martes, 25 de junio del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre buscaremos nuevas teorías de la Física del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

8 diciembre 2010. El descubrimiento de un nuevo tipo de fisión, da un vuelco a un principio de la teoría nuclear. La observación de una inesperada reacción nuclear por parte de un isótopo inestable de mercurio ha generado un extraño misterio. El enigma está ayudando a los teóricos a abordar uno de los problemas más complejos de la física: el desarrollo de un modelo más completo del núcleo atómico.

Resultado de imagen de El experimento en ISOLDE involucra el disparo de un haz de protones a un blanco de uranio

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.

Photograph taken inside the ISOLDE experimental hall at CERN

La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Resultado de imagen de Vista hemisférica de Venus. (Cortesía de NASA)

 

 

Vista hemisférica de Venus. (Cortesía de NASA)

 

El segundo planeta a partir  del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.

La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.

 

 

 

 

 

 

 

 

Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar

 

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariaciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo miles de millones de mundos, también debe estar abarrotado de una diversidad de clases de vida que, al igual que ocurre aquí en la Tierra, pudieran (algunas de ellas) estar haciéndose la misma pregunta: ¿Estaremos sólos en tan inmenso Universo.

 

Hace algún tiempo que los medios publicaron la noticias:

“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”

 

 

 

Imagen de Archivo donde Einstein escribe una ecuación sobre la densidad de la Vía Láctea en el Instituto Carnegie en Pasadena (California)

“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einstein nunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”

Si hablamos de nuestra Galaxia, la Vía Láctea, lo hacemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlñsares, los agujeros negros o los manétares, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente“insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.

Resultado de imagen de Tenemos el Universo dentro de nuestras mentes

                             Tenemos el Universo dentro de nuestras mentes

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

Resultado de imagen de Una teoría que nos de todas las respuestas

Nos podemos encontrar con el hecho de que, la tan cacareada Teoría del Todo… ¡Nos traiga más preguntas que respuestas!

Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que tesolver. ¡Menos mal!

La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materiay los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

 

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones,  aparece el esquivo gravitón implicándo con ello que la teoría contiene implicitamente una teoría cuántica de la Gravedad.

                Ahora, en la nueva etapa del LHC, tratarán de buscar partículas supersimétricas

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.

          Muchos sueñan con encontrar esa Teoría del Todo

Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.

GEO600 is a key technology development center of the international gravitational-wave research community. Technologies tested in the GEO project are now used in all large gravitational-wave detectors in the world.

GEO 600

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

 

Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.

         La relatividad general nos dijo cómo es la geometría del Universo

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividadgeneral y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

 

                   Pero… ¿somos en verdad tan insignificantes?

Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.

Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.

Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.

En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada,  (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación, con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.

Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usado principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad.  Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimiensionalidad, está presente en la constante de estructura fina (2pe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega a (alfa).

Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang.

Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…

Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratán de buscar partículas supersimñétricas y el origen de la “materia oscura”.

Resultado de imagen de EL LHC

Como nos dice Fandila, quizás en el futuro no hagan falta utilizar tantas energías para llegar a lo más profundo de la materia y, habremos encontrado nuevos caminos que, delante de nosotros, no los podemos ver por el momento.

Desgraciadamente, aún no se ha podido hallar el Gravitón, Lo que sabemos es que, para encontrar los objetos más pequeños, necesitamos utilizar las energías más potentes. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.

Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienem atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.

emilio silvera

El destino del Sol y nuestra vecindad

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Resultado de imagen de Nuestro Sol evoluciona hacia gigante roja

Cada segundo fusiona 4.654.600 toneladas de hidrógeno en 4.650.000 toneladas de Helio. Las 4.600 Tn que se pierden por el camino, son eyectadas al Espacio exterior en forma de luz y calor, de esa luz y ese calor, a la Tierra nos llega 2.000 millonésimas partes que son suficientes para hacer posible la fotosíntesis de las plantas, que el clima del planeta sea amigable y se produzcan las estaciones en simbiosis con la rotación de la Tierra… Esa luz y ese calor es la base de la cadena trófica, esencial para los seres vivos.

Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites  de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.

Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria qwue podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.

En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.

Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.

La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.

Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.

La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.

                                         Ganímedes desde la sonda Galileo.

Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.

Resultado de imagen de http://impactobarahonero.com/home/wp-content/uploads/2011/12/titan.jpg

Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e  hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.

Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.

Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; CallistoAmaltheaLeda, etc. en Júpiter; PanAtlasPrometheusPandora, etc. en Saturno; CordeliaOpheliaBiancaAriel, etc. en Urano; GalateaLarissaTritónNereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.

                                            Mercurio y Venus

De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor  del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.

Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.

Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.

                             Olimpus Mont en Marte

El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…

Tharsis Montes: de Norte a Sur, Ascraeus MonsPavonis Mons y Arsia Mons. Arriba a la derecha se halla Tharsis Tholus, y abajo, Noctis Labyrinthus, la extensión occidental de Valles Marineris.

Olympus Mons alt.jpg

Viking  orbiter view of Olympus Mons with its summit calderaescarpment, and aureole
Alba Patera - topography map.png
             Alba Patera, tipo Volcán

La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.

Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido compribar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta  tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho. También se han hallado huellas mareales de antiguos mares y océanos.

Phoenix landing.jpg

Marte

Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.

Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.

Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.

 Pero todo de queda ahí, en una interesante experiencia que tenemos que confirmar

Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.

Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo gravedad artificial que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria,

Resultado de imagen de Naves espaciales del futuro

Que de alguna manera consigan “burlar” la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.

No podemos descansar.

emilio silvera

¿Destruye la Ciencia la Belleza? ¿O, por el contrario nos la enseña?

Autor por Emilio Silvera    ~    Archivo Clasificado en Belleza sí    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Cuando escuché al docto astrónomo,

cuando me presentaron en columnas las pruebas y guarismos,

cuando me mostraron las tablas y diagramas para medir, sumar y dividir,

cuando escuché al astrónomo discurrir con gran aplauso de la sala,

qué pronto me sentí inexplicablemente hastiado,

hasta que me escabullí de mi asiento y me fui a caminar solo,

en el húmedo y místico aire nocturno,

mirando de rato en rato, en silencio perfecto a las estrellas.

Whitman

 

 

Lo que el poeta no sabía era que, gracias a esas estrellas que en silencio miraba, estaba él aquí, en las estrellas se formaron los materiales de los que los seres vivos estamos hechos. Así que, las estrellas son mucho más que puntitos brillantes en el cielo de la noche oscura.

 

 

Igual que la niña mira ensimismada hacia las estrellas lejanas del cielo, tratando de escoger la más hermosa, ponerle un nombre y hacerla suya. También muchas personas han tratado de hace los mismo cuando, en soledad, en espacios abiertos y en plena Naturaleza, ha podido estar en simbiosis plena con aquellos cuerpos celestes que, mediante invisibles hilos de plata, tienen atada la Tierra para que, nunca, podamos dejar de verlas.

Para los amantes de la belleza, el Universo supo muy bien crear sus obras y, mediante su dinámica y su ritmo de movimiento y energía, ha sabido traernos las estrellas y los mundos que, inundados de luz, pudieron hacer posible que surgiera la vida. Los antiguos filósofos, los artistas y los poetas otorgaban a la luz una posición especial entre los fenómenos del mundo natural.

Platón comparaba al Sol y sus rayos con el bien -la idea más elevada- que todo lo nutre e ilumina. Quienes le siguieron en la tradición platónica, como san Agustín, Dante, Grosseteste y San Buenaventura, veían un vínculo especial entre luz y belleza; la luz era el principio de toda belleza sensual y visible, y bella ella misma. Iluminaba el mundo que nos acogía y, nos daba la luz y el calor para que pudiéramos vivir, calentaba las aguas y hacía posible que no muriéramos de frío-

La luz, naturalmente, ocupaba un lugar especial para los pintores que, con la colaboración de “ella” podían conseguir los más bellos reflejos cuando se expandía y avivaba para hacer del mundo y de las bellas mujeres, algo esplendoroso.

Todo gana con la luz, sea cual pudiera ser su estado en relación al movimiento planetario, todos los escenarios que su inmensa miríada de fotones hacen incidir sobre las cosas, las hace más mucho más atractivas y son expuestas con luz cegadora o mortecina, cenicienta o medio en brumas pero, siempre, dejará ver la Naruraleza en su presencia.

Claro que la Ciencia moderna, y en especial la obra de Newton, cuestionaba esta concepción. De un solo golpe la luz había perdido su posición privilegiada. El mundo había dejado de iluminarse así mismo, a través de la luz, en beneficio de los humanos; ahora era la mente humana la que proyectaba la luz para iluminar al mundo. La se había convertido en un fenómeno más gobernado por las leyes mecánicas y matemáticas susceptibles de ser conocidas. Lo que escribieron los poetas sobre lo que había hecho Newton con ese tesoro de los colores, el arco iris, nos da la medida de su respuesta a esta nueva ciencia.

…¿No se desvanecen los encantos

sólo con que los toque la gélida filosofía?

Antes había en el cielo un sobrecogedor arco iris:

hoy conocemos su urdidumbre, su textura: forma parte

del aburrido catálogo de las cosas vulgares.

La filosofía recorte las alas del ángel,

conquista los misterios con reglas y líneas,

despoja de embrijo el aire, de gnomos las minas;

desteje el arco iris…

 

Muchos fueron los poetas que, a partir de Newton vieron como se rompía el encanto de algunos fenómenos naturales que, como el de la luz, había tenido mucho encanto y ensoñación, era algo mágico que invitaba a imaginar “cosas” y, con la venida de la Ciencia, todo aquello se fue al garete, Ahora la luz, era un conocido fenómeno natural.


Arco Iris en el Camino

Claro que, aún nos queda un b uen margen para soñar, toda vez que, saber lo que es la luz…¡Sólo a medias lo sabemos!

La brecha entre poetas románticos de los siglos XVIII y XIX sigue viva y con nosotros en las  mentes imaginaticas hasta extremos inimaginables, y que, tienen la sensación de que la Ciencia, destruye la Belleza, claro que, actualmente son muchos más los que creen que la investigación profunda de la Naturaleza , sólo se limita a sacar a la Luz la verdadera Belleza del Universo que está encerrada en los máas profundos enigmas del Universo.

En este punto, recordaremos aquella anécdota de Feymann con este tema relacionaso:

Resultado de imagen de La más bella florResultado de imagen de La más bella florResultado de imagen de La más bella florResultado de imagen de La más bella flor

Al Físico Richard Feynman lo interpeló en este sentido un amigo poeta que afirmaba que mientras que los artistas ven la belleza en una flor, los científicos la diseccionan hasta convertirla en un objeto sin vida. El físico sabía que contestar y le contestó que como científico era capaz de ver en la flor más belleza y no menos. Podía apreciar,  por ejemplo, las bellas y complejas acciones del interior de sus células, de su ecología, de su papel en los procesos evolutivos. “El conocimiento de la Ciencia”, prosiguió Feynman, “sólo agranda el interés, el misterio y el asombro que puede producir una flor cuando se sabe todo lo que hay en ella, cosa que los poetas, por su profesión “de otro mundo”, nunca podrán ver.

Claro que, en realidad, los dos, el físico y el poeta, llevaban su parte de razón: No sólo de Pan vive el Hombre y, alguna vez, se necesita tener un refigio situado en ese mundo mágico de la irrealidad para que, nos cure las heridas producidas en esa realidad que llamamos mundo y que, no siempre resulta fácil de sobrellevar.

Pero, ¿dónde está la Belleza real”

                                                      ¿Aquí?

Resultado de imagen de El cúmulo del Joyero

                       ¿O, está aquí?

                                 ¿Pudiera ser esta la belleza del mundo?

http://2.bp.blogspot.com/-UU1h8c9wb5o/TrK32xYDWOI/AAAAAAAAaY0/Meay0PNj5v4/s1600/sacarse-el-dedo-de-la-nariz_articulo_landscape.jpg

                                     También aquí está presente

http://3.bp.blogspot.com/_XF_J0xP6x-w/TUAG4CA1y1I/AAAAAAAAAuU/mK6AKyI3Iuk/s1600/810429.jpg

         Tampoco esta estaría mal elegida como símbolo de la belleza y de… La Vida

http://www.organicamente.com.ar/wp-content/uploads/2009/11/redneuronal1.jpg

                         ¿Y la belleza y complejidad que lo que arriba vemos esconde?

A todo estos ejemplos anteriores, podríamos añadir una bonita sinfonía que nos eleva fuera de este mundo hacia lugares soñados que nos llenan de felicidad, o, también podríamos poner en la lista de las bellezas una buena historia leida al calor de la lumbre en el crudo invierno, o, también podríamos añadir a la Belleza una mirada tierna o una caricia del ser Amado…

        También aquí hay belleza (vista de otra manera)

¡Son tantas las bellezas presentes en el Universo que, nunca podremos elegir…una sóla ellas…son muchas las que ocupan nuestros corazones y nuestras mentes.

emilio silvera