sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »
Resultado de imagen de La galaxia más bellaResultado de imagen de La galaxia más bellaResultado de imagen de La galaxia más bellaResultado de imagen de La galaxia más bella

Una Galaxia es simplemente una  pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras. ¡Ah! Nada es pequeño ni grande, las dimensiones son relativas y dependen del contexto en el que las podamos medir.

Imagen relacionada

                Sí, en nuestro universo si algo cambia, muchas otras cosas serán distintas

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental,  con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras.  mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Resultado de imagen de Los procesos neuronales del cerebro

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de , los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que  presentimos.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que,  este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

Resultado de imagen de La conciencia

La conciencia plantea un problema especial que no se encuentra en otros  de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

Resultado de imagen de La conciencia

En el caso de la conciencia, sin embargo, nos encontramos con una asimetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos  es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Resultado de imagen de Como ve el daltónico

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro , bastará nunca para que una persona daltónica consiga experimentar un color.

En un experimento mental filosófico, Mary, una neurocientífica del futuro daltónica, lo sabe todo acerca del sistema visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John Locke vio claramente  problema hace mucho tiempo.

Resultado de imagen de Explicamos el bello paisaje al amigo ciegoResultado de imagen de Explicamos el bello paisaje al amigo ciegoResultado de imagen de Explicamos el bello paisaje al amigo ciego

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus  por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De  diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

Resultado de imagen de El libre albedrío

           Claro que, no siempre podemos elegir. Lo del libre albedrío es muy limitado

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el  de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

Imagen relacionada

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda siempre fuera de nuestro alcance?

¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en  campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que  podemos, en cualquier momento, provocar la propia destrucción.

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo, vivirlo física y sensorialmente hablando?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se  aproximar, a esa verdad,  es el poeta.

emilio silvera

Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                  Nuestra vecina galáctica la Pequeña Nube de Magallanes

Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25% de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.

http://www.eso.org/public/archives/images/screen/eso1302a.jpg

El cúmulo globular de estrellas 47 Tucanae. Maravillas como esta están presentes en la pequeña Nube de Magallanes. Este brillante cúmulo de estrellas es 47 Tucanae (NGC 104), en una imagen captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy) de ESO, instalado en el Observatorio Paranal, en Chile. Este cúmulo se encuentra a unos 15.000 años luz de nosotros y contiene millones de estrellas, algunas de las cuales son bastante inusuales y exóticas. Esta imagen fue captada como parte del sondeo “Magellanic Cloud” de VISTA, un proyecto que sondea la región de las Nubes de Magallanes, dos pequeñas galaxias muy cercanas a nuestra Vía Láctea.

Si quieres leer el trabajo completo, pulsa encima del título que sigue:

 

 

El premio nobel 2004, Frank Wilczek como un gran creativo de la física, nunca decepciona. Este profesor, famoso por sus trabajos en cromodinámica cuántica (QCD), la teoría que explica el micromundo existente dentro de las llamadas partículas elementales, vuelve a poner las leyes de la Física patas arriba con su más reciente teoría, en la que presenta un sorprendente tipo de cristal –time crystal- que a diferencia de los cristales convencionales no ofrece regularidad en el espacio, sino en el tiempo. Sería una nueva organización de la materia en la que la estructura se repite periódicamente en el tiempo, a diferencia de la periodicidad espacial de los cristales convencionales

 

El trabajo completo pulsando el título siguiente:

 

Ahora: Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!

Resultado de imagen de El fluir del Tiempo

Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos? Tratamos de retener el Tiempo pero… Se nos escapa de entre los dedos, nada lo puede retener, Sólo rememorar el pasado nos queda.

Imagen relacionada

Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

 Resultado de imagen de Qué es el TiempoResultado de imagen de Qué es el Tiempo

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez?  Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales,  pensaremos como nos enseño Einstein, a una mayor escala,  en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

   Hay en todas las cosas un ritmo que es parte de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Irulan.

 

 

Resultado de imagen de Recreamos mentalmente, otros mundos

            hemos imaginado estar en otros niveles, creamos otros mundos fuera de este nuestro

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

                   Siempre nos ha gustado imaginar, lo que podría pasar

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

 


Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

 

Resultado de imagen de Sólo vida en la Tierra?

        Los hay que creen, que la vida, es única en la Tierra

Resultado de imagen de Vida en otros mundos

Sin embargo, lo normal es que la vida esté en todo el Universo

Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

                              Nuestro Universo es como es las constantes son las que son

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!


 

 

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

 

 

 

Resultado de imagen de Charcas calientes del YellowstoneResultado de imagen de Charcas calientes del Yellowstone


    En nuestro planeta, como en otros, en cualquier charca caliente surgir la vida, como decía Darwin

Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener.

Todo dependerá de cual sea el de la densidad de materia.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

Resultado de imagen de Otras formas de vida en otros mundos

Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el , cada una de las cuales contiene a su vez cientos de miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber mundos que, como en el nuestro, aparecieran formas de vida, que con el paso del tiempo evolucionaron y algunas, sean inteligentes.

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión-

 

 

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras

Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.

emilio silvera

Decir Universo… ¡Son tantas cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Curiosidades    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el vacío, la existencia del cuanto de acción, h, que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas obliga a que su estructura sea discontinua, escalonada, fractal (prefractal), lejos de la continuidad clásica, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver. Pero las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático. Las fluctuaciones determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla. La pauta que nos guia, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia.

Desde distancias astronómicas hasta la Longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2.A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que adoptó nuestro Universo : 3 dimensiones espaciales ordinarias, una temporal y 6 compactadas (como supone la teoría de cuerdas). Esta geometría y la propia naturaleza del cuanto de acción, h, están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.

La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.

Resultado de imagen de Materia oscura

                           Se supone que la “materia oscura” está por ahí, aunque no la podamos ver

Así que, entre el espacio que podemos ver, ese vacío que sabemos que está ahí y no podemos más más que algunas consecuencias de su existencia, lo que llamamos “materia oscura” que es la mayor concentración de “ese algo” que existe, y, que, bien podrían ser las semillas a partir de las cuales surge la materia normal o luminosa una vez que, con el tiempo y a partir de esa “semilla” se transforma en materia “normal”, Bariónica y, ahora sí, sujeta al electromagnetismo…Todo eso, amigos, no podría incidir de alguna manera en esa Entropía destructora que, sin que lo sepamos está siendo combatida por todos esos parámetros que ignoramos…a ciencia cierta.

Una ley científica es un fenómeno universal observado experimentalmente y que puede verificarse mediante el método científico. Algunas de leyes establecidas mediante el método científico que confirman la creación son:

Leyes de la Termodinámica y otras que hemos podido descubrir pero… esa sería otra historia.

Starburst Cluster Shows Celestial Fireworks

                           Laboratorio estelar, la cuna de los mundos.

Cuando me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese nuevo éter que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y que, de momento, sólo sabemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro se tratara, y, hasta objetos de enormes masas y densidades infinitas que no dejan escapar ni la luz que es atrapada por su fuerza de gravedad.

A String of 'Cosmic Pearls' Surrounds an Exploding StarResultado de imagen de Los objetos más extraños del Universo

Imagen relacionada

                    Ya nos gustaría saber qué es, todo lo que observamos en nuestro Universo

Sin embargo, todo eso, sin importar las figuras que puedan haber adoptado, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe también una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Resultado de imagen de Energía oscura

                                            Con esta imagen nos preguntas qué es la energía oscura

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

The Cat's Eye Nebula: Dying Star Creates Fantasy-like Sculpture of Gas and Dust

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

Resultado de imagen de El núcleo atómico

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del tipo magnetar, de las que se conocen seis. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor, también forma parte del Universo, al mismo tiempo que hace posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.600  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra para unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá

Las estrellas, como todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

Espero que al lector de este trabajo (obtenido principalmente de uno original de Asimov), encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas cuyas respuestas seguramente querrían conocer.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos –de los cuales uno mira hacia la Luna y el otro en dirección contraria– se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

Resultado de imagen de Los períodos de rotación de la luna disminuye poco a poco

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

Resultado de imagen de El agua fluye del manantial de la montaña

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo hasta el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un trabajo. El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en (Huelva) España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún trabajo, por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es cada vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados entre sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado como Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el nombre de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía puede quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”

Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más trabajo, ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica (en el siguiente trabajo se habla de ésta maravillosa fórmula).

Pero esa, es otra historia.

Un quinteto muy bien avenido

Sin ambargo, nunca debemos olvidar que el Universo es inmenso, en realidad, “infinito” para nosotros que no podemos recorrrer sus distancias en las que, bellas formaciones, como la que arriba podemos contemplar, sólo pueden ser captadas por ingenios modernos y sofisticados telescopio que atrapan la luz que viaja desde miles de millones de kilómetros de distancia para poder así mostrarnos, objetos de una belleza que ningún pintor podría reproducir por su dinámica constante ni tampoco, nuestra imaginación podría mentalizar por el desconocimiento que tenemos de que maravillas así pudieran existir en un vasto Universo que, en gran parte, es aún un gran desconocido.

emilio silvera

Fuente: Parte del texto está sacado de 100 preguntas ciencia de Isaac Asimov