viernes, 19 de julio del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Tratamos de desvelar lo que el Universo es

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

El conjunto de Mandelbrot.

Es curioso los enunciados matemáticos que pueden pertener al mundo de Platón sean precisamente aquellos que son objetivamente verdaderos. Se podría considerar que la objetividad matemática es precisamente el objeto del platonismo matemático. Decir que una afirmación matemática tiene una existencia platónica es sencillamente decir que es verdadera en un sentido objetivo. Un comentario similar es aplicable a las nociones matemáticas -tales como el conepto del 7, por ejemplo, o la regla para la multiplicación de números enteros, o la idea de que cierto conjunto contiene infinitos elementos-, todas las cuales tienen una existencia platónica porque son n ociones objetivas. Es decir, la existencia platónica, es simplemente una cuestión de objetividad y, en consecuencia, , no debería verse como algo “místico” o “acientífico”, pese a que así la consideran algunos.

la NASA halló un sistema de seis Planetas

WASHINGTON – La NASA anunció el descubrimiento histórico de un sistema de seis planetas, el primero con un número tan elevado que orbita en torno a una estrella, de una forma similar a giran la Tierra y el resto de planetas del Sistema Solar.

  

 

 

 

 

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

 

Comencemos con el trabajo que toca: Tratamos de desvelar lo que el Universo es.
B1608

Miden la edad del Universo gracias al efecto de lente gravitacional con una precisión sin precedentes. Frecuentemente es difícil para los expertos distinguir entre una luz brillante lejana y otra más cercana pero más débil. El efecto de lente gravitacional soluciona este problema al proporcionar múltiples pistas. Según la Relatividad General la presencia de masa-energía hace que el espacio-tiempo se curve a su alrededor. De este modo, los rayos de luz que pasen cerca de esa región no seguirán líneas rectas, sino geodésicas, que son el equivalente a las rectas en espacios curvos. Hasta no hace tanto tiempo, no podíamos decir, con cierta precisión, que edad tenía el Universo. Pues bien, se acaba de conocer que un equipo internacional de científicos ha realizado recientemente una serie de comprobaciones que les han llevado saber que el universo, como todo en él, tiene una edad de nacimiento.


Para realizar este estudio se han valido de lentes gravitatorias galácticas y han llegado a una edad del Universo cifrada en 13750 millones de años con un error de 170 millones de años


            

Es cierto que no hace tanto tiempo que los astrónomos y cosmólogos desconocían la edad del Universo. Lo más que se nos decía era que el Universo tenía una edad comprendida entre los 10.000 mil y los 20.000 millones de años. Así que se asumía que su edad debía de andar por los 15.000 millones de años.

Resultado de imagen de Las primeras estrellas

Después, gracias a una de las sorpresas más grandes reveladas por los datos es que la primera generación de estrellas en brillar en el universo se encendió solo 200 millones de años después de la Gran Explosión, mucho antes de lo que muchos científicos suponían.  Además, el nuevo retrato que ahora tenemos del Universo,  fija con precisión su edad en 13.700 millones de años, con un margen de error notablemente pequeño, del uno por ciento.

Resultado de imagen de Obviamente el WMAP no apunta a una región de cielo en donde está escrita la edad del Universo

Obviamente el WMAP no apunta a una región de cielo en donde está escrita la edad del Universo, sino que ésta se infiere indirectamente a partir de Tenemos que ser conscientes de que el Universo tiene la edad apropiada para que nosotros podamos estar aquí, y, aunque nos parezca mucho un período de 13.700 millones de años, en realidad es el “tiempo” necesario para crear la bio-química  que, producida por las estrellas de las  galaxias y en la que al final de sus vidas explosionaran como supernovas que sembraron el espacio de los materiales complejos necesarios para que, más tarde, surgiera la vida en el planeta Tierra y,probablemente, en otros muchos lejos de aquí en la nuestra y en otras galaxias.

 

Objetos que habitan en el Universo y que son energía congelada que más tarde o más temprano, aparece con la destrucción de su agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son

 

La baja densidad media de materia en el universo significa que si agregáramos material en estrellas o galaxias, deberíamos esperar que las distancias medias fuesen las que presentimos y hemos podido constatar en las mediciones efectuadas en nuestros modernos y sofisticados aparatos.

El universo visible contiene sólo:

    1 átomo por metro cúbico     

    1 Tierra por (106

   1 Estrella por (103 años luz)3

   1 Galaxia por (107 años luz)3

  1 “Universo” por (1010 años luz)3

El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar entre los planetas, estrellas y galaxias. No debería sorprendernos que encontrar vida extraterrestre sea tan raro. ¡Está todo tan lejos! Como no podemos ir físicamente a esos lejanos mundos, nuestras mentes viajan sin cesar hacvia ellos y, de alguna manera, sentimos que “ellos” están ahí pensando, de la misma manera que nosotros lo hacemos, que en un Universo cuajado de inmensas galaxias de estrellas que están rodeadas por infinidad de mundos… ¡La Vida pulula por ingentes lugares, como lo hace aquí, en la Tierra!

 

  

  Karl Theodor Jasper (1883-1969)

El filósofo existencialista de arriba, se sintió provocado por los escritos de Eddintong al considerar el significado de nuestra existencia en un lugar paricular en una época particular de la historia cósmica. En su influyente libro “Origen y meta de la Historia”, escrito en 1040, poco después de la muerte de Eddintong, pregunta:

“¿Por qué vivimos y desarrollamos nuestra historia en este punto concreto del espacio infinito, en un minúsculo grano de polvo en el universo, un rincón marginal? ¿Por qué precisamente El hecho fundamental de nuestra existencia es que parecemos estar aislados en el cosmos. Somos los únicos seres racionales capaces de expresarse en el silencio del universo. En la historia del Sistema Solar se ha dado en la Tierra, durante un periodo de tiempo infinitesimalmente corto, una situación en la que los seres humanos evolucionan y adquieren conocimientos que incluye el ser conscientes de sí mismos y de existir… Dentro del Cosmos ilimitado, en un minúsculo planeta, durante un minúsculo periodo de tiempo de unos pocos milenios, algo ha tenido lugar como siel universo supiera que nosotros, teníamos que venir?

 

               Planeta Tierra

 

 

Resultado de imagen de El planeta tierra visto desde el Espacio

Hay aquí algunas grandes hipótesis sobre el carácter único de la vida humana en el universo (creo que equivocada). En cualquier caso se plantea la pregunta, aunque no se responde, de por qué estamos aquí en el tiempo y lugar en que lo hacemos. Hemos visto que la cosmología moderna

 

Aquí se han expuesto algunos trabajos en los que quedaron reflejadas todas las respuestas a estas preguntas. Nada sucede porque si, todo es consecuencia directa de la causalidad. Cada suceso tiene su razón de ser en función de lo que antes sucedió.

 


El primer signo de vida en nuestro planeta data de 3.850 millones de años. Son simples formas fósiles encontradas en Groenlandia. En otros muchos lugares han aparecido fósiles que nos datan la aparición de la vida en la Tierra unos 500 millones de años después de que la misma Tierra “naciera” y, en aquella época lejana, su corteza aún no se habría enfriado totalmente…¡La Vida! ¿Quién Con la vida en nuestro planeta, ocurrió igual. Una atmósfera primitiva evolucionada, la composición primigenia de los mares y océanos con sus compuestos, expuestos al bombardeo continuo de radiación del espacio exterior que llegaba en ausencia de la capa de ozono, la temperatura ideal en relación a la distancia del Sol a la Tierra y otra serie de circunstancias muy concretas, como la edad del Sistema Solar y los componentes con elementos complejos del planeta Tierra, hecho del material estelar evolucionado a partir de supernovas, todos estos elementos y circunstancias especiales en el espacio y en el tiempo, hicieron posible el nacimiento de esa primera célula que fue capaz de reproducirse a sí misma y que, miles de años después, hizo posible que evolucionara hasta lo que hoy es el hombre que, a partir de materia inerte, se convirtió en un ser pensante que…

La atmósfera primitiva de la Tierra de nitrógeno, metano y dióxido de carbono resultaba hostil para la vida tal como la conocemos, pero amistosa para las primeras bacterias amantes del metano. Los astrónomos modelaron la historia de la Tierra para comprender qué signos indicadores buscar en otros mundos. Esta representación artística muestra la Tierra de hace 4 000 mil millones de años atrás, antes de que se hubieran formado los continentes y mientras nuestro planeta sufría todavía el bombardeo de los asteroides y cometas que habían quedado de la formación del sistema solar.

precámbrico

Durante todo el eón Arcaico (1.300 millones de años) todos los océanos eran verdes, pero el oxígeno marino transformó los mares de verde a azul. La Tierra, como todo en el Universo, ha ido evolucionando hacia lo que hoy conocemos y, nada impedirá que siga cambiando conforme lo exijan las condiciones que, no pocas veces, nosotros mismos imponemos con nuestro quehacer del día a día.

El entorno cambiante en un universo en expansión entropía) es posible que se formen átomos, moléculas, galaxias, estrellas, planetas y organismos vivos. En el futuro, las estrellas agotaran su combustible nuclear y morirán todas. En función de sus masas serán estrellas enanas blancas (como nuestro Sol), estrellas de neutrones (a partir de 1’5 masas solares)  y  agujeros negros a partir de 3 masas solares.

 

  ¿El destino final? Seguro no podemos estar de nada pero… ¡La muerte térmica, parece ser el final más probable!

No podemos saber cuándo, pero sí tenemos una idea muy clara de cómo será dicho final. El universo es todo lo que existe, incluyendo el espacio, el tiempo y la materia. El estudio del universo es la cosmología, que distingue Dicen que existe una evidencia creciente de que el espacio está o materia oscura”, que puede constituir muchas veces la masa total de las galaxias visibles (materia bariónica). Sabemos que el origen más probable del universo está en al teoría conocida como del Big Bang que, a partir de una singularidad de una densidad y energía infinita, hacesurgir lo que hoy se conmoce como universo. Sin embargo, eso es, sólo una creencia que otros datos más fiables no han podido ser encontrados todavía para mejorar la teoría de la gran explosión que, no a todos satisface.

 

                       

                       El tiempo rompe la simetría

La física de Einstein revela una verdad profunda: el espacio y el tiempo son tan sólo hilos diferentes de una fabrica sin costuras llamada espacio-tiempo. Aunque todavía existe una diferencia obvia entre los dos. Ponemos en principio, viajar en una dirección de las tres dimensiones del espacio, pero únicamente en una dirección en el tiempo: hacia delante El Big Bang. En el proceso, nació el tiempo y el espacio, surgieron las primeros quarks que pudieron unirse protones y electrones que formaron los primeros núcleos y, electrones, nacieron los átomos que evolucionando y juntándose hicieron posible la materia; todo ello, interaccionado por cuatro fuerzas fundamentales que, desde entonces, por la rotura de la simetría original divididas en cuatro parcelas distintas, rigen el universo. La fuerza nuclear fuerteresponsable de mantener unidos los nucleones, la fuerza nuclear débil, responsable de la radiactividadnatural desintegrando elementos

Pero hemos llegado a saber que el universo podrá ser abierto o cerrado.  Un universo que siempre se expande y densidad crítica.

El universo cerrado es el que es finito en tamaño, tiene una vida finita y en el que el espacio está curvado positivamente. Un universo de Friedman con la densidad mayor que la densidad crítica.

El universo en expansión es el que el espacio entre los objetos está aumentando continuamente. En el universo real, los objetos vecinos como los pares de galaxias próximas entre sí no se separan debido a que su atracción gravitatoria mutua supera los efectos de la expansión cosmológica (el caso de la Vía Láctea y Andrómeda). No obstante, la distancia entre dos galaxias muy separadas, o entre dos cúmulos de galaxias, aumenta con el paso del tiempo y la expansión imparable del universo.

 

El universo real está en función de la densidad crítica que es la densidad media de materia requerida densidad crítica, alrededor de 10-29g/cm3, es descrito por el modelo de universo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. Pero la densidad media de materia que puede ser observada directamente en nuestro universo no representa la cantidad necesaria para generar la fuerza de gravedad que se observa en la velocidad de alejamiento de las galaxias, que necesita mucha más materia que la observada para generar materia oscura”, que nadie sabe lo que es, cómo se genera o de qué esta hecha. Así que, cuando seamos capaces de abrir esa puerta cerrada ante nuestras narices, podremos por fin saber la clase de universo que vivimos; si es plano, si es abierto e infinito, o si es un universo que, por su contenido enorme de materia es curvo y cerrado.

Aunque el signo de arriba lo quiere significar…lo infinito o eterno…no existe. Todo densidad crítica del universo, sí podemos contestarla en dos vertientes, en la seguridad de que al El destino final será:

 expansion.png

 El Big Freeze (“Gran Frío”), también conocido como Big Whisperer (“Gran susurro”) es una teoría física sobre el futuro del Universo, en la que se supone éste se seguirá expandiendo eternamente -asume, por tanto, un universo abierto- y está marcada por el triunfo de la segunda ley de la termodinámica, con la consecución final de prácticamente todos los procesos físicos que puedan darse y posiblemente acabando con la muerte térmica del Universo.

 Claro que circulan varias hipótesis:

a)  Si el universo es abierto y se expande para siempre, entropía hará desaparecer la energía y el frió será tal que la temperatura alcanzará el cero absoluto, -273ºK.  La vida no podrá estar presente.

Todo se unirá de singularidad, se producirá otro Big Bang y, el ciclo comenzará de nuevo. Sin embargo, que de nuevo podamos aparecer nsootros aquí…no es nada seguro.

external image Big_Crunch.gif

b)  Si el universo es cerrado por contener una mayor cantidad de materia, llegará un momento en que la fuerza de gravedad detendrá la expansión de las galaxias, que poco a poco se quedarán quietas y muy lentamente, comenzaran a moverse en el sentido inverso; correrán Big Crunch. Se formará una enorme concentración de materia de energía y densidad infinitas. Habrá dejado de existir el espacio y el tiempo. Nacerá una singularidad que, seguramente, dará lugar a otro Big Bang. Todo empezará de Así las cosas, no parece que el futuro de la Humanidad sea muy alentador. Claro que los optimistas nos hablan de hiperespacio y universos paralelos a los que, ¡Quién pudiera contestar a eso!

¿Es viejo el universo?

“Las cuatro edades del hombre: Lager, Aga, Saga y Gaga”.

Anónimo.

 

Si el Universo fuese más jóven, amigos míos, entonces nosotros no estaríamos aquí.

emilio silvera

Moléculas vivas sorprendentes

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se puede suporponer o no a su imagen especular. Una estructura asimétrica puede tener una lateralidad a la derecha o bien a la izquierda.

Cualquier número entero positivo es par o impar, y no hay ninguno de tales números para el cual su situación  a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las lineas divisortias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.

El paso del tiempo convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original para convertirmos en lo que antes no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como para poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.

Para porbar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen  con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.

Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de porcelana fina que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, para ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse.

Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para hacer frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima parte del metro).

El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un solo gramo de materia. Fijáos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, como antes dije, el organismo vivo más pequelo que se conoce. El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del algiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, pero los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.

En ralidad, se puede decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.

Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular para la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una forma altamente organizada.

El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de hacer lo que normalmente hace para que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.

El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en forma de barras finas que pueden observarse a través del microsopio electrónico. Recientemente se ha descubierto que cada barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.

Las moléculas de proteínas se enrollan alrededor de una barra central imaginaria que va de un extremo a otro del cristal. Sumergido en la proteína (y no en la parte central, como podría pensar un estudiante) hay una única hebra helicoidal, enroscada hacia la derecha, de un compuesto de carbono llamado ácido nucleico. El ácido nucleico es una proteína, pero igual que éstas es un polímero: un compuesto con una molécula gigante formada por moléculas más pequeñas enlazadas de manera que formen una cadena.
Un polímero es una macromolécula en la que se repite n veces la misma estructura básica (monómero). En el caso del hule, las cadenas pueden tener desde n=20 000 hasta n=100 000.
Resultado de imagen de La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b)
La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b) Una timina de un lado se une con una adenina del otro. c) Una citosina con una guanina. Las unidades menores , llamadas nucleótidos están constituidas por átomos de Carbono, Oxñigeno, Nitrógeno, Hidrógeno y Fósforo; pero donde las proteínas tienen unas veinte unidades de aminoácidos, el ácido nucleico tiene solamente cuatro nucleótidos distintos. Se pueden encadenar miles de nucleótidos entre sí, como lo hacen las subunidades de aminoácidos de las proteínas en una variedad practicamente infinita de combinaciones, para formar cientos de miles de millones de moléculas de ácido nucleico. Exactamente igual que los aminoácidos, cada nucleótido es asimétrico y orientado a la izquierda. A causa de ello, la espina dorsal de una molécula de ácido nucleico, igual que la de una molécula de proteína, tiene una estructura helicoidal orientada hacia la derecha.
Recientemente se han descubiertos unas moléculas sorprendentes con irregularidades en su quiralidad. Por ejemplo, existen segmentos anómalos de ADN que se enroscan al reves. Este ADN “zurdo” se halló por primera vez en un tubo de ensayo, pero en 1987 se ideó un procedimiento para identificar dichos segmentos anómalos en células vivas. El papel del ADN invertido no está claro, y pudiera estar implicado en los mecanismos que ponen en marcha mutaciones que nos lleven a ser hombres y mujeres del futuro con otros “poderes” que vayan más allá para que, de esa manera, podamos llegar a comprender la Naturaleza de las cosas y, en definitiva, nuestra propia naturaleza que, de momento, sigue siendo un gran misterio para nosotros.
Esta cosita tan pequñita… ¡tendría tanto que contarnos! La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
Resultado de imagen de enantiómeros.
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que,   existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad). Y, de la misma manera que existen principios de ocnservación para la paridad, el momento angular, la materia…, también es un hecho irreversible ese principio que nos lleva a saber que, a partir de la materia “inerte”, surgieron los “seres” más pequeños que conocemos y que hicieron posible el surgir de la inmensa variedad de formas de vida que la evolución hizo llegar hasta nosotros que, estamos aquí hablando de todas estas cuestiones curiosas que nos llevan a saber, un poco más, del mundo en el que vivimos, de la Naturaleza y, de nosotros.
emilio silvera

El “universo” fascinante de lo muy pequeño

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

 »

 

 

 Resultado de imagen de En mecánica cuántica hay más de lo que se ve

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de  1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el .

El núcleo atómico es la parte central de un átomo tiene carga positiva, y concentra más del 99.99% de la masa total del átomo.  fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) que coexisten en el núcleo atómico venciendo a la repulsión electromagnética  los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones.

Hasta ahí, lo que es el nucleo. Sin embargo, la existencia de los átomos que  las moléculas y los cuerpos -grandes y pequeños- que conforman los objetos del universo, es posible gracias a los electronesque, rodean el núcleo atómico y, al tener carga negativa similar a la positiva de los protones, crean la estabilidad necesaria  que todo nuestro mundo sea como lo podemos observar.

Resultado de imagen de El ozono de la atmósfera

            Los cuantos  cosas bellas y útiles como el ozono atmosférico

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos  a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Según la física clásica, la energía radiada debería ser igual  todas las longitudes de onda, y al aumentar la temperatura, la radiación debería ser uniformemente más intensa. Para explicar esto, Planck supuso que cada una de las partículas que constituyen la materia, está oscilando y emitiendo energía en forma de radiación electromagnética; esta energía emitida no  tomar un valor cualquiera, sino que debe ser múltiplo entero de un valor mínimo llamado cuanto o paquete de energía.

La energía de un cuanto viene dada por la expresión:
donde:
v (ni) es la frecuencia de la radiación emitida; y h es una constante llamada constante de acción de Planck, cuyo valor es:
La hipótesis de Planck introduce el concepto de discontinuidad en la energía, igual que hay discontinuidad en la materia.

Resultado de imagen de El origen electromagnético de la radiación

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º  cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación  podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una  constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva , el resultado coincidió perfectamente con las observaciones.

Resultado de imagen de El efecto fotoeléctrico

La física clásica era incapaz de explicar el extraño efecto fotoeléctrico, ya que, una mayor cantidad de fotones debería implicar una mayor cantidad de electrones extraídos, pero como hemos visto, no sucede así.

 Sabemos que la corriente eléctrica es el movimiento de electrones, siendo éstos portadores de cargas eléctricas negativas. Cuando los electrones se mueven, se origina una corriente eléctrica. La corriente es igual al  de cargas en movimiento entre un intérvalo de tiempo.

Poco tiempo después, en 1905, Einstein formuló  teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los  de luz deberían verse como una clase de partículas elementales: el fotón. Todas  demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza.

También en el movimiento de los átomos dentro del núcleo,  presente la simetría y la belleza de la Naturaleza como en la bailarina están presentes los movimientos y la gracia del duro ensayo diario.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger  cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro  todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero  los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se  determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir , y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica que, dicho sea de paso, con la que no todos están de acuerdo.

 

 leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual  rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y , por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a  exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran  de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma  cualquier objeto en cualquier sitio, es decir, debe ser una constante universal, no importa en qué galaxia la podamos medir.

Imagen relacionada

 Einstein y otros pioneros de la mecánica cuántica, tales como Edwin Schrödinger…, creían que hay más de lo que se ve.

 reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a  interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos  se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se  calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de  completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica. Cuando entramos en el “universo” de lo muy pequeño, el asombro nos acompañará, allí pueden pasar las cosas más extrañas.

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel,  el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

emilio silvera