lunes, 20 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La misteriosa luna Titán!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¿qué sorpresa nos dará?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Titán, la luna de Saturno, esconde muchos secretos que debemos desvelar y, entre otros, aparte de los últimos resultados obtenidos que dicen que también, posee un océano interior, los más recientes estudios nos hablan de algo más sensacional.

La luna Titán, una perla en los anillos de Saturno

¿Quién está respirando el Oxígeno de Titán? Con esta pregunta se publicaba un reportaje en la presnsa

Podrían ser las primeras pruebas fiables de una forma de vida extraterrestre. Una muy diferente de la nuestra, basada en el metano y que estaría en pleno desarrollo sobre la superficie de Titán, la enigmática luna de Saturno. O por lo menos eso es lo que sugieren dos nuevos estudios realizados a partir de los últimos datos obtenidos sobre el terreno por la sonda Cassini, de la NASA.
Los resultados de dos nuevos análisis de la compleja actividad química que tiene lugar sobre la superficie de Titán han dejado a los científicos con la boca abierta. Y, aunque serían posibles otras explicaciones, son muchos los que creen firmemente que esos resultados constituyen una prueba fehaciente de que en esa luna de Saturno existe, en estos momentos, alguna forma de vida basada en el metano. Los nuevos análisis, en efecto, demuestran que se están cumpliendo dos condiciones esenciales para que este tipo de vida pueda existir.
Mientras tanto, Titán, la mayor luna de Saturno, parece que se bloquea en los anillos del planeta, como una perla en un collar. El efecto es el resultado de la posición de visualización de la línea de vista, Titán orbita Saturno a una distancia media de 1, 221, 870 km.

Esta luna es un enigma en sí mismo ya que es la única luna del Sistema Solar que tiene una atmósfera densa. Los lagos de hidrocarburos líquidos en su superficie y un ciclo del metano activo se asemejan al ciclo del agua de la Tierra.

Cassini, la sonda, ha estado en órbita alrededor de Saturno desde 2004 y se encuentra ahora en su segunda fase de extensión de la misión, la misión Cassini Solsticio de Misión, que se prolongará hasta 2017.

El primero de los dos estudios, publicado en la revista «Icarus», muestra que el hidrógeno que fluye en abundancia en la atmósfera del planeta desaparece casi por completo cuando llega a la superficie, lo que apunta a la inquietante posibilidad de que esté siendo “respirado” por criaturas vivientes.
El segundo, publicado en el «Journal of Geophysical Research», es un detallado “mapa” de los hidrocarburos presentes en la superficie de Titán. Un mapa en el que, de una manera inexplicable, falta el acetileno, un gas que casualmente está considerado como la mejor fuente de alimento y energía para una hipotética forma de vida basada en el metano.
“Sugerimos que algo está consumiendo el hidrógeno porque es el gas más obvio para ser consumido por una forma de vida en Titán, de la misma forma en que se consume oxígeno en la Tierra”, asegura Chris McKay, astrobiólogo de la NASA en el centro espacial Ames. “Si estos indicios confirman la presencia de vida, será doblemente excitante, ya que sería una forma nuevas de vida, independiente de la basada en el agua que existe en la Terra”.
Hallan raras formas de vida compleja de hace más de 2.000 millones de años
Esta es la reconstrucción de extrañas formas de vida halladas en Gabón y que datan de hace 2.000 millones de años de antigüedad. La vida compleja pudo haber empezado en la Tierra mucho antes de lo que se creía. El descubrimiento en Gabón de más de 250 fósiles en excelente estado de conservación ha aportado la prueba, por primera vez, de la existencia de unos organismos multicelulares de 2.100 años de antigüedad. Nunca antes se había visto una forma de vida tan desarrollada perteneciente a una época tan temprana. Hasta ahora, las primeras formas complejas, aquellas compuestas por varias células, conocidas tenían alrededor de 600 millones de años. El hallazgo aparece publicado de forma destacada en la revista Nature.
¿Quién sabe, de ser cierto, que clases de vida podrían estar allí presentes?
Hasta el momento, la existencia de vida basada en el metano es algo puramente hipotético. En efecto, los científicos no han encontrado aún nada parecido, y ello a pesar de que aquí, en nuestro planeta, existe un curioso tipo de microbios acuáticos que viven en metano o que lo generan como desecho.
En Titán, donde las temperaturas superan los 180 grados bajo cero, un organismo basado en el metano debería de usar alguna sustancia en estado líquido para llevar a cabo sus procesos vitales. Aunque esa sustancia, allí, no sería el agua, ya que la que existe está en forma de hielo y no podría albergar vida alguna. Lo que reduce la lista de líquidos candidatos a uno sólo, el metano.
La Naturaleza nos ha mostrado ya tántos fenómenos maravillosos que, uno más, no sería nada sorprendente y, la vida en Titán, desde luego lo sería, no ya por ser la vida situada fuera de la Tierra, si no por el hecho sorprendente de que estuviera basada en otro elemento distinto del Carbono.
Los nuevos hallazgos sobre la escasez de hidrógeno superficial son, pues, consistentes con los efectos medibles que produciría en Titán una forma de vida basada en el metano. Es cierto que esas reservas que nuestros instrumentos no logran detectar podrían estar ocultas en cavernas u otras formaciones geológicas, pero tal extremo parece demasiado rebuscado y poco probable. La explicación más lógica y que mejor concuerda con los resultados es que el hidrógeno que falta está siendo respirado por alguna forma de vida.
               Como siempre decimos: ¡Es tanto lo que no sabemos!
Y lo mismo sucede con el acetileno. Dadas las condiciones extremas de Titán, los rayos del Sol deberían reaccionar con los elementos químicos de la superficie y producir una cantidad considerable de este gas altamente energético e inflamable. Pero el acetileno no aparece por ninguna parte, lo que refuerza la hipótesis de que esté siendo “consumido” como alimento por organismos vivos.
Para colmo, el espectrómetro de la Cassini también ha detectado una clase de moléculas orgánicas que los científicos aún no han sido capaces de identificar. Lo que ha llevado a los investigadores a concluir que existe allí una (o varias) formas de vida que son directamente responsables de las misteriosas ausencias de elementos químicos sobre la superficie.
No creo que tardemos mucho en salir de las dudas que ahora tenemos sobre algunas de las lunas de nuestro entorno, sobre todo las de Saturno y Jupíter que, como Europa, Encelado, Ganímedes e incluso Io, pueden tener secretos escondidos que nos podrán sorprender y nos llevarán del asombro hasta la maravilla al poder constatar, por fín, que la vida, puede pulular por todo el Universo incluso en condiciones, que ni podemos imaginar.
Sería una torpeza muy grande pensar que estamos solos en tan vasto universo y, desde luego, es más lógico pensar que son las distancias tan enormes entre los mundos, el atraso tecnológico que nos tiene confinados en el nuestro, nuestra ignorancia para superar ciertas barreras, el tiempo necesario que necesitan las estrellas para crear los elementos de la vida… Todo eso y mucho más, es lo que nos ha impedido hasta el momento saber de otras formas de vida fuera del planeta Tierra. Sin embargo, el tiempo es inexorable y, aunque el horizonte sea vea lejano, al fín llegaremos y veremos lo que hay detrás de esa lejana línea que hasta el momento no hemos podido alcanzar.
Sigamos imaginando al mismo tiempo que, sin descanso, buscamos la manera de desvelar ese antiguo misterio de la vida en otros mundos.
emilio silvera

El Tiempo: creador de Historias.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En unas simples tablillas pero, las tres fases del Tiempo, quedan bien representadas: el pasado que señala hacia atrás, el futuro que señala hacia adelante y, el presente que está enmarcado entre esos dos puntos y hacia ambos debe señalar. Cuando se piensa detenidamente en esto del Tiempo, unas veces hacemos una composición de esa realidad tenporal que, al momento la queremos cambiar por otra..

Sí, vivímos en un continúo presente que se compone del pasado que vamos dejando atrás y del futuro en el que vamos entrando, ambos, pasado y futuro, están conectados con este presente nuestro y, mientras que al primero lo podemos recordar, al segundo sólo lo podemos instuir, ya que, cuando entra en nuestro presente, deja de ser futuro.

Creo que nunca (a pesar del ingenio y la imaginación derrochada por los escritores de ciencia ficción) podremos viajar al pasado que se fue y ya no existe, ni al futuro que aún no está, que tampoco existe y, viajar a un lugar inexistente…se hace raro.

File:La Verdad, el Tiempo y la Historia.jpg

                                 La verdad, el Tiempo y la Historia

“Todo parece confluir en la representación de la Historia y de la Verdad histórica. El Tiempo, alado y con un reloj de arena que simboliza el paso de los instantes y la llegada de la muerte, trae del brazo a la Verdad, que se representaba desnuda para simbolizar la ausencia de disfraz o enmascaramiento. La Verdad reina sobre todo, es la figura central, y porta un cetro y un libro, que encierra la verdad histórica.”

Siempre hemos querido representar de mil maneras simbólicas lo que tendría que ser y, en realidad, siempre hacemos lo contrario de ello. Sabemos como son las cosas y, tratamos de ocultarlas a los demás, incluso, por conveniencias políticas, hemos tratado de cambiar la Historia. Con el Tiempo siempre nos gustó jugar y, la mayoría de las veces, los que han podido, lo manejaron a su antojo y en su beneficio.

Creo que las verdades sólo la dicen los Físicos y los poetas, esas personas privilegiadas que viven fuera del mundo sin salir de él:

¿Primeras evidencias de que una “materia espejo” podría llenar el Universo?

 

 

En este mundo todo es Amor

Ya véis, por una razón los unos y por otras razones los otros, ambos están fuera de este mundo y se encierran en sus “mundos privados” para transmitirles al mundo “real” lo que ven, lo que sienten. Por una parte se nos habla de la Naturaleza, de cómo creen ellos que funciona el Universo y tratan de decirnos por qué lo hace de esta o aquella manera y, se esfuerzan por comprender, dedicando horas, días y años a desvelar los secretos que están con nosotros y no sabemos desvelar, ellos, los físicos, hacen ese inmenso trabajo para que el mundo siga adelante con los pies bien asentados en el suelo y, nuestras mentes, estén, lo más cerca posible a la realidad del mundo.

Los otros, los poetas, ven otro mundo. Ellos son más etéreos e inmateriales, están inmersos en un universo de percepciones imperceptibles para los demás y, cuando consiguen “ver” con claridad en esas bellas que les muestran “sus realidades”, entonces y sólo entonces, la cuentan para que los demás sepan de ellas y puedan “oir” sus pensamientos. Alguien dijo que los poetas hablan en voz baja consigo mismo y, el mundo, les oye por casualidad.

Lo cierto es que, todos, en un momento dado de nuestras vidas, hemos dejado este mundo nuestro para “viajar a otros mundos” en el que, nuestra imaginación, nos podía proporcionar cosas que en este mundo no había. ¿Qué cosas? me preguntarán algunos y, la oista sería tan grande que no tendríamos espacio para exponerlas todas. Haced un ejercicio mental y poner algunas en la lista.

                                              Lo muy grande y lo muy pequeño: Una Galaxia y un átomo

“Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro” Estas palabras de Leibniz nos dice que el mundo se rige por la causalidad. Nada es si antes no fue y, lo quen es hoy es la consecuencia del pasdado y lo será de su futuro pero, ¿dónde dejamos el Azar?

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el Tiempo sin sin; pués todas las cosas son de la misma clase y la misma forma”. De alguna manera, Marco Aurelio nos quería transmitir el mensaje de que todo es un ciclo continúo, que nada es nuevo y lo que hoy es, también lo fue ayer y lo será mañana. ¿Se estaría refiriéndo a la condición humana, o, por el contrario, hablaba del Universo?

http://www.komandokroketa.org/Oberland/295-Grosses-Wannenhorn.jpg

              Claro que, la Belleza, la podemos ver por todas partes: En el Amanecer en la montaña… por ejemplo

Hay personas más sensibles que ven más allá que los demás. Algunos, sienten como las piedras les hablan y el rumor del viento les trae emnsajes. Saben entender el lenguaje del río rumoroso, escuchan lo que la Naturaleza nos quiere decir y, cuando miran al cielo estrellado, captán cosas que el resto de los mortales no pueden. Ellos forman parte de un grupo especial como el de aquel sabio que decía:

“Todas las cosas son”

Con éstas sencillas palabras, elevó a todas las “cosas” a la categoría de ser. Una sencilla piedra brillante en el lecho del río, el árbol que mueve sus hojas al son del viento, la montaña con sus especiales ruidos que llevan el encanto de la Naturaleza, los misteriosos, húmedos y frondosos bosques, también el desierto árido y las inmensas llanuras, los interminables océanos y los mares…Todos son “seres” vivos que, a su manera, participan de este carrusel cósmico del Universo y, en cada momento, “esas cosas” desempeñan su papel en el mundo y, si están ahí, por algo será. No es habitual que nos parémos a pensar en estas cuetiones que, en realidad, son tan importantes como todas las demás. La Materia amigos míos, esté en la froma que esté, tiene memoria.

Bueno, en realidad creo que, la materia, es “vida dormida”.

emilio silvera

Cosas de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡Preludio a la relatividad! -Las ecuaciones de Lorentz-Fitzgerald- Éste último pensaba y decía cosas comos estas:

              George FitzGerald

“…telegrafía debe mucho a Euclides y otros geómetras puro, al griego y árabe matemáticos que inventó nuestra escala de numeración y álgebra, de Galileo y Newton, quien fundó la dinámica, para que Newton y Leibniz inventó el cálculo, para que Volta descubrió la galvánica bobina, a Oersted quien descubrió la acción magnética de las corrientes, que a Ampère descubrió las leyes de su acción, a Ohm que descubrió la ley de la resistencia de los cables, a Wheatstone, de Faraday, a Lord Kelvin, a Clerk Maxwell, Hertz a .Sin los descubrimientos, invenciones, y las teorías científicas resumen de estos hombres telegrafía, ya que ahora es, sería imposible.”

“La función de la Universidad es, sobre todo, enseñar a la humanidad...en todo momento los más grandes hombres siempre han sostenido que su deber principal es el descubrimiento de nuevos conocimientos, la creación de nuevas ideas para toda la humanidad, y no la instrucción de los pocos que encuentran conveniente a residir en su vecindad inmediata.Åre las Universidades de dedicar las energías de los intelectuales más avanzados de la edad a la instrucción de toda la nación, o en las instrucciones de los pocos cuyos padres pueden pagar a uno – en algunos lugares de lujo – la educación que en la naturaleza de las cosas sólo al alcance de los ricos?”

Hendrik Antoon Lorentz.jpg

    Hendrik Antoon Lorentz

Se le deben importantes aportaciones en los campos de la termodinámica, la radiación, el magnetismo, la electricidad y la refracción de la luz.  Formuló conjuntamente con George Francis FitzGerald una teoría sobre el cambio de forma de un cuerpo como resultado de su movimiento; este efecto, conocido como “contracción de Lorentz-FitzGerald”, cuya representación matemática de ella es conocida con el nombre de transformación de Lorentz,  fue una más de las numerosas contribuciones realizadas por Lorentz al desarrollo de la teoría de la relatividad.

Fue, al igual que Henri Poincaré,  uno de los primeros en formular las bases de la teoría de la relatividad (frecuentemente atribuida primaria o solamente a Albert Einstein).  Fue ganador del Premio Nobel de Física en 1902, junto con su pupilo Pieter Zeeman,  por su investigación conjunta sobre la influencia del magnetismo en la radiación, originando la radiación electromagnética.  También fue premiado con la Medalla Rumford en 1908 y la Medalla Coplay en 1918. Lorentz era hombre humilde y sencillo y le gustaba resaltar los logros de los demás:

“Como es probable que sepas, gran parte de nuestro conocimiento sobre la electricidad y el magnetismo se basa en los experimentos ingeniosísimos realizados por Michael Faraday en la primera parte del siglo XIX. Faraday era un experimentador genial, y descubrió numerosos fenómenos desconocidos hasta entonces, como la inducción mutua. Estableció diversas leyes, pero no pudo elaborar una teoría global acerca del electromagnetismo porque sus conocimientos matemáticos no iban más allá de la trigonometría: hacía falta un teórico capaz de amalgamar el conocimiento adquirido por Faraday y otros experimentadores, como Hans Christian Ørsted, en una teoría general.

Ese teórico era otro genio, James Clerk Maxwell, que estableció un conjunto de cuatro ecuaciones diferenciales bellísimas que describían de una manera extraordinariamente precisa los resultados de casi todos los experimentos de Faraday, Ørsted y compañía. Lo más sorprendente, para el propio Maxwell y sus contemporáneos, fue una de las consecuencias inevitables de sus ecuaciones: la existencia de perturbaciones del campo eléctrico y el magnético que se propagaban por el espacio.”

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

 

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

AetherWind.svg

                                                                                 experimento conocido de Michelson-Morley

Todo aquello fue posible gracia a que en 1893, el físico irlandés George Francis FitzGerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley.  Adujo que toda materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso.  Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Parecía como si la explicación de FitzGerald insinuara que la Naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de “contracción de FitzGerald”, y su autor formuló una ecuación para el mismo que, referido a la contracción de un cuerpo móvil, fue predicha igualmente, y de manera independiente, por H.A.Lorentz (1853-1928) de manera que, finalmente, se quedaron unidas como “Contracción de Lorentz-Fitz Gerald”.

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

 

 

Después llegó Einstein que se apropió de aquella idea y, además, la amplió al contraer también el Tiempo. La contracción de la longitud ha sido verificada en el diseño, por ejemplo, del acelerador lineal de la Universidad de Stanford. Las partículas salen con una velocidad v = 0,999975c, por tanto, cada metro de tubo acelerador es “visto” por los electrones como 144 metros. Si, según la expresión anterior, un cuerpo con masa se moviera a la velocidad c desaparecería por contracción de su longitud para un observador en reposo, lo cual refuerza el carácter inalcanzable de esta velocidad. Si los objetos con masa alcanzan este límite de velocidad la estructura básica de la realidad se desvanece. Por otra parte, vemos que cualquier influencia que afecte al tiempo también lo hará con el espacio. Esto no nos debe de extrañar, ya que ambas magnitudes se encuentran íntimamente relacionadas por lo único que se nos mantiene invariable: la velocidad de la luz. En relatividad hablamos de espacio-tiempo ya que son inseparables.

A la contracción, Einstein, le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud /0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud /0 , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 km/seg. (la mitad de la velocidad de la luz, c), sería del 15%; a 262.000 km/seg. (7/8 de la velocidad de la luz), del 50% Es decir, que una regla de 30 cm. que pasara ante nuestra vista a 262.000 km (seg., nos parecería que mide sólo 15’54 cm…, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 km/seg., en números redondos, su longitud, en la dirección del movimiento, sería cero.  Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse en el Universo. (Pero ¿existir también?).

El físico holandés Hendrik Antón Lorentz, como hemos dicho, promovió ésta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas), se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa.  Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitz Gerald, debería crecer en términos de masa.

          Un objeto que corra a velocidades cercanas a la de la luz, verá incrementada su masa

Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación FitzGerald sobre el acortamiento. A 149.637 kilómetros por segundo, la masa de un electrón aumentaría en un 15%; a 262.000 km/seg., en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita.  Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita? El efecto FitzGerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las “ecuaciones Lorentz-FitzGerald.”

Mientras que la contracción FitzGerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas si podía serlo…, aunque indirectamente. De hecho, el muón, tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores, han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

                        Nada puede viajar a la velocidad de la luz

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial que, aunque mucho más amplia, recoge la contracción de FitzGerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

¡Qué cosas!

Algunas veces pienso que, los artistas en general, y los poetas en particular, tendrían que adaptar e incluir a sus esquemas artísticos y poéticos, los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano.

Estos adelantos científicos serían así coloreados con las pasiones humanas y transformadas, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana.

Posiblemente, de haberlo hecho así, el grado general de conocimiento sería mayor.

emilio silvera

¡La Física! Los Caminos de la Naturaleza.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Einstein se preguntaba a menudo si Dios tuvo alguna elección al crear el universo. Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, Dios no tenía elección. La autoconsistencia por sí sola, afirman ellos, debe haber obligado a Dios a crear el universo como lo hizo.

Escuchar a E. Wittin hablar sobre Física, puede ser un viaje alucinante que nos lleve hacia el futuro que está por llegar. Él es el autor de la Teoría M de cuerdas en la que ha unificado todas las versiones de supersimetría, supergravedad, cuerda heterótica, supercuerdas y demás. Se avanza sin descanso pero, seguimos sin poder verificar de forma experimental. Se dice que esta teoría esta adelantada a su tiempo.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan como su punto más débil. Cualquier teoría, afirman, debe ser verificable. Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡la teoría de supercuerdas no es realmente una teoría!

Con esa simple fçormula, Planck no dijo la energía que se necesitaba para verificar la teoría de cuerdad, es decir 1019 GeV, y, desgraciadamente, esa energía, de momento, no es de este mundo.

¡Es todo tan complejo! La topología nos dará algunas respuestas y, seguramente, las funcionaes modulares de Ramunujan también podría tener el derecho a voto en esto de la teoría de cuerdas.

Leer más

¡Nuestro “Sentido Común”! Que a veces nos engaña

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            emilio silvera

¡Nuestros predecesores! Para ellos, era absolutamente evidente que la Tierra fuera estable y que estaba inmóvil. Éramos el centro del Universo. La ciencia occidental moderna parte de la negación de este axioma derivado del sentido común. Tal negación, origen y prototipo de las mayores paradojas de la ciencia, constituiría nuestra invitación a un mundo invisible e infinito. Llegó un día en que el hombre, se dio cuenta de la desnudez de sus sentidos. El Sentido común, pilar de la vida cotidiana, ya no servía para gobernar el mundo. En el momento en que el conocimiento “científico”, sofisticado, dio lugar a verdades incuestionables, las cosas dejaron de ser lo que parecían.

Las cosmologías antiguas utilizaban mitos pintorescos y convincentes para adornar los veredictos del sentido común y para describir los movimientos de los cuerpos celestes. En los muros de las tumbas de los faraones egipcios del valle de los Reyes encontramos vistosas representaciones del dios del aire sosteniendo la cúpula celeste por encima de la tierra. Asimismo, observamos que el dios del sol, Ra, conduce su barca cada día por el cielo y que, cada noche, en otra barca que surca las aguas por debajo de la tierra, retorna al punto de partida de su viaje diurno, que vuelve a iniciar. Como hemos visto, esta visión mítica no impidió que los egipcios elaboraran el más preciso de los calendarios solares, que fue utilizado durante miles de años. Para los egipcios, tales mitos tenían sentido, no contradecían lo que veían cada día y cada noche con sus ojos.

Copernicus.jpg

    Copérnico – Astrónomo polaco.

Con el tiempo, todo aquello cambió, y, la mente humana evolucionó. ¿Por qué se tomó Nicolás Copérnico tantas molestias para desplazar un sistema que era sostenido con firmeza por la experiencia cotidiana, la tradición y la autoridad? Cuánto más nos familiarizamos con la era de Copérnico, vemos con mayor claridad que los que no se dejaban convencer por él simplemente demostraban sensatez. Las pruebas de que disponían no exigían una revisión del sistema. Habrían de pasar varias décadas para que los astrónomos y matemáticos reunieran datos nuevos y hallaran nuevos instrumentos, y al menos un siglo para que los legos se convencieran de lo que era contrario al sentido común. Lo cierto es que, pese a todas las modificaciones ideadas por astrónomos y filósofos, el esquema antiguo no incluía todos los datos conocidos. Pero tampoco lo hizo la simplificación de Copérnico. Parece que no era la fuerza de los hechos sino una preocupación estética y metafísica lo que empujaba a Copérnico. Se le ocurrió que un sistema diferente sería mucho más hermoso. Su mente inquieta y su atrevida imaginación hicieron el resto. Como astrónomo, Copérnico no era más que un aficionado. No se ganaba la vida con la Astronomía ni con ninguna aplicación de esta ciencia. Al menos desde el punto de vista actual, era extraordinariamente polifacético, lo que le sitúa en la línea central del alto Renacimiento. Nació cuando Leonardo da Vinci se encontraba en plena actividad y fue contemporáneo de Miguel Ángel.

Copérnico se daba cuenta de que su sistema parecía transgredir el sentido común. Por esa misma razón, sus amigos habían tenido que “instarlo e incluso apremiarlo hasta el fastidio” para que publicara la obra. “Insistían en que, si bien era posible que al principio mi teoría sobre el movimiento de la Tierra pareciera extraña, resultaría admirable y aceptable una vez que la publicación de mis comentarios aclaratorios disipara las brumas de la paradoja”.

Con todo esto, sólo quiero dejar una pequeña muestra de la dificultad con la que hemos ido avanzando en el camino de la Ciencia. No siempre ha sido un camino de rosas el poder enseñar al mundo la verdadera faz de la Naturaleza, todo vez que, el mundo, la que veía era otra muy distinta y, sus sentidos, se negaban a admitir que las cosas pudieran ser diferentes a como ellos la podían ver.

Galileo by leoni.jpg

                 Galileo por Leoni

Galileo que era un científico de vocación, escribió un libro que se trataba de “dos ciencias nuevas”, una que se ocupaba de la mecánica y otra de la resistencia de los materiales. Como era costumbre en la época, también ese libro fue escrito en italiano y adoptó la forma de diálogo sostenido entre los personajes Salvati, Sagredo y Simplicio. Dado que la Inquisición había prohibido todos sus libros, la obra hubo de ser sacada furtivamente del país para que la publicaran los Elzevir en Leyden. Este fue el último libro de Galileo y en él ponía los cimientos sobre los cuales Huygens y Newton construirían la ciencia de la dinámica y, finalmente, una teoría de la gravitación universal.

El microscopio y el telescopio fueron ambos productos de la misma era, pero mientras que Copérnico y Galileo se han convertido en héroes populares, en los profetas de la modernidad, Hooke y Leeuwenhoek, sus equivalentes en el mundo microscópico, han quedado relegados al panteón de las ciencias especializadas. Copérnico y Galileo desempeñaron importantes papeles en la tan conocida batalla entre “ciencia” y “religión”; no sucedió lo mismo con Hooke y Leewwenhoek.

El primer telescopio inventado por Galileo (Efe)


Los astrónomos de todo el planeta conmemoran este martes el cuarto centenario del reconocimiento oficial por parte de las autoridades de la República de Venecia del primer telescopio, un invento del científico italiano Galileo Galilei (1564-1642) que cambió para siempre el rumbo de la Astronomía.

No se sabe quién inventó el microscopio. El principal candidato es Zacharias Jansen, humilde fabricante de anteojos de Middelburg. Si sabemos que el microscopio como las gafas y el telescopio, se usaban mucho antes de que se comprendieran los principios de la óptica, y probablemente su invención fue tan accidental como la del telescopio. No podía haber sido inventado por alguien que quisiera echar una mirada al mundo microscópico nunca imaginado hasta entonces.

Poco después de que fueran fabricados los primeros telescopios, la gente los utilizaba para ver ampliados objetos cercanos. En 1614, Galileo le decía a un visitante: “Con este tubo he visto moscas que parecían tan grandes como corderos, y he comprobado que están cubiertas de pelo y tienen unas uñas muy afiladas mediante las cuales se sostienen y andan sobre el cristal, aunque estén patas arriba, insertando la punta de las uñas en los poros del cristal”.

El aparato llamó la atención del ejército para tener más localizado al enemigo lejano. Más tarde, a Galileo se le ocurrió apuntar su telescopio hacia el cielo, y, ya nunca lo apartó de él. Con aquel simple movimiento, él, cambiaría el mundo y, la Tierra, entró a formar parte de un Sistema mayor que ahora llamamos Universo.

Claro que, lo mismo que se descubrió el mundo de lo muy grande, y, paralelamente, también se descubriría el mundo de lo muy pequeño.
Al igual que el Telescopio había unido la Tierra y los cuerpos celestes más distantes en un solo esquema de pensamiento, las imágenes del microscópio revelaban un mundo minúsculo que se asemejaba de modo sorprendente al que se veía diariamente a gran escala. En Historias Insectorum Generalis, Jan Swammerdam desmostraba que los insectos, como los animales “superiores” poseían una intrincada anatomía y no se reproducían por generación espontánea. En el microscopio vio que los insectos se desarrollaban igual que el hombre, por epigénesis, o desarrollo gradual de un órgano después de otro. Con todo, sobrevivió la creencia en otras formas de generación espontánea, hasta que, en el siglo XIX, Luis Pasteur realizó sus brillantes experimentos.


Bacterias.

El microscopio abrió las puertas de oscuros continentes en los que nunca se había entrada con anterioridad y que en muchos sentidos eran fáciles de explorar. Las grandes travesías marítimas habían exigido grandes inversiones, en genio organizador, capacidad de liderazgo y el de carisma de personajes como Colón, Magallanes o Vasco de Gama. La exploración astronómica exigía coordinación de las exploraciones realizadas en distintos lugares y con medios cada vez más costosos. Pero un hombre sólo, situado en cualquier parte con un microscopio, podía aventurarse por vez primera por vericuetos a los que no habían llegado los expertos navegantes o los valerosos pilotos.

Antoni van Leeuwenhoek fue con su microscopio el primer promotor de esta nueva ciencia de la exploración de otros mundos que resultaron estar en este. Sería bonito relatar aquí la historia del personaje pero, no tenemos el espacio necesario para ello.

foto

Os contaré que, en una ocasión, disponiendo de un microscópico, comenzó a buscar algo que hace con él. En septiembre de 1674, por pura curiosidad, llenó un frasco de cristal de un agua turbia y verdosa, que la gente de campo llamaba “rocío de miel”, procedente de un lago pantanoso situado a tres kilómetros de Delft, y bajo la mente de aumento descubrió “muchísimos animáculos diminutos”. A continuación dirigió su microscopio hacia una gota de agua de pimienta, infusión a base de pimienta negra utilizada en sus observaciones:

“Entonces vi con claridad que se trataba de pequeñas anguilas o lombrices apiñadas y culebreando, igual que si viera en un charco lleno de pequeñas anguilas y agua, todas retorciéndose por encima de otras, y parecía que toda el agua estaba vivía y llena de estos múltiples animáculos. Para mí, ésta fue, entre todas las maravillas que he descubierto en la naturaleza, la más maravillosa de todas; y he de decir, en lo que a mí concierne,  que no se ha presentado ante mis ojos ninguna visión más agradable que esos miles de criaturas vivientes, todas vivas en un diminuta gota de agua, moviéndose unas junto a otras, y cada una de ellas con su propio movimiento…”

Mycobacterium tuberculosis

 

                                                     Escherichia coli

 

 

                                        Borrelia burgdorferi

 

 

                                                   Cyanobacterium

 

 

Anabaena sp. (cyanobacterium) and Netrium and Zygnema sp. (green algae)

 

   

      Holospora undulata

 

         

           Chromatium

 

          

                        Achromatium

 

Tras descubrir el mundo de las bacterias, Leeuwenhoek prosiguió la tarea dignificando a estos individuos. Contradiciendo los dogmas aristotélicos relativos a los “animales inferiores”, declaró que cada uno de estos animáculos disponía de la dotación completa de órganos corporales necesarios para el tipo de vida que llevaba.

Con todo este pequeño recorrido, en el que he tomado algunos ejemplos al azar, sólo he querido significar que, la Ciencia, a lo largo de la historia de la Humanidad, ha ido tomando diversos caminos y, unas veces debido a mentes preclaras que tenían el don de “ver” lo que otros no podían, y, otras veces, por hechos del destino y la casualidad o el azar, el hombre, ha podido ir avanzando y conociendo el mundo en el que le ha tocado vivir y, al decir mundo, me refiero no sólo a la Tierra, sino que, me estoy refiriendo al Universo, tanto de lo grande como de lo pequeño. Ahora sabemos que, si nosotros estamos aquí, tal presencia es posible gracias a la existencia de esos minúsculos animáculos que descubriera Leeuwenhoek que, en sus diferentes dominios, hacen lo necesario para que nosotros podamos vivir en simbiosis con ellos y, además, son los verdaderos responsables del clima del planeta que nos permite llevar una vida tranquila gracias a la atmósfera que dichos bichitos fabrican para nosotros.

¡La Ciencia! Son tantas cosas.

emilio silvera