lunes, 30 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




En el Universo… ¡Todo se transforma!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los elementos químicos que componen todo aquello alrededor nuestro fueron sintetizados en el pasado en el interior de las estrellas.

La Astrofísica nuclear es una rama relativamente joven de la física entre cuyos objetivos destaca la descripción de las reacciones mediante las cuales tiene lugar la generación de energías y la síntesis de elementos químicos en el Universo. Se trata, por tanto, de un campo multidisciplinar que combina las observaciones astronómicas, con el análisis de la composición de meteoritos, la modelización astrofísica y la física nuclear tanto experimental como teórica.

En 1957, E.M. Burbidge, W.A. Fowler and F. Hoyle y de manera independiente A.G.W. Cameron publicaron sendos artículos clave, donde definen los principales procesos que explican la transformación de unos núcleos en otros, asentados en base de la Astrofísica nuclear.

Representación artística de la creación de moléculas orgánicas en el universo primitivo. La síntesis del carbono en el corazón de las estrellas continúa planteando algunos retos teóricos. [NASA/JPL-Caltech/T. Pyle (SSC)]

A lo largo de la segunda mitad del siglo XX, la Astrofísica nuclear ha conseguido importantes logros que sin duda están íntimamente conectados al impresionante avance experimentado por las técnicas instrumentales y de medidas asociadas y por la capacidad de cálculo numérico.

Los diferentes procesos de nucleosíntesis que tienen lugar durante la vida de una estrella dan lugar a la creación de nuevos elementos químicos que son expulsados al medio interestelar. Estos elementos pasan a formar parte de una nueva generación de estrellas, y pueden ser detectados mediante estudios espectroscópicos. La mejora de las técnicas utilizadas en la instrumentación observacional y de los métodos de detección espectroscópicos, la construcción de grandes telescopios como el VLT y el Keck a los que pronto se añadirá el Gran TeCan, y la posibilidad de hacer observaciones desde el espacio sin la interferencia de la atmósfera terrestre (Telescopio Hubble, Chandra, XMM Newton e Integral), ha permitido obtener toda una nueva visión del universo que nos rodea.

http://4.bp.blogspot.com/-E92K4Mda2Uo/TbwBX8kvV6I/AAAAAAAAAHM/xWiWd9YY8dM/s1600/diagrama-hr1.jpg

La Física nuclear experimental tampoco ha sido ajena a todos estos avances tecnológicos, desarrollando haces de núcleos estables e inestables y la instrumentación necesaria para realizar experimentos de precisión. Las reacciones nucleares que intervienen en los procesos astrofísicos son reacciones de fusión; reacciones de captura de protones, de neutrones y de partículas alfa y sus inversas; y procesos mediados por la interacción débil tales como las desintegraciones beta, capturas de electrones y de neutrinos. En algunos casos se miden reacciones inducidas por núcleos estables y energías próximas a las que se dan en las estrellas, con secciones eficaces muy pequeñas, que necesitan el uso de instalaciones subterráneas (LUNA) capaces de blindar los equipos de detección a la radiación de origen cósmico.

\begin{figure}\epsfig{file=pre/fig1.eps, width=\columnwidth}\end{figure}

En otros casos, se estudian reacciones inducidas por núcleos inestables (también llamados núcleos exóticos), con una vida media muy corta, y difíciles de sintetizar en el laboratorio con la tecnología actual. No obstante, en las últimas décadas, numerosas instalaciones de haces de núcleos exóticos (Louvain la Neuve, GANIL, GSI, ISOLDE) han desarrollado programas experimentales en los que se han determinado las propiedades fundamentales (masas y vidas medias) y propiedades de la estructura de núcleos claves en reacciones de interés Astrofísico. Igualmente se han medido un número importante de secciones eficaces asociadas a los diferentes procesos de nucleosíntesis. Por otro lado, la construcción de instalaciones de tiempo de vuelo de neutrones (n_ToF arroba CERN) ha permitido el desarrollo de programas dedicados al estudio de la captura neutrónica. Así mismo, las nuevas instalaciones que se construirán en los próximos años (FAIR, SPIRAL 2) incluyen en sus programas científicos el estudio de reacciones nucleares de interés astrofísico.

En la mayor parte de los Modelos Astrofísicos la Física Nuclear Teórica es necesaria para convertir un texto experimental en el ritmo de reacción que es necesario en la aplicación astrofísica concreta. Ahora mismo nos encontramos al comienzo de una nueva era de desarrollo de modelos teóricos basados en primeros principios (ab-anitio). Esto permitirá reducir las incertidumbres asociadas con extrapolaciones a regiones de la carta de núcleos que no han sido exploradas experimentalmente, pero que son relevantes para diferentes procesos astrofísicos como es el caso de núcleos muy ricos en neutrones para el proceso r.

De forma complementaria, se han producido grandes avances en la modelización astrofísica de las diferentes etapas de evolución estelar. Los desafíos actuales se centran en la realización de simulaciones en tres dimensiones espaciales de los diferentes fenómenos astrofísicos y en particular de las espectaculares explosiones de supernovas tanto termonucleares como debidas al colapso gravitatorio.

 

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

H, He, (Li, Be, B) C, N, O… Fe

 

¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas.

 

 

La explosión de una estrella gigante y supermasiva hace que esta brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, como el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en cada momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de SER.

foto

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

                                  ¡Maravillas de la materia!

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella y, la Astrofísica, nos abrirá el camino para comprender, lo que la materia es (ayudada por ingenios como el LHC).

emilio silvera

Ondas gravitatorias (Otra manera de ver el Universo)

Autor por Emilio Silvera    ~    Archivo Clasificado en Ondas gravitacionales    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


Desde sus comienzos la Astronomía ha estado dominada por el uso de instrumentos que detectan luz, desde los primeros telescopios ópticos hasta los más modernos detectores de rayos X y gamma. Fruto de este desarrollo han sido grandes descubrimientos que han ido configurando nuestra forma de comprender el Universo. Durante el siglo pasado se han empezado a desarrollar nuevas formas de Astronomía basadas en mensajeros diferentes a la luz: detectores de rayos cósmicos, de neutrinos y de ondas gravitacionales. Las ondas gravitacionales son una consecuencia de la Teoría General de la Relatividad de Einstein y corresponden a oscilaciones de la geometría del espacio-tiempo que se propagan de forma similar a las ondas electromagnéticas. La debilidad de la fuerza gravitatoria hace que la detección de estas ondas suponga un gran reto tecnológico. Sin embargo, desde el punto de vista científico son una gran oportunidad, ya que transportan información prácticamente incorrupta de las fuentes que la generaron, la cual en muchos de los casos es difícil o imposible de obtener por otros medios. Este artículo es una introducción a la Astronomía de Ondas Gravitatorias, a sus métodos, a su estado actual y sobre todo a las grandes perspectivas que ofrece con la apertura de una nueva ventana a la exploración del Universo que tendrá un gran impacto tanto en Astrofísica como en Cosmología e incluso en Física Fundamental.

Dentro del marco de la Física Teórica, la gravedad aparece como una de las cuatro interacciones fundamentales, siendo las otras tres la electromagnética y las interacciones nucleares débil y fuerte. Electromagnetismo y gravitación son las dos únicas interacciones de largo rango de acción (en principio limitado), en contraposición a las dos interacciones nucleares, cuyo rango de acción está limitado esencialmente a regiones cuyo tamaño es del orden de un núcleo atómico o inferior. Una consecuencia directa de esto es que las interacciones nucleares no pueden transportar información a distancias macroscópicas y por lo tanto no son de utilidad para la Astronomía. Las otras dos, electromagnetismo y gravedad, se propagan a través del espacio a la velocidad de la luz, tal y como nos indican las teorías de Maxwell y Einstein respectivamente, y tal como comprobamos en diferentes observaciones y experimentos. Lo que determina la fuerza que estas interacciones producen son su intensidad y las correspondientes susceptibilidades de la materia a ellas, lo que denominamos cargas, la carga eléctrica en el caso electromagnético y la masa en el caso gravitatorio. En la naturaleza observamos que la interacción electromagnética produce fuerzas que son muchos órdenes de magnitud superiores a la de la gravitatoria, que es la más débil de todas las interacciones. Por lo tanto, no es de extrañar que la Astronomía haya estado dominada completamente por detectores de ondas electromagnéticas y fotones (las partículas cuánticas asociadas a campos electromagnéticos), desde telescopios ópticos hasta detectores de rayos X y gamma, incluyendo antenas de radio. Gracias a estos instrumentos la Astronomía ha producido grandes revoluciones que han cambiado nuestra percepción del Universo: Desde la Copernicana, que comenzó en el siglo XVI, hasta los descubrimientos en cosmología, que comenzaron en el siglo XX y continúan hoy día.

Pero no todo lo que se mide u observa en astronomía es luz, hay otros mensajeros que nos informan sobre lo que sucede en diferentes lugares de nuestro Universo: meteoritos, neutrinos, rayos cósmicos (protones, electrones, etc.), ondas gravitatorias. Los meteoritos nos dan información de nuestro entorno local, principalmente del Sistema Solar. Los neutrinos y rayos cósmicos pueden provenir desde nuestro entorno local hasta galaxias muy distantes. La detección de estas partículas, mediante técnicas similares a las empleadas en aceleradores de partículas, ha dado lugar a una nueva área de investigación muy activa denominada Astropartículas. El mensajero del que trata este artículo son las ondas gravitatorias y su empleo para la investigación astronómica constituye lo que denominamos Astronomía de Ondas Gravitatorias.

Las ondas gravitatorias son una predicción de la Teoría General de la Relatividad (conocida comúnmente como Relatividad General) propuesta por Albert Einstein (1915) para incluir la gravitación en la estructura espacio-temporal propuesta por él mismo en su Teoría Especial de la Relatividad (1905). Uno de los aspectos más destacados de esta teoría es que el espacio deja de ser un simple contenedor  de los fenómenos físicos para convertirse en un objeto dinámico, en el sentido que su geometría cambia conforme a los movimientos y distribuciones de masas y energía. No solo eso, al tiempo físico le sucede algo similar, de forma que su transcurso también depende de la distribución de masa y energía. En la Teoría de la Relatividad espacio y tiempo aparecen como una única estructura que denominamos espacio-tiempo, cuya geometría está determinada por la distribución de masa y energía, y a su vez,  la geometría determina el movimiento de la materia y de la energía. De esta forma, la gravedad aparece como una manifestación de la geometría espacio-tiempo, una elegante implementación del principio Galileano de que todos los objetos, independientemente de su masa y composición, caen con la misma aceleración. Una consecuencia del carácter dinámico del espacio-tiempo en la Relatividad General es que las oscilaciones de su geometría se propagan como ondas con una velocidad, medida localmente, exactamente igual a la velocidad de la luz. Las ondas gravitatorias, al cambiar la geometría local de las regiones que atraviesan, cambian la distancia física entre objetos, siendo dicho cambio proporcional a la distancia misma y a la amplitud de ondas.

LISA pretende verificar empíricamente las ondas gravitatorias de Einstein

Como en el caso electromagmético este es un efecto transverso, es decir, los cambios en la distancia se producen en el plano perpendicular a la dirección de propagación de la onda gravitatoria. Además, tanto ondas electromagnéticas como gravitatorias tienen dos estados de polarización independientes, aunque en teorías de la gravedad alternativas a la Relatividad General puede haber hasta seis polarizaciones independientes. Una diferencia importante entre ondas electromagnéticas y gravitatorias tiene que ver con su generación. En el contexto astronómico, las ondas electromagnéticas se generan por cargas aceleradas (emisión predominantemente dipolar), como por ejemplo electrones, cuyo tamaño es muy inferior al de los objetos de los que forman parte y como consecuencia, pueden emitir luz en una longitud de onda suficientemente pequeña como para realizar imágenes de objetos astronómicos. En contraste,  las ondas gravitatorias se generan por cambios temporales de la distribución de masa-energía de un objeto (radiación predominantemente cuadrupolar), y por este motivo sus longitudes de onda suelen ser del orden del tamaño del objeto que las genera o mayores, con lo cual no es posible en general realizar imágenes. En ese sentido se podría decir que la Astronomía de Ondas Gravitatorias está más cercana a la Acústica que a la Óptica.

La relativa debilidad de la gravedad es la causa de que las ondas gravitatorias tengan una amplitud relativamente pequeña y que su detección sea una empresa extremadamente complicada. Ondas gravitatorias producidas por fuentes galácticas, como la colisión de dos estrellas de neutrones, inducen desplazamientos del orden del tamaño de un núcleo atómico o inferiores en un detector terrestre de un kilómetro de tamaño. La gran ventaja que proporcionan las ondas gravitatorias es que por su débil interacción con la materia transportan información prácticamente incorrupta de las fuentes astronómicas que las generaron.

La construcción de un detector de ondas gravitatorias supone un gran reto tecnológico, y tal empresa no comenzó hasta los años sesenta, con el trabajo pionero de Joseph Weber en detectores resonantes. El principio de funcionamiento de estos detectores de basa en que una onda gravitatoria que atraviese un sólido cambiará su tamaño de forma oscilatoria, excitando de esta forma sus modos propios de oscilación. La idea por lo tanto es crear un dispositivo que sea sensible a las oscilaciones del sólido y nos permita extraer la señal gravitatoria que las ha producido. Varios detectores de este tipo, la mayoría con forma cilíndrica, se han construido en varias partes del mundo y, contrariamente a las aseveraciones de detección de Weber en los años 70, no han conseguido hasta la fecha detectar ondas gravitatorias. De hecho, ningún tipo de detector las ha detectado. Entonces, ¿estamos seguros de que las ondas gravitatorias existen? ¿Tenemos alguna evidencia de su existencia?

La respuesta a estas preguntas es que sí, y el principal argumento nos lo proporcionó el descubrimiento en 1974 del primer pulsar binario, PSR B1913+16, por Russell Hulse y Joseph Taylor, lo que les valió el premio Nobel de Física en el año 1993. Los púlsares son estrellas de neutrones dotadas de un enorme campo magnético que acelera partículas cargadas produciendo la emisión de un haz de radiación electromagnética en la dirección del eje magnético. Como el eje magnético no suele estar alineado con el eje de rotación, esta emisión electromagnética describe un cono, convirtiendo los púlsares en faros cósmicos. Si nuestro planeta se encuentra en la dirección del cono de emisión del púlsar observaremos una serie de pulsos de radio, que en caso de los púlsares con rotación más rápida se dan con un ritmo tan uniforme que los convierte en relojes de precisión comparable a los relojes atómicos (¡el púlsar más rápido conocido completa más de 700 revoluciones por segundo! El de Hulse y Taylor 17). Esto permite observaciones astronómicas de una precisión sin precedentes. El púlsar de Hulse y Taylor orbita alrededor de otra estrella de neutrones de forma que el tamaño de la órbita es suficientemente pequeño (la distancia mínima entre ellas es aproximadamente la mitad de la distancia de la Tierra al Sol) como para que estas estrellas tan compactas (tienen una masa un poco inferior a una vez y media la masa del Sol pero un radio de tan sólo unos diez kilómetros) se muevan de forma que los efectos relativistas importen para un descripción precisa de sistema.

Sistema binario

En concreto, el movimiento orbital periódico de tales masas con velocidades considerables (cientos de kilómetros por segundo respecto del centro de masas  del sistema binario) produce cambios periódicos significativos en la geometría del espacio-tiempo de su entorno. Y estos cambios  periódicos en la geometría no son más que ondas gravitatorias que se propagan en todas las direcciones llevándose consigo energía y momento angular del sistema. Esta emisión gravitatoria afecta a su vez al movimiento orbital, disminuyendo su tamaño y periodo orbital, tal y como se observa. También se pueden observar otros efectos relativistas como la precesión del periastro de la órbita. Los 35 años de observaciones del púlsar binario de Hulse y Taylor han permitido comprobar que la evolución de su órbita coincide con la predicha por el mecanismo de emisión de radiación gravitatoria de la Relatividad General con una precisión relativa del 0.2%. Actualmente se conocen otros púlsares binarios y algunos de ellos también se encuentran en un régimen relativista. El denominado púlsar doble, PSR J0737-3039A/B, un sistema binario compuesto por dos púlsares, se ha convertido recientemente en el mejor test disponible de la Relatividad General, alcanzado precisiones relativas del 0.05%.

http://www.physics.mcgill.ca/~bretonr/doublepulsar/doublepulsar_eclipse.jpg

Estos descubrimientos han contribuido a impulsar el desarrollo de detectores de ondas gravitatorias, y los que hoy en día han alcanzado una mayor sensibilidad son los llamados detectores interferométricos. Son básicamente interferómetros del tipo Michelson-Morley dispuestos en una forma de L y el concepto de funcionamiento es relativamente simple: cuando una onda gravitatoria incide perpendicularmente al plano del detector produce cambios en la longitud de los brazos del interferómetro, de forma que mientras uno se acorta el otro se alarga y viceversa. Estos cambios dan lugar a interferencias de las cuales se puede inferir el patrón de las ondas gravitatorias que han atravesado el detector. Actualmente hay varios detectores interferométricos terrestres en operación:

 

Detector LIGO de ondas gravitatorias

Uno de los dos detectores LIGO, situado en Livingston (Luisiana), con brazos de cuatro kilómetros de longitud.- LIGO/CALIFORNIA INSTITUTE OF TECHNOLOGY. LIGO en los Estados Unidos (dos de 4 km y uno de 2 km de brazo).

File:Wavy.gif

VIRGO en Italia con participación de varios países europeos (3 km de brazo); GEO600 en Alemania con participación británica (600 m de brazo). Aparte hay varios proyectos en desarrollo en diversas partes del planeta, como por ejemplo el LCGT en Japón 83 km de brazo), un ambicioso proyecto recientemente aprobado que sustituye al anterior detector TAMA y al prototipo CLIO, y que se convertirá en el primer detector interferométrico de tipo criogénico. La banda de frecuencias a la que operan está contenida en el rango 10- 10000 Hz. A frecuencias más bajas están limitados por ruido sísmico y el gradiente gravitatorio, mientras que a frecuencias más altas están limitados por el ruido de los fotodetectores. Pese a que no se han realizado aún detecciones, observaciones de LIGO han servido para producir nueva ciencia mediante el análisis de las consecuencias de las no detecciones al nivel de sensibilidad actual. Se pueden destacar dos resultados: (1) En la constelación del Cangrejo hay un púlsar joven resultado de una supernova (explosión de una estrella). La frecuencia rotacional de este púlsar disminuye con el tiempo.

 

Observatorio de ondas gravitatorias con Interferómetro Láser (LIGO) ubicado en Louisiana&Washington, USA
Observatorio de ondas gravitatorias con Interferómetro Láser (LIGO) ubicado en Louisiana&Washington, USA

LIGO ha limitado a un 4% la contribución de una hipotética emisión de radiación gravitatoria, lo cual excluye diversos modelos astrofísicos que trataban de explicar este fenómeno. (2) La teoría cosmológica de la gran explosión (Big Bang) requiere una fase primitiva de gran expansión del Universo que daría lugar, entre otras cosas, a un fondo de radiación gravitatoria. Las observaciones de LIGO han puesto límites a la densidad de energía almacenada en este fondo, mejorando los límites impuestos por la teoría de formación de elementos primordiales, parte a su vez del modelo estándar de la Cosmología. Durante el presente año, tanto LIGO como VIRGO pararán las operaciones para incorporar tecnología avanzada: mejora de los sistemas de vacío, láseres de precisión más potentes y mejoras de los sistemas ópticos y mecánicos. Con esto se logrará una mejora de un orden de magnitud en la sensibilidad, lo cual equivale a aumentar en tres órdenes de magnitud el volumen del cosmos que cubrirán. Al mismo tiempo se realizará la construcción del detector criogénico LCGT en la mina de Kamioka (Japón). Una vez estos modelos avanzados entren en operación se espera que realicen detecciones de radiación gravitatoria con un ritmo, de acuerdo con los pronósticos astrofísicos sobre la información de las fuentes de ondas gravitatorias relevantes, de 10-1000 eventos por año.

Cuando dos galaxias se fusionan, sus agujeros negros centrales entran en colisión y, las ondas gravitacionales que pueden generar podráin traernos información del suceso que, hasta el momento, no hemos podido detectar y, sería, una nueva manera de mirar el Universo.

Las principales fuentes astrofísicas y cosmológicas para estos detectores terrestres son: colisiones de sistemas binarios formados por agujeros negros estelares y/o estrellas de neutrones; oscilaciones de estrellas relativistas; supernovas; fondos cosmológicos de diverso origen. Estas observaciones revelarán información clave para entender la formación de objetos compactos estelares, la ecuación de estado de estrellas de neutrones, la validez de la Relatividad General, etc.

Por otra parte, la Agencia Europea del Espacio (ESA) y la Administración Nacional para el Espacio y la Aeronáutica norteamericana (NASA) colaboran en la construcción de un observatorio espacial de ondas gravitatorias, la Antena Espacial de Interferometría Láser (LISA), que se espera que se lance durante la década de 2020. Hay dos motivos de peso para construir un observatorio espacial. El primero es cubrir la banda de bajas frecuencias, en el rango 3x10⁻⁵ – 0.1 Hz, inaccesible a los detectores terrestres. El segundo es que esta banda de frecuencias da acceso a fuentes de ondas gravitatorias y a una ciencia completamente diferente, con muchas más implicaciones para el panorama de la Astrofísica y la Cosmología. LISA se compone de tres naves espaciales dispuestas en un triángulo equilátero, de 5 millones de kilómetros de lado, y que siguen una órbita alrededor del Sol. Para que la dinámica propia de cada nave preserve lo más posible la configuración triangular, esta ha de estar inclinada 60º respecto del plano de la eclíptica. De esta forma el triángulo gira sobre su baricentro una vez por año/órbita, lo cual introduce una modulación en las señales gravitatorias que es muy útil para localizar los objetos que las emitieron. LISA es una misión con una tecnología muy novedosa y exigente que una misión precursora de la ESA, LISA PathFinder, se encargará de demostrar. Nuestro grupo en el Instituto de Ciencias del Espacio (CSIC-IEEC) participa en el desarrollo de esta misión contribuyendo con algunos instrumentos fundamentales, como por ejemplo el ordenador que controlará el denominado LISA Technology Package,  el conjunto de experimentos que LISA PathFinder realizará.

Pasando a la parte científica de LISA, uno de los principales puntos a resaltar es el hecho de que actualmente LISA es el único proyecto de detector de radiación gravitatoria del que conocemos fuentes garantizadas. Se trata de sistemas binarios galácticos con periodos inferiores a 2 horas, conocidos como binarias de verificación ya que serán muy útiles para la calibración de LISA. Además, se espera que LISA observe principalmente las siguientes fuentes de ondas gravitatorias: Sistemas estelares binarios en nuestra galaxia y algunos extragalácticos. LISA detectará varios millones de estos sistemas, la mayor parte de los cuales formarán un fondo de radiación gravitatoria y los más brillantes podrán resolverse y separarse de este fondo. Caída orbital y colisión de agujeros negros supermasivos. Las observaciones astronómicas nos proporcionan evidencia de que prácticamente todas las galaxias contienen un agujero negro en su núcleo central y que estas, a lo largo de su historia, han sufrido varias colisiones con otras galaxias. Cuando dos galaxias colisionan para formar una nueva, sus respectivos agujeros negros migran hacia el nuevo núcleo debido a la fricción dinámica, donde forman un sistema binario cuya órbita, a partir de un determinado momento, se reducirá por emisión de radiación gravitatoria hasta la colisión final, que resultará en la formación de un único agujero negro.

LISA será capaz de detectar todas estas colisiones dentro de nuestro Universo observable. La captura y posterior caída orbital de objetos estelares compactos (enanas blancas, estrellas de neutrones, agujeros negros estelares) hacia agujeros negros supermasivos. En el núcleo galáctico, en torno a los agujeros negros supermasivos, hay una gran concentración de objetos estelares compactos. Eventualmente, y debido a interacciones gravitatorias entre ellos, uno de estos objetos estelares puede ser capturado por la gravedad del agujero negro supermasivo e iniciar una larga caída en espiral hacia este (debido a la emisión de radiación gravitatoria del sistema) hasta ser finalmente absorbido por él. Esta caída es lenta. De tal forma que LISA podrá detectar la radiación gravitatoria emitida durante cientos de miles  de órbitas durante el último año de uno de estos sistemas, y esto supone que podremos extraer sus parámetros físicos co una gran precisión. Fondos de radiación gravitatoria de origen cosmológico. De acuerdo con esa mayoría de mecanismos teóricos que los predicen, el espectro de estos fondos es muy amplio (en algunos casos es plano o ligeramente inclinado) y pueden ser observados por detectores que operen en diferentes partes del espectro gravitatorio.

 Archivo:Star collapse to black hole.png

 En la imagen se reproducen las ondas gravitatorias emitidas por una estrella durante su colapso. En las ecuaciones de Einstein se descubre el misterioso proceso que ocurre en las estrellas al final de sus vidas y de como se convierten en agujeros negros.

La detección de las fuentes descritas permitirá desarrollar una ciencia muy amplia y revolucionaria, que influenciará tanto la Astrofísica y la Cosmología como la Física Fundamental. Sobre la ciencia que se espera desarrollar con LISA podemos destacar: comprensión de la dinámica de los núcleos galácticos; comprobar la validez de diferentes modelos de formación de galaxias; comprobar si los agujeros negros son como los describe la Relatividad General (caracterizados únicamente por su masa y momento angular intrínseco); poner a prueba teorías alternativas a la Relatividad General; etc.

Aparte de los detectores de ondas gravitatorias descritos, se ha propuesto otra forma de detectar ondas gravitatorias basada en el ajuste temporal (timing)  de un conjunto de púlsares con periodos del orden de milisegundos. Cuando una onda gravitatoria pasa a través de la región entre los púlsares y la Tierra produce cambios en los tiempos de llegada de los pulsos. Con una tecnología adecuada, un buen número de púlsares (un par de decenas) y un tiempo de observación suficientemente largo (unos diez años), la presencia de ondas gravitatorias, en la banda ultra baja, entre 10⁻⁹ y 10⁻⁷ Hz, puede ser detectada. Las fuentes en esta banda incluyen los agujeros negros más masivos, con masas superiores a cientos de millones de veces la masa del Sol, y fondos de radiación gravitatoria de origen diverso.

    Cuando dominemos la técnica de captar las ondas gravitatorias, tendremos una nueva manera de ver el Universo

La Astronomía de Ondas Gravitatorias se inició durante la segunda mitad del siglo pasado y ha de tener su época de esplendor a lo largo de la primera mitad del presente, con la puesta en funcionamiento de la segunda generación de detectores terrestres como LIGO, VIRGO, Y LCGT, con el futuro observatorio espacial LISA, con la observación de múltiples púlsares y con el desarrollo de proyectos de tercera generación que están siendo actualmente debatidos y diseñados. Cada vez que en Astronomía se ha abierto una nueva ventana a la exploración del Universo (infrarroja, radio, rayos X, rayos gamma, etc.) se han realizado grandes descubrimientos. Muchos de ellos han consistido en la aparición de nuevos objetos astronómicos y/o nuevos fenómenos físicos, la mayoría de veces de forma inesperada. La Astronomía de Ondas Gravitatorias abrirá una nueva ventana usando una nueva herramienta, un nuevo mensajero cósmico, la gravedad, y con ello nos esperan nuevas sorpresas y grandes descubrimientos que pueden cambiar nuestra forma de ver el Universo.

Fuente:

Revista de Física, volumen 25 nº 2/2011

Autores: Alberto Lobo y Carlos F. Sopuerta

Lo que no sabemos: ¿Cómo se formaron las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Georges Seurat 031.jpg

                               Tarde de domingo en la isla de la Grande Jatte  – Georges Pierre Seurat, 1884

El Art Institute de Chicago tiene una de las mejores colecciones del mundo de pintura de finales del siglo XIX francés, reúnida durante la época en que la ciudad era realmente “un matarife para el mundo , jugando con los ferrocarriles de una nación”. Una de las obras más populares es un gran lienzo de George Seurat. Su título formal es La Grande Jatte, pero se conoce coloquialmente como Domingo por la tarde en el parque.

Muestra a un grupo de parisinos paseando por un parque junto al Sena. La pinturá incluso inspiró una revista en Broadway llamada Domingo el el parque con George. Saurat utilizó una técnica pictórica que era bastante poco usual en su época. En lugar del pasar el pincel sobre el lienzo en la forma habitual, tocaba el lienzo sólo con la punta.

El resultasdo es una pintura formada por un gran número de pequeñas motas de color. Este estilo de Pintura se llama puntillismo. A causa de esa técnica, el mirar esa pintura resulta una experiencia extraña. Desde lejos se ve lo que pretendía el pintor, la escena de un parque con figuras en él. Sin embargo, si nos acercamos mucho, la escena desaparece y lo que se verá será una colección de puntos de color sobre un lienzo. La uniformidad, que es aparente cuando miramos a la “imagen grande”, oculta la apariencia real de lo que allí está presente.

¿Nos pasará a nosotros otro tanto cuando miramos el Universo? Seguro que sí, ya que, si tuviéramos las narices pegadas a cualquiera de esas galaxias, no veríamos nada excepto un borrón de luz y de color. ¡Qué extraño es el mundo que nos rodea y cuánto nos cueta comprenderlo!

 

 

Grupo de Galaxias NGC 7771

La pintura de Saurat proporciona una útil analogía para una de las ideas favoritas de los astrónomos acerca de la estructura del Universo: la idea de que si miramos a una escala bastante grande, encontramos que el universo es uniforme y homogéneo. A partir de Einstein los comólogos de “punta” han supuesto que esta afirmación es cierta. Claro que, una cosa es lo que se supone y otra muy distinta lo que en realidad pasó.

Las galaxias, por ejemplo,  no pudieon comenzar a formarse hasta después de que radiación y materia se desparejan y otra solución que se sugiere sola, el empujón al colapso gravitatorio mediante concentraciones de masa o cualquier otro procedimiento físico, tal como la turbulencia en las nubes de gas después de la formación de los átomos. Pero ¡ay!, esta línea de argumentación nos lleva hasta una tercera reconsideración del problema en el que finalizamos aceptando que, las turbulencias tampoco sirven.

File:Orion Nebula (M42) part HST 4800px.jpg

El “impulso a través de turbulencia” es una idea simple, cuyas primeras versiones fueron aireadas allá por los años 50. El postulado es este: cualquier proceso tan violento y caótico como las primeras etapas del Big Bang no sería como un río profundo y plácido, sino como una corriente de montaña, llena de espumas y turbulencias.

En este flujo caótico podemos esperar encontrar remolinos, vórtices de gas. En esta teoría, un remolino es en efecto una concentración de masa del tipo Jeans, presionando sobre la materia que le rodea a causa de la atracción gravitatoria. Si el remolino es del tamaño necesario, puede reunir una masa del tamaño de una galaxia antes de que tenga una posibilidad de disiparse. Para entonces esa masa sería suficientemente grande, de forma que se mantendría unida por la fuerza de la gravedad cuando pase el remolino.

Está bien, pero existen algunas dificultades. En primer lugar, un remolino que se forma antes de la marca de los 500.000 años es todavía una concentración de masa, y como cualquier otra concentración de masa será destruída por la presión de la radiación. Por consiguiente, los turbulentos remolinos que sirven como núcleos de concentración para las galaxias deben acceder a la existencia después de la aparición de los átomos.

Galaxia en proceso de formación.  A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna a protogalaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo.

Lo que esto significa es que los remolinos que se forman justo después de la congelación atómica son los que más probablemente conducirán a las galaxias, porque son los que tienen más tiempo para recoger materia. Si estos remolinos son del tamaño necesario, podrían realmente producir galaxias como las que podemos ver ahí arriba. Sólo tendríamos que suponer que hubiera remolinos del tamaño de galaxias (o próximos a ellas) presentes en el momento de la congelación.

http://img.seti.cl/choque-galaxias-arp274_hst.jpg

Con todo, la teoría plantea un extraño tema filosófico. Podemos mirar las galaxias visibles, extrapolar hacia atrás en el tiempo y proponer un conjunto de turbulentos remolinos que las produzcan. Esto no resuelve el problema, sólo plantea la vieja cuestión de otro modo, retrocediendo una muesca. En lugar de preguntas: “¿Por qué las galaxias son como son?”, preguntamos “¿Por qué eran los remolinos como eran?” Y, seguimos sin avanzar en el problema de saber como se formaron las galaxias.

Tampoco las galaxias han tenido tiempo para formar cúmulos, y, sin embargo, ahí están. ¿Qué sabemos de los enigmas del Universo? En realidad, vamos sabiendo algo pero, lo cierto es que, son muchas más las preguntas que las respuestas.

El cúmulo de galaxias de Hydra

                                                                    Aquí podemos contemplar el hermoso cúmulo de galaxias de Hydra

Miramos la bella imagen y vemos como dos brillantes y supermasivas estrellas destacan en el primer plano, pertenecen a la Vía Láctea, y están más cerca a nosotros. Más allá, lejos en el fondo, relucen las galaxias del cúmulo que, en el centro exhiben unas predominantes galaxias de más de 150.000 años-luz de diámetro, dos son elípticas de color amarillo (NGC 3311 y NGC 3309) la Azulada, es la espiral NGC 3312 y, justo por encima de la izquierda de NGC 3312 aparece una misteriosa pareja de galaxias superpuestas que están catalogadas como NGC 3314.

Estas imágenes, cuando se conmtemplan por personas no expertas, pueden también llevar al engaño. Por ejemplo, mientras que las estrellas del primer plano se encuentran a cientos de años-luz de distnacia, el cúmulo de galaxias de Hydra está a más de 100 millones de años-luz. Es una de los tres grandes cúmulos que hay dentro de los 200 millones de años-luz de la Vía Láctea. También es conocido como Abell 1060. En nuestro Universo, las galaxias están gravitacionalmente unidad en cúmulos y, a su vez, estos cúmulos en supercúmulos mucho mayores de muchos miles o cientos de miles de galaxias. La Imagen tiene un diámetro de cera del millón y medio de años-luz.

La gravedad es la gran fuerza estabilizadora del universo. Nunca lo abandona del todo; siempre está actuando, tratando de unir pedazos de materia. En cierto sentido, la historia entera del universo se puede pensar como un último y fútil intento de superar la gravedad. Sería asombroso, dada la naturaleza universal de la fuerza gravitatoria, que no hubiera desempeñado un papel importante en la formación de las galaxias.

Supongamos que el universo ha comenzado como una colección de materia uniformemente emplastada, en la que ninguna parte tenía mayor concentración de materia que otra. En esta situación se podría esperar se que la fuerza de la gravedad tuviera que actuar para unir todo lo que hay en el universo en un imposible sol central. Claro que, una cosa es pensarlo y otra muy distinta es la realidad.

El problema es que en cualquier colección de materia, por uniformemente distribuida que esté, habrá ligeras concentraciones en alguna parte. Incluso, aunque tengamos que descender al nivel microscópico para verlo, el movimiento aleatorio de los átomos resultará al final en un estado de la cuestión en el que hay un pequeño exceso de átomos en algunos puntos y un pequeño déficit en otros.

[lefevre_06.jpg]

No es difícil visualizar lo que pasa a continuación. En un momento dado, el pequeño extra de materia se acumula en alguna parte, bien por causa del movimiento atómico o por alguna otra razón. Debido al momentáneo exceso de materia en ese punto, la fuerza gravitatoria ejercida por los puntos de alrededor. Por consiguiente entrará más masa en el área en que tuvo lugar la concentración original. Con más masa, la concentración puede ejercer todavía más fuerza gravitatoria y atraer todavía más materia hacia ella. No importa lo equitativa que fuera la distribución inicial, una vez que se ha formado la más pequeña concentración, la masa uniforme se romperá en pequeños pedazos cada uno formado alrededor de la concentración original de masa. Esta inestabilidad inherente a una masa de materia fue señalada por primera vez en los años veinte por el astrofísico británico sir James Jeans.

A primera vista parece un rayo de esperanza. El universo debe romperse en pequeñas unidades de masa, y con suerte, estas unidades se convertirían en galaxias. Incluso resulta que, aunque sólo hemos hablado de un universo, el resultado de Jeans sigue siendo verdad si hay la expansión de Hubble. Pero el problema no es tan sencillo. La misma teoría que nos dice que una distribución uniforme de materia es inestable frente a la rotura de pequeños pedazos, también nos dice cuánto tardará el proceso de rotura.

(Lo que mostró realmente Jeans fue que una masa en gravitación es inestable para la rotura en piezas de cierto tamaño. Si una masa es más pequeña que el pedazo más pequeño en el que puede ser dividida, la masa será estable. En otro caso, se romperá. Esta prueba se conoce como el criterio de Jeans para los expertos tiene una bien conocida fórmula, la longitud de Jeans).

La cuestión viene a ser: ¿pueden actuar las fuerzas gravitatorias con suficiente rapidez después que ha tenido lugar el desparejamiento, para reunir la materia en grupos del tamaño de una galaxia, antes de que la expansión de Hubble ponga todo fuera del alcance? Una de las grandes conmociones para la comunidad astronómica de los años treinta fue que la respuesta a esta pregunta fue un rotundo “¡NO!” Lo que parecía ser el mecanismo más probable para la formación de galaxias –el mecanismo de inestabilidad gravitatoria que acabamos de describir- no funcionará en un universo en expansión.

Quizá este hecho fue lo que condujo a Jeans, al final de su vida, a proponer un universo en el que la materia se iba creando continuamente en los vacíos que dejaba la expansión galáctica. En esta visión, la formación de galaxias es un proceso continuo, no confinado a ningún tiempo particular de la historia del universo. Esta teoría de Jeans que, al final se clasificó como universo estacionario, sería abandonada después de la acumulación de pruebas muy convincentes a favor del big bang.

La idea del universo estacionario fue un modelo cosmológico desarrollado en 1948 por Herman Bondi, Thomas Gold y Fred Hoyle como una alternativa a la teoría del Big Bang que, finalmente, prevalecería como la teoría más probable y la que más se acercaba a la obervación del espacio interestelar y que vino a confirmar la radiación de fondo cósmico como la huella dejada por aquella explosión primera.

Todo lo relacionado con la formación de las galaxias resulta muy enigmático y para los entendidos también, ya que, a ciencia cierta, como se pudieron formar… Nadie lo sabe pero, las conjeturas abundan…

Después de formase los átomos, la situación habría sido marcadamente diferente. El hecho clave aquí es que la radiación no interacciona tan fuertemente con los átomos como con las partículas cargadas en un plasma. Podéis consultar la propia memoria para ver que esta afirmación es cierta. Si habéis estado en la cima de una montaña o de un edificio alto y habéis mirado desde allí al paisaje circundante, probablemente han podido ver lindes, por ejemplo, hasta unos cincuenta o quizá cien km de distancia. En algunos lugares, como las cimas de las montañas que se elevan en el aire límpido del norte de España, pueden ver incluso más lejos.

Pero antes de que vean esas lindes, es necesario que la luz viaje desde el objeto visto hasta su ojo. La simple experiencia de ver a lo lejos, por tanto, nos dice que la luz puede viajar por el aire largas distancias sin ser dispersada o distorsionada. Esto no puede suceder en un plasma. Que suceda en el aire, que está hecho de átomos y moléculas, muestra que la interacción de la luz con esas dos formas de materia debe ser muy diferente.

Así que en el universo inicial, la secuencia de los acontecimientos debe haber sido algo así. Hasta unos 100 000 años la materia estaba en forma de plasma y no se podían haber formado objetos del tamaño de una galaxia. A los 200 000 años, los átomos comenzaron a aparecer y la interacción de la luz con la materia comenzó a debilitarse. La formación de los átomos no tuvo lugar de golpe, sino que continuó hasta la cota del millón de años. Entre esos dos momentos, el maquillaje del universo viró desde el plasma a los átomos, y cuando terminó la transición quedaban pocas partículas cargadas libres. La forma dominante de la materia era el átomo.

En algún momento durante de la formación de los átomos, la fuerza de la interacción entre la materia y radiación disminuyó hasta el punto en el que la radiación ya no se quedara atrapada dentro del plasma. La radiación circulaba libremente y, desde ese momento en adelante, tuvo poco efecto sobre el proceso de formación de los átomos, la radiación se desparejó la de la materia.

Aunque el desparejamiento fue gradual, me gustaría hacer una referencia ocasional al proceso. Hablaré de él como si hubiera ocurrido hacia la cota de los 500 000 años, pues éste es un número redondo a medio camino de la congelación de los átomos. Esto es simplemente para abreviar; no quiero dar entender que el universo fuera opaco hasta 500 000 años más un segundo.

He encontrado una analogía muy útil para visualizar el proceso de desparejamiento. Cuando os tomeis una bebida, como té helado servida en un vaso alto, observen lo que sucede si remueven el azúcar. Al principio, la bebida se vuelve turbia, porque el azúcar está en forma de terrones relativamente grandes y los terrones grandes dispersan la luz con eficacia. Saben que la dispersión es eficaz porque la luz no puede atravesar todo el vaso, sino que es dispersada. Esta luz dispersa es la que da al té su apariencia turbia. En este estado, el té es análogo al universo antes de la formación de los átomos, cuando la radiación estaba interaccionando con el plasma. Tras unos pocos momentos, el té se vuelve repentinamente transparente de nuevo. Lo que ha sucedido es que el azúcar se ha disuelto y ahora existe en forma de moléculas que interaccionan débilmente con la luz. La luz pasa ahora a través del té sin ser dispersada y la niebla ha desaparecido. Este cambio de turbio a transparente en el té se parece a lo que sucedió en el universo cuando se formaron los átomos. El universo se volvió transparente al despejarse la radiación, y no quedaba nada que contrarrestase la fuerza de la gravedad cohesionando la materia.

Así, la interacción de la radiación y la materia impide el comienzo de procesos que pudieran conducir a las galaxias antes de que el universo tuviera 500 000 años de edad. Esto resulta ser un problema importante, a causa de la lógica que nos dice que las galaxias no tuvieron tiempo de formarse.

http://www.educarm.es/templates/portal/ficheros/websDinamicas/32/cumulosdegalaxias.jpg

Todo esto de las Galaxias siempre me ha planteado muchas dudas pués, lógicamente, las galaxias no pudieron haberse formado antes que los átomos. Podemos pensar en el Universo durante las primeras etapas de la expansión de Huble como formado por dos constituyentes: materia y radiación. La materia sufrió una serie de congelaciones al construir gradualmente estructuras más y más complejas. A medida que tienen lugar esos cambios en la forma de la materia, la manera en que interaccionan materia y radiación cambia radicalmente. Esto, a su vez, desempeña un papel fundamental en la formación de galaxias.

http://www.cookingideas.es/imagenes/antimateria.jpg

 

Aquella primera “sopa de plasma primordial” posibilitó que se juntaran protones y neutrones para formar el elemento más simple del Universo: El Hidrógeno. El elemento número uno de la Tabla Periódica que, evolucionado en las estrellas nos lleva a la complejidad de la materia.

La luz y otros tipos de radiación interaccionan fuetemente con partículas libres eléctricamente cargadas, del tipo de las que existen en el plasma que constituía el universo antes de que los átomos se formaran. A causa de esta interacción, cuando la radiación se mueve por el plasma, colisiona con partículas, rebotando y ejerciendo una presión del mismo modo que las moléculas de aire, al rebotar sobre las paredes de un neumático, mantienen el neumático inflado, Si se diese el caso de que una conglomeración de materia del tamaño de una galaxia tratase de formarse antes de la congelación de los átomos, la radiación que traspasaría el material habría destruído el conglomerado. Por la misma razón, la radiación tendería a quedar atrapada dentro de la materia. Si tratase de salir, sufriría colisiones y rebotaría.

http://farm3.staticflickr.com/2273/1813695464_ab42701060_z.jpg?zz=1

No es fácil sobreestimar la importancia de esta afirmación. Lo que significa es que mientras que la materia permaneció como plasma (es decir, mientras los átomos no se habían congelado) ninguna galaxia podría haberse foremado, o ni siquiera empezado a formarse. Se deduce que hubo un período determinado, que comenzó alrededor de los 100.000 años, en el que tuvo lugar la formación de Galaxias. Antes de ese Tiempo, la interacción de la radiación con la materia habría impedido que se formace cualquier cosa como nuestro Universo actual.

El problema de es explicar la existencia de la galaxias ha resultado ser uno de los más espinosos de la cosmología. Con todo derecho no deberían estar ahí y, sin embargo, ahí están. Es difícil comunicar el abismo de frustración que este simple hecho produce entre los científicos. Una y otra vez han surgido nuevas revelaciones y ha parecido que el problema estaba resuelto. Cada vez la solución se debilitaba, aparecían nuevas dificultades que nos transportaban al punto de partida.

Cada pocos años, la American  Physical Society, la Asociación Profesional  de físicos, tienen una sesión en una de sus reuniones en la que los Astrofísicos hablan de los más nuevos métodos de afrontar el problema de las galaxias. Si te molestas en asistir a varias de esas reuniones, dos son las sensaciones contradictorias que te embargan: Por una parte sientes un gran respeto por la ingenuidad de algunas propuestas que son hechas “de corazón” y, desde luego, la otra sensación es la de un profundo excepticismo hacia las ideas que allí se proponen, al escuchar alguna explicación de cómo las turbulencias de los agujeros negros, las explosiones durante la formación de galaxias, los neutrinos pesados y la materia oscura fría resolvía todos aquellos problemas…, puedes llegar a la conclusión de que, ewn verdad, no sabemos nada y queremos, ocultar nuestra ignorancia con prupuestas ¿descabellas? Bueno, algunas veces sí.

Lo cierto es que, a pesar de lo que se pueda leer en la prensa en comunicados oficiales y otros medios, todavía no tenemos ese “bálsamo milagroso” que nos permita responder a una pregunta simple:

¿Por qué está el cielo lleno de galaxias?

emilio silvera

 

 

 

 

2012 DA14

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El asteroide 2012 DA14 es un objeto próximo a la Tierra con un diámetro estimado de 45 metros y una masa estimada de 130 000 toneladas. Fue descubierto el 23 de febrero de 2012 por el Observatorio Astronómico de La Sagra en España siete días después de pasar a 0,0174 UA (2 600 000 km; 1 620 000 mi) desde la Tierra el 16 de febrero. Los cálculos muestran que el 15 de febrero de 2013 la distancia entre el asteroide y la Tierra será de 0,000228 UA (34 100 km; 21 200 mi). El acercamiento de 2012 DA14 es un récord para los objetos conocidos de este tamaño.

En unos días nos pasará muy cerca. Sólo 27.700 Km nos separarán del predrusco que, de caernos encima, haría estragos a pesar de ser tan sólo de dimensiones similares a medio campo de furtbol. De momento, ha batido el record de cercanía de un objeto espacial visitante a nuestro planeta en mucho tiempo. Incluso estará más cerca que algunos satélites artificiales.

Mejor que siga su camino y que no quiera repostar en nuestra “casa”. Estos visitantes no traen nada bueno consigo y, en la memoria tenemos los estragos que algunos de ellos hicieron en nuestro planeta en en las extinciones de espacies que ya no están con nosotros.

                                                     Según el seguimiento de la NASA… Hace 3 días

El paso del asteroide DA14 no será visible desde Nicaragua

                                                                                                  Hace 1 día

                          Prácticamente nos pasará acariciando nuestra atmósfera… ¡que siga su camino en paz!

No tenemos muy buen recuerdo de estos sucesos y en la mente de todos están algunos de ellos que, nada bueno dejaron en nuestro planeta durante muchísimos años, hasta el que el clima y la atmósfera se pudo regenerar y conseguir la estabilidad establecida para la vida.

emilio silvera

La variedad cotidiana del mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Diversidad    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Al menos nueve muertos por el tsunami en las Islas Salomón

 

Cuando la Naturaleza se enfada, los estragos son temibles y, ahora, de nuevo, seísmos de hasta 7 grados en la escala Richter han sacudido las Islas Salomón al día siguiente del tsunami y, según parece hasta el momento hay algunos muertos. A 9 kilómetros bajo la superficie del Océano pacífico, esa ingente masa de agua que, en sus entrañas esconde misteriosas fuerzas.

 

 

Esto sí, es vivir en plena Naturaleza. En el pueblo de Les Cerniers, al pie de la cordillera Dents-du-Midi, en los Alpes suizos. Rodeado de naturaleza y en plena montaña, el Whitepod Resort  se puede uno aislar del mundo cotidiano pero, ¿tienes tiempo y dinero para hacerlo?

Supermercados del Reino Unido e Irlanda retiran productos congelados por miedo a que contengan carne de caballo

 

¡Ojo! Lasañas y espaguetis congelados fueron eliminados ayer de los estantes de los supermercados Aldi y Tesco del Reino Unido e Irlanda, según cuenta «The Guardian»   En evitación de males mayores, podéis prestar atención a lo que lleváis a casa.

Los destinos que todo «seriéfilo» tiene que visitar

De izquierda a derecha, la ruta de Sexo en Nueva York, el Movie Tour en Nueva York, el rodaje de Person of Interest y participantes en la ruta de Gossip Girl. Todos los fans de las series que marcan y han marcado la historia de la televisión hemos soñado en numerosas ocasiones con visitar y dormir plácidamente en las habitaciones de nuestros personajes preferidos. Algunos desconocíamos dónde se ubicaba cada trama. Hoy en día, y gracias a internet, es posible situar en el mapa todas y cada una de las ficciones norteamericanas en el mapa.

Aunque no todas han sido rodadas en las ciudades en las que se basan, como «Friends», por ejemplo, sí que muestran las imágenes más típicas de donde se encuentran.

Pulse para ver el video

¡Que algunos pierdan el tiempo en estas tonterias! Con la que está cayendo y, seguramente, está en Paro

Pulse para ver el video

Un total de 28 provincias están hoy en alerta por viento, oleaje, temperaturas mínimas, nieve y aludes. Frío, Lluvia, Viento y Nieve… ¡Qué tiempecito!

 

 

 

Este del PP dice: “Siempre hay una oveja negra en el rebaño que lo mancha todo”. Tan carajotes como siempre. Lo único que me sorprende de todo esto es, ¿por qué no han denunciado ante el Juez toda esta movida de Barcena y sus papeles. Mientras tanto, Los instigadores de todo esto, rien y se frotan las manos esperando las ganancias que todo el embrollo les pueda reportar. Claro que… De los Eres… Nada de Nada.

Hay otros planetas potencialmente habitables alrededor de las estrellas rojas

                Hay otros planetas potencialmente habitables alrededor de las estrellas rojas

Astrónomos del Centro Harvard-Smithsonian para Astrofídsica en Massachussetts, han descubierto, con datos del telecopio Espacial Kepler de la NADSA, que el seis por ciento de las estrellas enanas rojas tienen planetas habitables del tamaño de la Tierra. El mñás cercano similar al nuestro se calcula que podría estar a no más de 13 años-luz de distancia. A la vuenta de la esquina como aquel que dice.

 

No dejemos de observar lo que por ahí fuera pueda pasar que, en el momento más inesperado, podremos recibir noticias que, serán una sorpresa y motivos para la maravilla de comprobar que, nunca estuvimos sólos en el vasto Universo.

 

¡Sí, podemos! - Podemos - Hombre - Ciencia - Noticias de Ciencia, Tecnología, Historia - Quo.es02

 

Lo cierto es que, no dejamos de sorprendernmos de… nosotros mismos. Hasta donde llegaremos

 

 

Ingenios robotizados que trabajan por nosotros en otros mundos

 

¡Sí, podemos! - Podemos - Hombre - Ciencia - Noticias de Ciencia, Tecnología, Historia - Quo.es07

 

Lo dicho, ¡Hay tántas cosas que no sabemos!

 

Estamos situados en un bello mundo en el que la luz y las plantas, el agua corriente, y con todo eso la vida, hizo posible el surgir de las consciencias que, ahora, son observadores de esa Naturaleza que los creo. Somo nosotros, los seres humanos que, de manera vertiginosa nos dirigimos hacia un futuro que no conocemos pero que, en realidad, estamos labrando día a día con nuestro quehacer diario. Si sabemos eso, tratemos de que, al menos, ese mundo nuevo que se nos viene encima sea algo mejor… ¿Podremos?

emilio silvera