lunes, 02 de febrero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuevas ideas, ideas viejas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  singularidad? ¿Salió el Universo del interior de un A.N.?

 

                                                 El Tiempo, el Universo, el Inicio de todo.

 

Se han llevado a cabo muchos modelos y las distintas teorías que circulan por ahí nos hablan de muchas cuestiones. Sin embargo, la relatividad general predice que tiene que haber una singularidad en el pasado, y cerca de esa singularidad la curvatura (del espacio) debe de ser muy alta; la relatividad clásica se anula, y habrá que tomar en cuenta los efectos cuánticos. A fin de comprender las condiciones iniciales del universo, debemos dirigirnos a la mecánica cuántica, y el estado cuántico del universo determinará las condiciones del universo clásico.

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

 

Resultado de imagen de Einstein irrumpió en la física siendo un desconocido Blog de emilio silvera

 

Cuando Einstein irrumpió en la Física, nadie le conocía y sólo era un oscuro empleado de la Oficina de Patentes de Berna en Suiza. Él, sin embargo, no había dejado de estar al día y seguí todo aquello que se pudiera mover en relñación a su pasión: La Física. Los escritos de Mach, de Lorentz, de Maxwell, de Planck… Todo ello le llevó a elaborar su famosa teoría relativista que convulsionó el mundo de la ciencia y, si me apuras mucho, hasta el ámbito filosófico cambió a partir de la relatividad. Una teoría que venía a decir cosas increibles como que la masa era energía congelada, que la luz marcaba el límite de la velocidad del universo, o, que el tiempo se ralentizaba si se marcha a velocidades cercanas a c. Esos extraños postulados no fueron, en un principio, bien entendidos por la física del momento.

 

 

Manuscrito de Einstein con la fórmula de la Teoría de la Relatividad. Cuando esto se dio a conocer al mundo, muchos miraron escépticos la fórmula y las implicaciones que de ella se podrían derivar, aquello podría cambiar lo firmemente establecido: ¡sacrilegio! ¿qué será de la Física si hacemos caso a lo que diga cualquiera?

Siempre ha sido así, el Status Institucional establecido, bien acomodado en los sillones de las academias y corporaciones, hacen la señal de la cruz, como para espantar al diablo, cada vez que aparecen nuevas ideas que, en realidad, les aterra, toda vez que les puede remover de sus asientos y prebendas, ya que, generalmente, dejan al descubierto que todo lo que predomina, está asentado en una falsa base de criterios y teorías que no siempre, son las correctas ni pueden ser demostradas y, mientras tanto eso ocurre, ellos, ¡a vivir que son dos días!

 

 

En el trabajo “No siempre la física se puede explicar con palabras”, el amigo Tom Vood nos deja el siguiente comentario que, siendo de interés aquí os lo inserto para que todos, podáis pensar en lo que aquí expone: Creo que sus ideas deben ser divulgadas.

!”Te dejo una entre muchas “revelaciones” reciente, calentitas solo para ti; que no quisiera que se divulgaran. Pero le dejo a su responsabilidad, si borrarlas, si usted cree que debo seguir como guerrillero de la ciencia o debe ser conocidas estas ideas por toda la comunidad científica. Disculpa, pero no logro discernir eso. Pero como admiras tanto a Einstein y yo soy tan tonto, te la insinúo por arribita: (Según el modelo de la interacción Luz-Luz).

https://www.emiliosilveravazquez.com/blog/2024/10/31/acercarse-a-la-velocidad-de-la-luz-trae-consecuencias-3/

¿Sabes por que las energíasmasas (partículas, o electromagnéticos confinados) no pueden superar la velocidad de la luz?

Bueno Einstein se moriría por explicárselo; a pesar de que para los modernos físicos esas preguntas ilegales no se le hacen a la física; recuerda el famoso: ¡no preguntes y calcula! Como diciendo, no eres físico, sino físico-matemático. O lo que no se, o no me puedo explicar, no lo puedes preguntar, es de mal gusto hacerlo, o de ignorantes. ¡Que daño Dios!

Bueno, pues una partícula según mi modelo es energíacampo confinada o electromagnético confinado en forma de energíamasa y por lo tanto cuando alcanza la velocidad de la luz, ocurre la ruptura de simetría que lo regresa a ser de nuevo energíacampo.

Más riguroso: Si una energíamasa alcanza la velocidad de la luz, se convierte en energíacampo.

De aquí se extraen miles de corolarios:

-Las energíasmasas (partículas) si alcanzan la velocidad de la luz, solo que una vez que la alcanzan, se rompe su topología de confinación, de energíasmasas y se liberan de nuevo como energíascampos. Algo que nunca dejaron de ser. Es que eso nunca las cinco física anteriores lo prohibían; por algo era. Mi modelo no mutila, incorpora,… Son los físicos, los que al no tener un buen modelo, medio que lo veían implícito así en la teoría; que eso no podía suceder. Pero si sucede, solo que nunca pueden sostenerse así.

 

 

 Tom parece tener en sus manos las respuestas pero… se les escapa entre los dedos

-Nunca una energíamasa (partícula con masa) podrá superar la velocidad de la luz. La conclusión Eisteniana que nadie se ha podido explicar. Vez que fácil es todo, una vez que se va ha la física.

-La velocidad de la luz no es una barrera, la barrera es la ley que confina la energíacampo, en forma de energíamasa. Esa topología, geometría; o relaciona geometrías/energía.

-Toda aniquilación, desintegración y  explosión tipo Big Bang (odio, o no creo lo del Big Bang) de los cuerpos del macrocosmo, es por la misma causa.

-De esto se extrae (del modelo también) la ley universal permitibilidad máxima de energía por unidad de espaciotiempo… El VICEVERSA; porque si no todo fuera energíascampos y la naturaleza no ocurre así: Toda energíacampo (luz,…) se confina como energíamasa, cuando su velocidad se hace cero.

-O lo que es lo mismo, ninguna partícula sin masa puede llegar a alcanzar el estado de reposo. Otra cosa que ningún modelo ha explicado, aunque es evidente que es un principio natural. Como todo lo que les explico. ¡Total, si eso es ilegal para el establishment!

De aquí se infieren muchas preguntas, conclusiones, paradojas, o explicaciones más racionales, a muchas cosas que decimos explicadas o que no hemos explicado todavía.

 

También nosotros estamos inmersos en un campo de energía-masa

 

La energíascampos (ustedes siempre piensen en la luz como yo al principio, para que no se pierdan) nunca puede estar en reposo (que la energía no puede estar en reposo es conocido, por eso es energía), pero como si existen circunstancias físicas muy especiales, donde esta puede ir disminuyendo su velocidad hasta que sea cero; la naturaleza resuelve esta paradoja, confinando las energíascampos, en diferentes topologías que donde se conserva como energíascampos (mas fácil verlo si piensan en luz); pero exteriormente se manifiesta como un ente, que puede estar en reposo o moverse como un todo; como lo que llamamos partículas con masa ( para mi energíasmasas).

Otra idea que puede ayudarlos a digerir esto: la energíacampo oscila, están acotadas entre la velocidad cero y la velocidad “c”. Esa oscilación, tipo superficie de agua hirviente, es lo que ocurre en la superficie de un agujero negro. Otra revelación de la riqueza física que despliega el modelo.

 

 

Te explico mejor: Cuando una energíacampo (luz) cae en un campo tan intenso como el de un agujero negro, su velocidad comienza a disminuir, llegado al “horizonte” (concepto que hay que ampliar) donde su velocidad seria cero; según mi modelo se confina como una energíamasa y trataría de moverse como un todo. Y aquí pueden ocurrir varias cosas que no te he explicado. Según la geometría que adopte la confinación, podrá ser un fermión izquierdo o derecho (una partícula o una antipartícula); así que puede ocurrir aniquilación…

También podría ocurrir que esa partícula (o energíamasa) alcance la velocidad de la luz; es decir regrese ha ser energíacampo, ya te explique por que. Ahora, la gravitación es energíacampo también, y aquí ocurre que ella penetra a la partícula (el mismo proceso de la aniquilación, todo es lo mismo, hay una regularidad natural entre el micromundo y el macromundo, que nadie ve), satura la estabilidad de su topología, y esta se desintegra (aquí tienes la explicación de todos los procesos de desintegración y con el, los tiempos de vida). Pero desintegración en mi razonamientos, en el modelo; es decaer en otra topología de menor energía y cuando esas topologías estables, quedan agotadas por las leyes naturales, que los físicos llamamos de conservación (carga, spin, Isoespin, CP, CPT,…); no le queda otro remedio a la energíamasa; que volver ha ser una energíacampo.

 

 

 

  Estaría bien que Tom pudiera, por fín, atrapar con los dedos de la Mente,  su teoría Luz-Luz (débil-fuerte) para asombrar al mundo.

Bueno espero haberte complacido en algo, “tuvisteis la exclusividad”, lo dejo ahí porque para que lo digieran y porque tengo muchos problemas que resolver. Tampoco tengo tiempo de leer lo que escribí (como ya es costumbre); pero ustedes son inteligentes como para no crucificarme, así que corrígeme ha tus Dones. Pueden divulgar a su antojo, como siempre les digo, “mi física de café con leche”. Tómense su tiempo para digerirlo, para acostumbrarse a estas nuevas concepciones físicas, esto párese merecerlo, parece novedoso.

Gracias amigo, te agradecemos las revelaciones que, si al fin se abren camino, nos podrían llevar a terrenos más cercanos a la realidad física del mundo. Daríamos un paso adelante en la comprensión del Universo y, como pasa siempre que obtenemos alguna nueva respuesta…¡Podríamos seguir planteando nuevas preguntas! que por cierto, ahora no podemos hacer por no tener ese conocimiento que tú tratas de entregar al mundo.

 

Gravedad cuántica

            Sigamos con la Gravedad Cuántica

 

La física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica. Todos hemos oido hablar de la incompatibilidad de las dos teorías que sustentan hoy por hoy toda la Física  y que, todosm también sabemos que, son teorías incompletas que necesitan de una reunificación en un todo poderoso que todo lo puesda explicar.

Durante el siglo XX, la física se fundamentó, en general, sobre dos grandes pilares: la mecánica cuántica y la teoría de relatividad. Sin embargo, a pesar de los enormes éxitos logrados por cada una de ellas, las dos aparecen ser incompatibles. Esta embarazosa contradicción, en el corazón mismo de física teórica, se ha transformado en uno de los grandes desafíos permanentes en la ciencia.

La teoría de la relatividad general da cuenta a la perfección de la gravitación. Por su parte, la aplicación a la gravedad de la mecánica cuántica requiere de un modelo específico de gravedad cuántica. A primera vista, parecería que la construcción de una teoría de gravedad cuántica no sería más problemático que lo que resultó la teoría de la electrodinámica cuántica (EDC), que ya lleva más de medio siglo con aplicaciones más que satisfactorias.

En lo medular, la EDC describe la fuerza electromagnética en términos de los cambios que experimentan las llamadas partículas virtuales, que son emitidas y rápidamente absorbidas de nuevo; el principio de incertidumbre de Heisenberg nos dice que ellas no tienen que conservar la energía y el movimiento. Así la repulsión electrostática entre dos electrones puede ser considerada como la emisión, por parte de un electrón, de fotones virtuales y que luego son absorbidos por el otro.

La misma mecánica, pero a través de los cambios de la partícula virtual de la gravedad el «gravitón» (el quantum del campo gravitacional), podría considerarse para estimar la atracción gravitacional entre dos cuerpos. Pero gravitones nunca se han visto. La gravedad es tan débil que puede obviarse a escala molecular, donde los efectos cuánticos son importantes. Ahora, si los cambios que podrían realizarse en los gravitones sólo se producen en la interacción entre dos puntos de masa, es posible, entonces, que en los cuerpos masivos se ignore los efectos cuánticos. El principio de incertidumbre de Heisenberg nos señala que no podemos medir simultáneamente la posición y la velocidad de una partícula subatómica, pero esta indeterminación es imperceptible para los planetas, las estrellas o las galaxias.

 

        Sí, pero, ¿qué me dices del gravitón?

 

Pero el principal obstáculo, sin embargo, es la cantidad de complicados procesos que implica examinar un gran número de gravitones. La gravedad se diferencia crucialmente del electromagnetismo al no ser lineal. Esta inlinealidad surge porque la gravedad posee la energía, y ésta tiene la masa, que gravita. En el lenguaje cuántico, esto implica que gravitones interactúan recíprocamente con otro gravitones, a diferencia de los fotones, que interactúan sólo con cargas y corrientes eléctricas y no con otros fotones. Ahora, como los gravitones interactúan el uno con el otro, las partículas de materia son rodeadas por complejas redes de gravitones virtuales que forman «lazos cerrados», muy semejante a «árboles bifurcados».

En la teoría de campo cuántica, los lazos cerrados son un signo de problema; ellos normalmente producen respuestas infinitas en los cálculos de procesos físicos. En EDC, tales lazos ocurren cuando un electrón emite y absorbe de nuevo su propio fotón. En ese caso, los infinitos son soslayados a través de un procedimiento matemático conocido como renormalización. Si éste es hecho correctamente, se obtienen razonables respuestas. La QED es lo que se llama una teoría renormalizable porque todos los infinitos pueden ser soslayados sistemáticamente; en efecto, solo un conjunto de operaciones matemáticas es suficiente para eliminar los infinitos.

 

      Parece que aquí puede estar la solución

 

Lamentablemente, tal procedimiento sistemático no es operativo cuando la mecánica cuántica es aplicada a la relatividad general; la teoría es, por lo tanto, «no-renormalizable». Cada proceso que implique progresivamente más lazos cerrados de gravitones introduce nuevas variantes de términos infinitos. Lo anterior, coarta la investigación para muchísimos fenómenos de interés, y sugiere que puede que haya básicamente algo que esté errado en la relatividad general, en la mecánica cuántica, o en ambas.

Pero miremos más allá del problema de renormalización, ¿qué pasaría si nos remontáramos a un momento en que todo lo que podemos ver, y hasta lo que hay más allá de nuestro «horizonte» de 13.000 millones de años luz, estaba comprimido hasta un volumen menor que el de un núcleo atómico? A estas densidades descomunales, que se dieron durante los primeros 10-43 segundos del universo (lo que se conoce como «tiempo de Planck»), tanto los efectos cuánticos como la gravedad habrían sido importantes. ¿Qué pasa cuando los efectos cuánticos convulsionan todo un universo?

 

http://farm6.static.flickr.com/5106/5682735713_f587c82312.jpg

 

Por ello, la física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica. Algunos teóricos creen que ya es tiempo de explorar las leyes físicas que prevalecían en el tiempo de Planck, y han propuesto algunas hipótesis interesantes. Sin embargo, no hay consenso sobre qué ideas hay que descartar. Lo que es seguro es que debemos rechazar nuestras queridas concepciones del espacio y el tiempo basadas en el sentido común: el espaciotiempo a muy pequeña escala podría tener una estructura caótica, espumosa, sin ninguna flecha temporal bien definida; puede que haya una generación y fusión continua de agujeros negros primores y minúsculos. La actividad podría ser lo bastante violenta para generar nuevos dominios espaciotemporales que evolucionarían como universos independientes. Eventos más tardíos (en particular la fase inflacionaria que se describe en el capítulo XVI) podrían haber borrado cualquier rastro de la era cuántica inicial. El único lugar donde podrían observarse efectos cuántico-gravitatorios sería cerca de las singularidades centrales de los agujeros negros (de donde ninguna señal puede escapar). Una teoría sin consecuencias evidentes fuera de estos dominios tan exóticos e inaccesibles no es verificable. Para que se la tome en serio debe estar íntimamente insertada o, en su efecto, articulada en alguna teoría con fundamento empírico, o bien debe percibirse como una conclusión inevitable y convincente.

Durante las últimas décadas, varias tentativas han sido hechas para buscarle una solución al problema de la no-renormalización de la gravedad cuántica y caminar hacia la unificación de todas las fuerzas. La aproximación más esperanzadora para alcanzar ese viejo anhelo de los físicos es la teoría de las «supercuerdas», que ya anteriormente vimos.

 

 

Sin embargo, recordemos aquí que en la teoría de las supercuerdas se presume una escala natural energética determinada por la energía de Planck, alrededor de unos 1019 GeV. Esto es 1017 veces más alto que los tipos de energías que pueden ser producidos en los aceleradores de partículas más grandes, lo que imposibilita contrastar con la teoría la existencia misma de las supercuerdas. No obstante, los teóricos esperan que a escala de energía accesible tanto la física, la relatividad general, el electromagnetismo, las fuerzas nucleares débiles y fuertes, las partículas subatómicas surjan de la teoría de las supercuerdas como una aproximación. Así, se espera conseguir con ese modelo de cuerdas no sólo una ajustada descripción de la gravedad cuántica, sino que también intentar con ella la anhelada unificación de las fuerzas.

 

 

La teoría defiende la existencia de diez dimensiones espaciales y una temporal. Esas dimensiones estarían en las propias cuerdas, y por eso no las vemos. Con esto de las dimensiones me pasa lo mismo que con la “materia oscura”, son buenos artilugios para pasar página y dar por bueno lo que aún no se ha podido verificar.

Lamentablemente, no hay un único límite de baja energía para la teoría de las supercuerdas como tampoco un sólo modelo de la teoría. Por un tiempo, lo anterior pareció como una barrera infranqueable, pero en años recientes, y a través de una mayor abstractación matemática, se ha construido un nuevo modelo de supercuerdas conocido como «la teoría M» que amalgama dentro de ella otras teorías de supercuerdas.

Por ahora, es demasiado pronto para pronunciarse si la teoría M es finalmente el medio que reconciliará la gravitación y la mecánica cuántica, pero sí debería poder cumplir con algunas expectativas, como ser las de explicar algunos hechos básicos sobre el mundo físico. Por ejemplo, el espaciotiempo de cuatro dimensional tendría que surgir de la teoría, más bien que ser insertado en ella. Las fuerzas y las partículas de naturaleza también deberían ser descritas, preferentemente incluyendo sus propiedades claves, como fuerzas de interacción y masas. Sin embargo, a no ser que la teoría M, o una variante futura, pueda ser proyectada a la baja energía de los laboratorio de física para poder ser contrastada, corre el riesgo de empezar a ser olvidada y finalmente archivada como uno más de los muchos y elegantes ejercicios matemáticos que se han elaborado para la física en los últimos tiempos.

 

Cuerdas o filamentos vibrantes en el corazón de la materia

 

Si la teoría de supercuerda es una pérdida de tiempo o no, ello está por verse. Por ahora, el desafío más duro a superar por la teoría es entender por qué el espacio de 9 dimensiones más el tiempo se «comprime» bajo el aspecto de nuestro espacio habitual tetradimensional (el tiempo más las tres dimensiones espaciales), en vez de hacerlo en tres o cinco dimensiones, y ver cómo sucede esto. Aún hay un espacio infranqueable entre la teoría de supercuerdas y los fenómenos observables. La teoría de supercuerdas plantea problemas demasiado difíciles ahora mismo para los matemáticos. En este aspecto, es muy diferente de la mayor parte de teorías físicas: normalmente, el aparato matemático de las teorías se desarrolla antes que éstas. Por ejemplo, Einstein utilizó conceptos geométricos desarrollados en el siglo XIX, no tuvo que partir de cero para construir las matemáticas que necesitaba.

Por su parte, los físicos cuerdistas se acorralan en lo que es fácil de comprobar, es difícil de calcular y lo que es fácil de calcular, es difícil comprobar. En consecuencia, pareciera que el camino que se está siguiendo es pretender desarrollar la teoría más y más, y hacer cálculos cada vez más difíciles de manera de poder predecir cosas que sean fáciles de observar. ¿El camino tendrá tiempo y final? Nadie tiene por ahora la respuesta.

 

Aquella charla … 23-28 Julio, MPI, Múnich, Alemania, a cargo de John H. Schwarz (Caltech), uno de los padres de la teoría de cuerdas, no tuvo desperdicio.

El físico Eugene Wigner escribió un célebre artículo sobre este particular que llevaba por título «La irrazonable efectividad de la matemática en las ciencias físicas». También es un hecho notable que el mundo exterior muestre tantas estructuras susceptibles de descripción en «lenguaje» matemático (sobre todo cuando tales estructuras se alejan mucho de las experiencias cotidianas que moldearon la evolución de nuestros cerebros). Edward Witten, el principal experto en supercuerdas, describe dicha teoría como «una física del siglo XXI que cayó en el siglo XX». Sin embargo, sería más extraordinario que seres humanos de cualquier siglo llegaran a desarrollar una teoría tan «final» y general como pretenden ser las supercuerdas.

Salvo mejor parecer.

 

Emilio Silvera

¡Cuántas maravillas! Y, nuestra Mente, entre ellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:

 

Estoy convencido de que la Física Teórica es, realmente, filosofía» | Física para tod@s

                        “Debemos saber. Sabremos”.

 

Hilbert nos hacía su planteamiento que era obtener la respuesta a tres importantes preguntas:

  1. ¿Son las matemáticas completas, es decir cualquier proposición puede ser probada o rechazada?
  2. ¿Son las matemáticas consistentes, es decir no es posible demostrar algo falso?
  3. ¿Son las matemáticas falsables, es decir cualquier proposición se puede demostrar como cierta o falsa tras una secuencia finita de pasos?”
fotones
Sin la luz, nuestro Universo sería diferente, y, la Vida … También
La radiación de las estrellas masivas define la forma de los nuevos sistemas planetarios
  Radiantes estrellas nuevas que brillan con la luz de la “juventud” en el azul ultravioleta de fotones

 

 

File:CometDonati.jpg

Astronomy & Astrophysics 101: AsteroidsGifs Animados de Cometas

 

La importancia de la Simetría en la Naturaleza. Y, no digamos de saber emplear la lógica

 

 

No sería descabellado decir  que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría deca-dimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.

 

Cómo explica la teoría de cuerdas el fenómeno de la gravedad?

 

La teoría de cuerdas plantea que las partículas subatómicas – electrones, fotones, quarks – no serían puntuales, sino que estados vibracionales en forma de pequeñas cuerdas o filamentos. A veces parece que la ciencia tiene las respuestas a todos los fenómenos que ocurren en nuestro planeta y en el Universo

Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física.  De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.

 

 

Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.

 

 

                     Geometría → teoría de campos → teoría clásica → teoría cuántica.

 

Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

 

File:Beta function on real plane.png

        Función beta. Representación de la función valores reales positivos de x e y.

Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de , prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

 

The roots and fruits of string theory

            Gabriele Veneziano            

 

Mahiko Suzuki | Physics

                         Mahiko Suzuki

En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, como la teoría de cuerdas fue descubierta atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.

 

    Así, Witten dice:

“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”

 

¿Se podrá verificar la Teoría de cuerdas?

Dicen que se necesitaría la energía de 1019 GeV, de la que no podemos disponer.

Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.

 

 

Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.

El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de la teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

 

¿Por qué diez dimensiones?

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.

Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos explicar por qué se discriminan las diez dimensiones.  La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.

 

Diagramas de Lazo (loop diagrams): el control a detalle⚡ Lo que debes saber para entender los diagramas de lazos de  instrumentación | ANSI/ISA 5.4 ⚡

 Lo que debes saber para entender los diagramas de lazos de instrumentación.

Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.

 

2013 septiembre 14 : Blog de Emilio Silvera V.

 

Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de , es imposible verificarla.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

 

Las misteriosas funciones modulares! : Blog de Emilio Silvera V.

Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. extraña función contiene un término elevado a la potencia veinticuatro.

 

La magia esconde una realidad

El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

 

 

Comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

f(a,b) = \sum_{n=-\infty}^\infty a^{n(n+1)/2} \; b^{n(n-1)/2}

“En matemática, la función theta de Ramanujan generaliza la forma de las funciones theta de Jacobi, a la vez que conserva sus propiedades generales. En particular, el producto triple de Jacobi se puede escribir elegantemente en términos de la función theta de Ramanujan. La función toma nombre de Srinivasa Ramanujan, y fue su última gran contribución a las matemáticas.”

¡La Ciencia! ¿Cómo podríamos definirla?

Como un revoltijo de hilos entrecruzados que son difíciles de seguir, así son las matemáticas de la teoría de cuerdas

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.

En el análisis final, el origen de la teoría deca-dimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente auto-consistente), pero no sabemos por qué se seleccionan estos números concretos.

 

Ghhardy@72.jpg

   Godfrey Harold Hardy

G. H. Hardy, el mentor de Ramanujan,  trató de estimar la capacidad matemática que poseía Ramanujan.   Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80.   A Ramanujan le asignó una puntuación de 100.  Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia.   Hardy señaló:

“Parecía ridículo importunarle sobre como había descubierto o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.

Ramanujan's Identities

Hardy recordaba vivamente:

-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney.  Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”

– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable una suma de dos cubos en dos formas diferentes.

(Es la suma de 1 x 1 x 1  y 12 x 12 x 12, y la suma de 9 x 9 x 9  y  10 x 10 x 10).

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

En 1.919 volvió a casa, en la India, donde un año más tarde murió  enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración.  En 1.976, sin embargo, se hizo un nuevo descubrimiento.   Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage.   Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

 

Comentando cuaderno perdido, el matemático Richard Askey dice:

“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.  Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

 

Fórmula de Ramanujan determinar los decimales de pi

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los “accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

 

          Nuestro mundo asimétrico contiene hermosas simetrías

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

 

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil.  Cualquier teoría, afirman, debe ser verificable.   Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!

El principal problema, es teórico más que experimental.  Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría.  Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

 

Volviendo a Ramanujan…

Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado como pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es la que aparece más arriba en el lugar número 21 de las imágenes expuestas y utilizada para realizar aproximaciones del Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un número entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.

Publica: emilio silvera

Para saber más:
“HIPERESPACIO”, de Michio Kaku,( 1996 CRÍTICA-Grijalbo Mondadori,S.A. Barcelona) profesor de física teórica en la City University de Nueva York. Es un especialista a nivel mundial en la física de las dimensiones superiores ( hiperespacio). Despide el libro con unas palabras preciosas:
”Algunas personas buscan un significado a la vida a través del beneficio, a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.

Siempre buscaremos nuevas teorías de la Física y del Universo.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Se cumplen 30 años del renacimiento de ISOLDE | CPAN - Centro Nacional de  Física de Partículas, Astropartículas y Nuclear

“El 26 de mayo de 1992 se celebró una ceremonia para festejar el traslado de ISOLDE desde el Sincrociclotrón (SC) del CERN al PSB, donde sigue actualmente conectado.”

El Experimento ISOLDE es una instalación del CERN dedicada a la investigación en física nuclear , especialmente con isotopos exóticos. ISOLDE utiliza un acelerador de partículas para producir haces de estos isótopos, que luego se utilizan para realizar experimentos que estudian la estructura del núcleo atómico, la formación de elementos en las estrellas y otros fenómenos en física atómica, de materiales y biofísica. 

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.

  • La fisión del mercurio180 se esperaba que fuera simétrica.
  • La fisión del mercurio– 180 resultó ser asimétrica.
  • La fisión asimétrica produjo dos núcleos con masas diferentes. 
  • La fisión nuclear simétrica produce fragmentos de masa similar. contradice la expectativa de una fisión simétrica, desafiando el entendimiento actual del núcleo atómico.

 

Photograph taken inside the ISOLDE experimental hall at CERN

 

La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el Espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.

 

Deducción de las ecuaciones de Einstein para la Relatividad General |  Relatividad

 

Las ecuaciones de campo de la Teoría General de la Relatividad, formuladas por Albert Einstein, nos dicen como la materia y la energía curvan el Espacio-Tiempo, y como esta curvatura afecta al movimiento de la materia. En esencia, estas ecuaciones establecen que la geometría del espacio-tiempo (su curvatura) está directamente relacionada con la distribución de la materia y la energía. 

 

LA ECUACION DE SCHRÖDINGER

La ecuación de Schrödinger es una ecuación fundamental en la mecánica cuántica que describe como cambia el estado físico de un sistema cuántico con el tiempo. Es una ecuación de onda que predice la probabilidad de encontrar una partícula en un lugar determinado y, por lo tanto, es crucial para entender la física a nivel atómico y subatómico. 

Estas como otras muchas asombrosas ecuaciones son prodigios de la Mente Humana que ha sabido utilizar las matemáticas para explicar lo que las palabras no podían.

Entre los teóricos, el casamiento de la Relatividad General y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas” ·Teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Vista hemisférica de Venus. (Cortesía de NASA)

 

El segundo planeta a partir  del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.

 

6,8 mil resultados de imágenes, fotos de stock e ilustraciones libres de  regalías para Atmósfera de venus | Shutterstock

 

La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.

 

 

 

 

Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar. Simplemente en una galaxia, por ejemplo la nuestra, existen cientos de miles de millones de planetas de los más diversos pelajes, y, no pocos, serán muy parecidos a nuestra Tierra y estarán situados en la zona adecuada para que, la vida, pudiera surgir en ellos como lo hizo aquí, toda vez que, tanto aquellos planetas como el nuestro, están sometidos a las mismas fuerzas, a las mismas constantes, y, en consecuencia, a situaciones iguales, ¡iguales resultados!

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo cientos de miles de millones de mundos, también debe estar abarrotados de una diversidad Biológica inimaginable. No creo que estemos solos en tan vasto universo.

Siempre buscaremos nuevas teorías de la Física del Universo : Blog de  Emilio Silvera V.

Hace algún tiempo que los medios publicaron la noticias:

“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”

 

 

Imagen de Archivo donde Einstein escribe una ecuación sobre la densidad de la Vía Láctea en el Instituto Carnegie en Pasadena (California)

“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einstein nunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”

 

Diez preguntas que podrías tener sobre los agujeros negros - NASA CienciaEl misterio de la formación de un magnetar, ¿resuelto? | ESO España

 

Si hablamos de nuestra Galaxia, la Vía Láctea, lo hacemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlsares, los agujeros negros o los magnetar, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente “insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.

 

Sí, somos parte del Universo : Blog de Emilio Silvera V.

                     Tenemos el Universo dentro de nuestras mentes

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

La teoría del todo: el tensor Alena unificaría el universo

Einstein pasó los últimos 30 años de su vida buscando la ecuaciones de la Teoría del Todo y murió sin encontrarlas. Recuerdo que esas ecuaciones que iba formulando eran expuestas en un escaparate de una lujosa tienda de Nueva York en la Quinta Avenida, la gente se agolpaba para verlas sin entender absolutamente nada de lo que significaban y sus mensajes.

Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que tesolver. ¡Menos mal!

La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materia y los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

 

 

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

Comprender de manera armoniosa cómo se juntan las dos mejores teorías de la física que tenemos actualmente, la cuántica y la relatividad general… ¡Sin que surjan infinitos!

La armoniosa combinación de la relatividad general y la mecánica cuántica será un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones,  aparece el esquivo gravitón implicando con ello que la teoría contiene Implícitamente una teoría cuántica de la Gravedad.

 

La materia oscura podría producir una antimateria capaz de atravesar la Vía  Láctea : Revista Pesquisa Fapesp

    Ahora, el LHC, tratarán de buscar partículas Partículas Super-simétricas y de la “materia oscura

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

 

¿Serán las cuerdas las que hacen de nuestro Universo el que es?

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.

 

          Muchos sueñan con encontrar esa Teoría del Todo

Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.

 

Simplified optical layout of the GEO 600 detector. GEO 600 is a... |  Download Scientific Diagram

                                                                         GEO 600

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.

 

 

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

 

 

 

Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

Publican animaciones de lapsos temporales que muestran el ...

 

La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.

 

La Relatividad General: La teoría que curvó nuestra visión del universo  Imagina que el espacio y el tiempo son una tela flexible. Si colocas una  estrella sobre ella, la tela se deforma

         La relatividad general nos dijo cómo es la geometría del Universo

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

 

 

                   Pero… ¿somos en verdad tan insignificantes?

Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.

Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.

Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.

 

En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada,  (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación (Iv = 2hc-2v3, con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.

Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usadas principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad.  Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimensionalidad está presente en la constante de estructura fina (2πe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega α (alfa).

 

 

= 1.616255(18)×10−35 m.

= 2.176434(24)×10−8 kg

= 5.391247(60)×10−44 s.

= 1.416784(16)×1032 K.

 

Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang. El tiempo de Planck por ejemplo, expresado por , tiene un valor del orden de 10-43 segundos, o lo que es lo mismo, el tiempo que pasó desde la explosión hasta el tiempo de Planck fue de: 0,000.000.000.000.000.000.000.000.000.000.000.000.000.001 de 1 segundo. En la fórmula, G es la constante universal de Newton, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

Es una unidad de tiempo infinitesimal, como lo es el límite de Planck que se refiere al espacio recorrido por un fotón (que viaja a la velocidad de la luz) durante una fracción de tiempo de ínfima duración y que es de 0,000.000.000.000.000.000.000.000.000.000.001 de cm.

 

 

Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…

Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratan de buscar partículas super-simétricas y el origen de la “materia oscura”.

 

Fermilab - Wikipedia, la enciclopedia libreFermilab | About FermilabLos muones que pueden revolucionar la física

 

Haber fabricado acelerados tan potentes como para poder detectar la partícula de Higgs, esa partícula responsable de proporcionar masa a todas las demás partículas, en tiempos pasados era un sueño que pudimos hacer realidad y, de la misma manera, soñamos ahora con tener un Acelerador tan Potente como para poder encontrar las cuerdas o las partículas simétricas de las que se cree están conformadas. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.

Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienen atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.

Emilio Silvera V.

Fuerzas invisibles que inciden en nuestras vidas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

20150811 LHC2

El LHC nos lleva a las entrañas de la Materia

 

¡La Naturaleza! Que tenemos que descubrir

 

 

Tratamos de buscar el origen de la vida y sabemos que comenzó con base química y debido a una serie de parámetros que conforman parte de las llamadas constantes de la Naturaleza, el surgir de aquella primera célula replicante que inició la fascinante aventura de la vida, el evolucionar de la materia “inerte”… ¡Hasta los pensamientos! ¿La Consciencia de Ser?

d-brana

 

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

 

grandes-tormentas-solares-fuente-quantum-com-do

   Las grandes tormentas solares inciden sobre nosotros y nuestras obras

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

 

[stephan_quinteto_2009_hubble.jpg]

 

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

 

Qué es el campo gravitatorio: características y fórmulas

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

 

 

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.

 

Masa de las partículas subatómicas

 

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

 

Nucleón: qué es y tipos - Resumen

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 1015 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glueen inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

 

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpgQué es un fotón? Usos en la energía solar | Svea Solar

 

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

 

La radiación cósmica: Por qué no debería ser motivo de preocupación | OIEAUna lluvia imperceptible de rayos cósmicos

 

    Una de las fuentes productoras de rayos cósmicos es el Sol. Abundante e imperceptible, como una tormenta muda, a todas horas caen sobre nosotros millones de partículas elementales. No hay paraguas que frene el torrente de neutrinos solares que atraviesa cada centímetro cuadrado de nuestro planeta y nuestro cuerpo, como imágenes espectrales de sí mismos. Desde arriba, de día, y desde abajo, de noche. La energía que la mayoría de ellos transporta apenas alcanza la milésima parte de la masa de un protón.

 

 

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Emilio Silvera Vázquez

¿Será igual el Universo en todas partes?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

13050204tiposestrellas
En todo el Universo suceden las mismas cosas. La evolución de una estrella como el Sol, siempre será la misma, no importa en qué lugar esté. Cuando agote su combustible nuclear de fusión, viajará hasta la Gigante Roja, formará una Nebulosa planetaria y, finalmente, quedará como enana blanca.
Pequeño pero voraz: así es el agujero negro que engulle parte de una  estrella cada vez que pasa cerca de ella
https://www.lasexta.com/tecnologia-tecnoxplora/ciencia/pequeno-pero-voraz-asi-agujero-negro-que-engulle-parte-estrella-cada-vez-que-pasa-cerca-ella_2023090864fae4227caa7b0001b292f8.html
Bueno, independientemente de las cosas que en una región particular pueda estar ocurriendo, en el contexto general, sí es igual el Universo en cualquier lugar que podamos mirar. Las mismas fuerzas y constantes, la misma materia, las mismas transiciones de fase y, seguramente también la misma vida, se repite una y otra vez a lo lo largo y a lo ancho de todo el Universo.
En lo referente a la vida, (creo) será diversa como aquí en la Tierra y, seguramente, independientemente de las formas que pueda adoptar, estará basada en el Carbono, parece lo más probable aunque nunca se sabe. Seres vivos de un planeta con tres veces la masa de la Tierra no pueden ser iguales que los de la Tierra, y, si la masa es la mitad de la terrestre, sus habitantes tampoco tendrán la misma característica física que nosotros.

Imagen relacionada

 

La vieron caer y corrieron hasta el lugar. La escena era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡

“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él recogía muestras de aquella extraña nave accidentada y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?

 

¿Cómo pudo la materia “inerte” evolucionar hasta los pensamientos

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

 

⚗️ ¿Qué son los Elementos Transuránicos? ⚗️ [Fácil y Rápido] | QUÍMICA |

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

 

Niveles de organización de la materia viva

            ¡Parece que la materia está viva! ¿Cómo se pudo organizar como lo hizo?

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico:  no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.

 

La física como ciencia | Física 1

Pensemos en lo infinitesimal que son los electrones… ¡Sin ellos no habría átomos, moléculas, células ni materia!

 ¡No por pequeño, se es insignificante! De todas las maneras, las medidas dependen del contexto en el que se estén midiendo. El conjunto de la imagen de arriba nos parecerá grande pero, ¿Cómo de grande es si lo comparamos con la Galaxia?

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

Cómo calcular la energía de un fotón

 

      No pocas veces nos hemos preguntado: “¿Cómo puede tener energía los fotones si no tienen masa? Y si no tienen masa y solo energía, sabiendo que masa y energía son dos aspectos de la misma cosa (E=mc2), se puede comprender que un agujero negro con su enorme fuerza de gravedad, pueda incidir en la luz.

h = 6.626 × 10 -34 julios·s

c = 2.998 × 108 m/s

Al multiplicar estos dos se obtiene una expresión única, hc = 1.99 × 10-25 julios-m

La relación inversa anterior significa que la luz con  fotones de alta energía (como la luz “azul”) tiene una longitud de onda corta. La luz que consta de fotones de baja energía (como la luz “roja”) tiene una longitud de onda larga.

 

Una remota explosión de rayos gamma golpea la Tierra

 

“Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio. El fotón tiene masa cero y viaja en el vacío con una velocidad constante c.”

“El fotón tiene una masa cero, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.”

 

Resultado de imagen de Colapso gravitatorio de dos estrellas de neutrones

 

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

 

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

 

 

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler,  es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropíade un agujero negro.

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

Por qué las ondas gravitacionales son el futuro de la astronomía – KW Foundation

       Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿qué cosa es?

Antes se denominaba éter fluminígero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vinieron  a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón (que dicen haber hallado pero que yo, no estoy muy seguro de que así sea) que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándar de la Física de Partículas se afiance más.

 

Todos somos ignorantes | Campo de Gibraltar Siglo XXI

 

Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.

Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.

Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.

Emilio Silvera Vázquez