, o el sistema solar, o el agua que gotea de un grifo) son muy sensibles a sus condiciones de partida, de tal modo que una diferencia mínima en el “impulso” inicial que les damos ocasiona una gran diferencia en cómo van a acabar, y existe una retroalimentación, de manera que lo que un sistema hace afecta a su propio comportamiento. Así, a primera vista, parece que la guía es sencilla y, nos puede parecer mentira que así sea. Sin embargo, esa es la premisa que debemos tener en cuenta. Nos podríamos preguntar: ¿Es realmente verdad, que todo este asunto del Caos y de la Complejidad se basaba en dos ideas sencillas –la sensibilidad de un sistema a sus condiciones de partida, y la retroalimentación-¿ La respuesta es que sí.
La mayor parte de los objetos que pueden verse en el cielo nocturno son estrellas, unos pocos centenares son visibles a simple vista. Una estrella es una bola caliente principalmente compuesta por hidrógeno gaseoso. El Sol es un ejemplo de una estrella típica y común. La gravedad impide que el gas se evapore en el espacio y la presión, debida a la alta temperatura de la estrella, y la densidad impiden que la bola encoja. En el corazón de la estrella, la temperatura y la densidad son lo suficientemente altas para sustentar a las reacciones de fusión nuclear, y la energía, producida por estas reacciones, hace su camino a la superficie y la irradia al espacio en forma de calor y luz. Cuando se agota el combustible de las reacciones de fusión, la estructura de la estrella cambia. El proceso de producir elementos, cada vez más pesados, a partir de los más livianos y de ajustar la estructura interna para balancear gravedad y presión, es llamado evolución estelar.
Observar una estrella a través del telescopio permite conocer muchas de sus importantes propiedades. El color de una estrella es un indicador de su temperatura y ésta, a su vez, depende de una combinación entre la masa de la estrella y su fase evolutiva. Usualmente, las observaciones también permiten encontrar la luminosidad de la estrella o la tasa con la cual ella irradia energía, en forma de calor y luz.
Todas las estrellas visibles a simple vista forman parte de nuestra galaxia, la Vía Láctea. La Vía Láctea es un sistema compuesto por unos cien mil millones de estrellas, junto con una considerable cantidad de material interestelar. La galaxia tiene forma de un disco chato sumergido en un halo débil y esférico. La gravedad impide que las estrellas se escapen y, sus movimientos, hacen que el sistema no colapse. La Vía Láctea no posee un límite definido, la distribución de las estrellas decrece gradualmente con distancias crecientes del centro. El SDSS detecta estrellas más de un millón de veces más débiles que las que podemos ver a simple vista, lo suficientemente lejos para ver la estructura de la Vía Láctea.
De algún modo, esto es como decir que “todo lo que hay” sobre la teoría especial de la relatividad es que la velocidad de la luz es la misma para todos los observadores. Sin embargo, la complejidad de la estructura que se levanta sobre este hecho sencillo resulta asombrosa y requiere algunos conocimientos matemáticos para poder apreciarla plenamente. Claro que, eso no quita para que, un buen comunicador le pueda transmitir a otras personas mediante explicaciones sencillas lo esencial de la relatividad especial y general y también, sobre la esencia de la mecánica cuántica, y, de la misma manera, podríamos hablar del Caos y de la Complejidad. Debemos ser conscientes de que, el Caos, puede surgir a partir del Orden y que, la Complejidad, siempre llega a través de la sencillez de un comienzo. Podemos estar al borde del Caos y, de manera milagrosa ver que, también a partir de él surge la normalidad y lo nuevo que, no en pocas ocasiones pueden ser nuevas formas de vida. De la misma manera, las transformaciones de los elementos sencillos, bajo ciertas condiciones, llegan a adquirir una complejidad inusitada que, de alguna manera, es necesaria para que, en este mundo que nos rodea, existan seres que, como nosotros, sean el ejemplo más real y de más alto nivel que está presente en el Universo. Y, de la misma manera que nosotros estamos aquí, en un minúsculo sistema solar habitando un pequeño planeta que reúne todas las condiciones necesarias para la vida, de la misma forma digo, estarán poblados otros muchos planetas de otros muchos sistemas solares repartidos por nuestra Galaxia y por las otras que, a cientos de miles pululan por el Universo, y, todos esos seres “racionales”, se preguntaran las mismas cosas que nosotros y estarán interesados en descubrir los mismos misterios, los mismos secretos de la Naturaleza que, presintiendo que existen, tienen la intuición de que serán las respuestas esperadas para solucionar muchos de los problemas e inseguridades que ahora, en nuestro tiempo, nos aquejan.
Claro que, la mente nunca descansa. Acordaos de Aristarco de Samos que, en el siglo III a. C., ya anunció que la Tierra orbitaba alrededor del Sol y, Copérnico, que se llevó el premio, no lo dijo hasta el año 1543. Esto nos viene a demostrar que, a pesar de la complejidad del mundo, lo realmente complejo está en nosotros, en nuestras mentes que, presienten lo que pueda ser, intuyen el por qué de las cosas, fabrican pensamientos que, mucho más rápidos que la luz, llegan a las galaxias lejanas y, con los ojos de la mente pueden, atisbar aquellas cosas de las que, en silencio, ha oído hablar a su intuición dentro de su mente siempre atenta a todo aquello que puede ser una novedad, una explicación, un descubrimiento.
Vista de la Tierra y el Sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov)
Ahora estamos centrados en el futuro aquí en la Tierra pero, sin dejar de la mano ese futuro que nos espera en el espacio exterior. Es pronto aún para que el hombre vaya a las estrellas pero, algún día, ese será su destino y, desde ya, debe ir preparándose para esa aventura que sólo está a la espera de tener los medios tecnológicos necesarios para hacerla posible. Mientras tanto, jugamos con las sondas espaciales que enviamos a planetas vecinos para que, nos vayan informando de lo que están hechos aquellos mundos –grandes y pequeños- que, en relativamente poco tiempo, serán visitados por nuestra especie para preparar el salto mayor.
emilio silvera
Sep
21
¿Que se habrá conseguido en el 3.013?
por Emilio Silvera ~
Clasificado en Ciencia futura ~
Comments (22)
¿Viajar en el tiempo?
Me hace “gracia” ver como mucha gente, incluso científicos, se atreven a dar su opinión sobre cuestiones que no conocen. Y, desde luego, la pregunta del título que arriba pongo, es retórica, ya que, de ninguna manera podríamos contestarla. Nadie sabe lo que habrá pasado dentro de 1.000 años, y, por eso, al no poder explicarlo, me quedo con otros comentarios más sencillos que nos hablan de viajar en el tiempo y otras cuestiones que, ahora, más o menos, sí podemos vislumbrar.
La mayoría de los científicos que no han estudiado seriamente las ecuaciones de Einstein, desprecian el viaje en el tiempo como una “tonteria”, algo que sólo es aplicable a relatos sensacionalistas e historias fantásticas. Sin embargo, la situación que realmente nos encontramos es bastante compleja. Hasta tal punto es así que, resultaría arriesgado negar, de manera rotunda, la posibilidad de hacer o conseguir plasmar en realidad alguna idea derivada de profundos pensamientos como los que Einstein nos dejó y que subyacen en sus ecuaciones.
Para resolver la cuestión debemos abandonar la teoría más sencilla de la relatividad especial, que prohíbe el viaje en el tiempo, y adoptar toda la potencia de la teoría de la relatividad general, que puede permitirlo. La relatividad general tiene una validez mucho más amplia que la relatividad especial. Mientras que la relatividad especial sólo describe objetos que se mueven a velocidad constante muy lejos de cualquier estrella, la teoría de la relatividad general es mucho más potente, capaz de describir cohetes que se aceleran cerca de estrellas supermasivas y agujeros negros. La teoría general sustituye así algunas de las conclusiones más simples de la teoría especial.Para cualquier físico que haya analizado seriamente las matemáticas del viaje en el tiempo dentro de la teoría de la relatividad general de Einstein, la conclusión final, de forma bastante sorprendente, no está ni mucho menos clara.
Sep
21
El núcleo antes que el átomo
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
El núcleo atómico
El propio Rutherford empezó a vislumbrar la respuesta. Entre 1906 y 1908 (hace ahora un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado. Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido. Rutherford supuso que aquella “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad desviaban los proyectiles que acertaban a chocar contra él. Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.
Era lógico suponer, pues, que los protones constituían ese núcleo duro. Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo).
En 1908 se concedió a Rutherford el premio Nobel de Química por su extraordinaria labor de investigación sobre la naturaleza de la materia. Él fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.
Desde entonces se pueden describir con términos más concretos los átomos específicos y sus diversos comportamientos. Por ejemplo, el átomo de hidrógeno posee un solo electrón. Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón (es decir, una partícula subatómica), lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.
El helio, que posee dos electrones, no cede uno con tanta facilidad. Sus dos electrones forman un caparazón hermético, por lo cual el átomo es inerte. No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es decir, una partícula subatómica portadora de dos unidades de carga positiva.
Sep
21
El Universo: Cometa lleno de Galaxias
por Emilio Silvera ~
Clasificado en El Universo ~
Comments (68)
Del artículo Electrón, Protón, Origen Descubierto de nuestro amigo JOSÉ GERMÁN VIDAL PALENCIA. Se trata de un compendio bien hecho que nos habla e muchas cuestiones que nosotros, siempre quisimos saber. Se remonta a los comienzos del Tiempo y están presentes la Materia simple y compleja, las partículas creadoras de todas las cosas que vemos a nuestro alrededor y, también nos habla de las energías y fuerzas que hacen de nuestro Universo el que nosotros conocemos, haciendo posible que nosotros estemos aquí para contarlo. Según nos dice José Gemán… entre otras muchas cosas…
Según este estudio, sería, en el momento exacto en que se formaron las partículas elementales configurando el estado atómico más simple, el hidrógeno, cuando se produjo el Big Bang. Se descubre además, que nuestro Universo material se mueve a través del espacio como ¡Un cometa lleno de galaxias!
Descubrir el origen del electrón como partícula elemental, ha tenido también implícito conocer el origen de las otras dos partículas elementales: el protón y el neutrón. Como se sabe por el estudio de las ciencias físicas, las tres partículas elementales electrón, protón y neutrón forman una familia de vida estable en unión atómica, entregadas así por la naturaleza misma. También es de considerar el moderno establecimiento de la Física de Partículas, la cual se ha encargado de estudiarlas. Es precisamente esta ciencia la que a partir de aceleradores de partículas ha logrado derivar de aquellas toda una nueva familia de partículas, identificadas cada una por tener diferentes niveles específicos de energía. Pero, es la explicación necesaria que se da sobre el posible origen de las partículas elementales electrón y protón, la que llevó a descubrir cómo serían los procesos por medio de los cuales la energía del Universo iría cambiando a través de los tiempos, hasta que se transformó en átomos.
Según este estudio, sería, en el momento exacto en que se formaron las partículas elementales configurando el estado atómico más simple, el hidrógeno, cuando se produjo el Big Bang, él cual se llegó a producir porque el Universo evolucionaría hasta llegar un momento en que la energía electromagnética en formación estaría alcanzando su alta velocidad c cuando viaja a través del espacio, ocurriendo paralelo a ello, la formación masiva de átomos de hidrógeno, en un momento exacto, crítico y específico. Un universo de gas hidrógeno establecido de improviso en un lugar reducido, moviéndose a velocidades cercanas a la de la luz con espacios inmensos a sus alrededores, no podía menos que explotar masivamente debido a las altas presiones y temperaturas generadas por la acumulación de gases. A partir de ahí, se estaría iniciando la formación de la materia en sus diferentes modalidades atómicas. Faltaría decir, que la evolución del Universo desde entonces lo haría moviéndose globalmente como lo hace un cometa común, arrastrando consigo todo su contenido galáctico, lo que hasta la fecha debe estar ocurriendo.
José Germán nos dice que: “En el presente trabajo esta idea tiene la capacidad de poder abrirse como un abanico de respuestas para la mayoría de las dudas existentes en torno al proceso de desarrollo de los fenómenos físicos que ocurren en el Universo y su pasado remoto.
Así mismo, esta investigación sobre el posible origen de las partículas elementales, desemboca en el descubrimiento de que, además del movimiento expansivo de las galaxias provocado por el Big Bang y el impulso adicional que propicia la energía oscura, el Universo de galaxias también tiene un movimiento conjunto en forma de un cometa que viaja a través del espacio alrededor de un poderoso centro de gravedad, tal como si tuviera un movimiento orbital excéntrico alrededor de un hoyo negro de energía super masiva.”
Vesto M. Slipher
Uno de los mayores enigmas en la actualidad, se refiere al origen y la evolución integral del Universo en que vivimos. A la fecha de redactar esta información, continúan los enigmas relacionados con este tema sin ser descubiertos, uno de ellos consiste en saber que podía haber ocurrido antes del Big Bang.
En este texto, tratamos de descifrar este gran interrogante que la humanidad tiene desde que en 1912 se descubrió que el Universo de Galaxias se encuentra en expansión con los trabajos del astrónomo norteamericano Vesto M. Slipher, y que, según Edwin Hubble, en 1947 diría que se debió a una gran explosión, calificada en 1948 por George Gamow como el “Big Bang”, ocurrido hace 13.700 millones de años según cálculos recientes aportados por la NASA.
Físicos, Astrofísicos, Cosmólogos y Astrónomos, van y vienen, y la mayoría coincide en el juicio: Antes del Big Bang no existía energía ni materia como la hoy conocida, es más, no existía nada de nada, ni siquiera existía el tiempo, a lo más en el primer microsegundo de iniciada la Gran Explosión del Universo como también se le conoce en el idioma español a este fenómeno del pasado, sólo existiría una singularidad más pequeña que un protón. Esta singularidad, en realidad sólo es una referencia hipotética necesaria para explicaciones teóricas. A partir de ese instante, según ellos, también se estaría creando el tiempo y la materia.
¿Qué les parece? Con todo mi respeto hacia estos científicos dado que han creado toda una gran maquinaria de conocimientos explicando con toda minuciosidad desde lo que concierne a las cuatro fuerzas fundamentales del Universo, hasta lo que pudiera haber ocurrido a la fecha en las áreas del espacio universal ya conocido, discrepo de la idea de que no es posible hablar sobre lo que pudiera haber acontecido antes del Big Bang.
Como nos dice José Germán, si surgió, es porque había.
“Un pensamiento lógico como el mío (lejos de la perfección), me dice que cuatro fuerzas no pudieron manifestarse simultáneamente, sino que ordenadamente tuvieron que darse las transiciones correspondientes a partir de un primer instante (fracciones del segundo inicial).”
Sinceramente creo que la mente humana aún no ha podido dar el estirón en materia de una mayor capacidad de raciocinio, como para poder entender que podría haber estado ocurriendo antes del Big Bang. Al parecer, diversas teorías establecidas sobre el origen del Universo físico, han puesto un candado mental que ha impedido pensar alguna cosa sobre su pasado remoto, reforzándolo con la concepción de que ni siquiera la palabra antes, tendría algún uso, antes de esa gran explosión, pues no habría eventos donde aplicarla o a que referirse. Sin dejar de lado opiniones de investigadores que no están cerrados a la posibilidad de encontrar soluciones futuras a este problema. Me he atrevido a pensar, que a falta de ese mayor raciocinio humano que sería necesario para poder entender y luego explicar todo lo que se refiera a lo ocurrido en los instantes previos al Big Bang, (acepto la duda de que mi persona haya alcanzado ese mayor raciocinio) se ha establecido una suposición que podría equipararse a la labor realizada por un mago en una fiesta infantil, el cual de su sombrero vacío habría sido capaz de sacar un conejo, de esto daría cuenta la concurrencia, misma que daría aplausos de admiración y asombro al no saber cómo pudo haberlo sacado de su sombrero, si un poco antes no había nada en él.
Hasta donde la lógica me alcanza, a mí me parece que de nada no puede salir nada, por el contrario, mi mente insiste en que sólo de algo puede salir algo.
Si en el lapso de los primeros segundos se iba a establecer la materia a partir de hidrógeno primigenio, tal como así debió haber ocurrido según investigaciones científicas, es lógico pensar que también a partir del primer microsegundo de esos segundos, la estructura global del universo se estaría comportando como un fabricante de hidrógeno, desde el primigenio hasta todo aquel que se habría formado durante el Big Bang, y aún también el que hoy se forma con pasmosa estabilidad y tamaño.
También es correcto pensar, que antes de ese microsegundo inicial todavía el universo requería entrar a la parte final del proceso que le llevaría a ser el fabricante de hidrógeno por excelencia..
Estaría por acontecer el Big Bang en el siguiente microsegundo, que es cuando la fábrica estaría lista para producir hidrógeno, una vez que estaría llegando la materia prima con la cual sería fabricado. (Si no hay materia prima, ninguna fábrica puede producir nada).
Consideraremos aquí el siguiente concepto como un axioma, a partir del cual todas las dudas sobre lo que acontecería antes del Big Bang, serían explicadas, y aún también, lo que acontecería durante y después de ocurrido este.
Estamos hablando del establecimiento de una estructura global del universo como si este fuese un generador de hidrógeno.
Aquí cabe la pregunta: ¿De dónde vendría y de que características debería ser la materia prima que sería necesaria para alimentar a este generador para convertirla en átomos de hidrógeno, en el instante mismo de su creación durante el arranque del Big Bang?
Aquí consideraremos el supuesto de que la materia prima que se convertiría en hidrógeno, sería un “gran paquete” de energía magnética acelerada (GP), en supuesto proceso de alcanzar la velocidad de la luz, el cual se encontraría viajando a través del espacio para llegar a la cita en el punto exacto donde a continuación explotaría en la forma del Big Bang ya conocido, convirtiéndose parte importante de él en átomos de hidrógeno durante ese proceso. La velocidad de la luz considerada en este párrafo es desconocida, sólo se asume su concepto como tal.
El paquete de materia prima viajante, supuestamente estaría llegando desde algún lugar del espacio con trayectoria directa al lugar exacto donde se produciría la gran explosión, esto es, con una trayectoria rectilínea. El lugar mencionado a donde estaría por llegar, podría ser considerado como el equivalente a un centro de gravedad que estaría interactuando con este paquete de energía (GP), atrayéndolo hacia sí. Serían netamente magnéticas las características energéticas de esa materia prima, como se explica más adelante.
Como todo lo que puede ser atraído por un centro espacial de atracción, el paquete viajante vendría acercándose a él con una velocidad cada vez mayor, por lo tanto, deberá considerarse que desde atrás en el tiempo su velocidad sería incrementada con aceleración constante. (Existía tiempo puesto que existía energía presente, además, mientras exista un tiempo presente en conexión con un pasado por más remoto que pudiera ser, este deberá ser considerado con valores referenciales como parámetros para entender eventos que dieron origen al espacio-tiempo en el cual vivimos, tarea futura que alguien deberá intentar desarrollar).
El trabajo que nos presenta nuestro compañero y contertulio Mexicano, nuestro amigo José German, es largo y nos muestra la pasión que siente y la enamorado que está de la Ciencia, de la Naturaleza y del Universo que todo lo contiene, deja volar su imaginación y nos habla de cuestiones como:
– Sobre el antes del Big Bang, del axioma al nuevo paradigma
– El origen del universo a partir de campos magnéticos
– Comprendiendo como se producen los átomos de hidrógeno
– El universo como generador de átomos de hidrógeno
– Cronología del antes al después del Big Bang
– Consecuencias energéticas del Big Bang
– La gravedad, su origen y naturaleza
– Sobre la energía oscura
– Comentarios sobre el Modelo MATEX
– Advertencia sobre la actividad solar
– Curso sobre unificación de ideas del micro y macro universo a partir de foros electrónicos
– El Universo se encuentra desarrollando un movimiento cometario
– La mente, principal herramienta de la investigación científica
– Inteligencia extrema, herramienta de usar y guardar
Todas estas cuestiones son desgranadas por José Germán que trata, de la manera más sencilla y limpia de exponer ante nosotros cuestiones del Universo, de la Naturaleza y también de nosotros en las que todos hemos pensado alguna vez y que, ahora él aquí, nos las brinda en una bandeja de plata para que las disfrutemos y, si podemos…que las comprendamos mejor.
Desde aquí, desde este humilme lugar, le damos las gracias por su contribución que hará posible ¿qué duda nos puede caber? que todos, sin excepción, hayamos podido aprender algunas cosas más que antes ignorábamos. Gracias amigo.
José Germán nació el 16 de abril de 1942 y es originario de Mexicali, Baja California, México.
PD.
Recomiendo la lectura de la totalidad de su Libro del que arriba sólo tenéis una reducida muestra.