jueves, 18 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Terremotos

Autor por Emilio Silvera    ~    Archivo Clasificado en Los terremotos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La inmensa mayoría de los terremotos se originan en los procesos geotectónicos a gran escala que crean, hacen chocar y hunden en las zonas de subducción, las placas oceánicas. No menos del 95 por ciento de todos los terremotos se concentran a lo largo de los bordes de las placas y cerca de nueve décimas partes de éstos se localizan en el cinturón Circum-Pacífico, donde las placas, que son relativamente rápidas, están colisionando o deslizándose contra las placas continentales más pesadas. La mayor parte del resto de terremotos están asociados a los puntos calientes, generalmente señalados por volcanes en actividad.

Foto: tiempo.hn

En conjunto, los terremotos representan una fracción muy pequeña de la energía liberada por los procesos tectónicos de la Tierra. Desde 1900, en los mayores terremotos se han liberado anualmente una energía media cercana a los 450 PJ, que no supone más del 0’03 por ciento del flujo total de calor terrestre. La liberación anual de energía sísmica de todos los terremotos que se han medido alcanza unos 300 GW, que sumada a la energía de esfuerzo invertida en deformaciones irreversibles y al calor generado por fricción a lo largo de las fallas, daría un total próximo a 1 TW, lo cual representa solamente un 2’5 por ciento del flujo de calor global.

Pero este recuento total nos dice poco de la liberación de energía y de la potencia de un solo terremoto. Aunque la mayoría son tan débiles que pasan desapercibidos para las personas, cada año se producen terremotos terriblemente destructivos, que durante el siglo XX han causado más víctimas mortales que las inundaciones, ciclones y erupciones volcánicas juntas.

Mapa de los grandes terremotos registrados durante el mes de Abril del año 2014 y que alcanzó un récord mundial

La energía de estos terremotos se puede calcular a partir de la energía cinética de las ondas sísmicas generadas por la energía liberada en el esfuerzo de la deformación del suelo, pero rara vez se realizan estos cálculos directamente. Lo más frecuente es deducir la energía del terremoto a partir de la medida de su magnitud o de su momento. La medida típica de la magnitud de un terremoto fue establecida por Charles Richter en 1935, como el logaritmo decimal de la máxima amplitud (en micrómetros) registrada con un sismómetro de tensión estándar (Word-Anderson) a 100 Km de distancia del epicentro del temblor.

Desde que en 1942, Richter publicó la primera correlación entre la magnitud de energía sísmica liberada en un temblor, su trabajo (como por otra parte, es de lógica) ha sufrido numerosas modificaciones. La conversión sigue la forma estándar log10 E = a + bM, donde E es la energía liberada en forma de ondas sísmicas (en ergios), M es la magnitud de Richter, y a y b son los coeficientes empíricos que varían entre 6’1 – 13’5 y 1’2 – 2 respectivamente. Otras conversiones alternativas permiten obtener la energía liberada a partir del momento del terremoto, que se define como el producto de la rigidez por el desplazamiento medio de la falla y por la superficie media desplazada.

Resultado de imagen de Grandes terremotos

Los mayores terremotos registrados tienen magnitudes Richter comprendidas entre 8 y 8’9, con liberación de energía sísmica entre 48 PJ y 1’41 EJ. Todos hemos oído en alguna ocasión algún comentario sobre el terremoto de San Francisco de 1906, donde los cálculos basados en tres métodos utilizados en el esfuerzo dieron valores tan distintos como 9’40 y 175 PJ, y con método cinético se obtuvo 2’5 PJ.

Los terremotos, por ser a la vez de breve duración y estar limitados espacialmente, desarrollan potencias y densidades de potencia extraordinariamente altas. La potencia de un temblor de magnitud 8 en la escala de Richter que durase solamente medio minuto, sería de 1’6 PW, y si toda esta potencia estuviera repartida uniformemente en un área de 80 Km de radio, la densidad de potencia sería tan elevada como 80 KW/m2.

Obviamente, tales flujos pueden ser terriblemente destructivos, pero ni las pérdidas de vidas humanas ni los daños materiales que ocasionan los temblores están correlacionados de una manera sencilla con la energía liberada. La densidad de población o de industrias, así como la calidad de las construcciones, constituyen un factor muchísimo más importante para determinar la mortandad o el impacto económico de los mismo. Por ejemplo, el coste en vidas humanas del gran terremoto japonés que en 1923 arrasó Tokio, donde existía una alta densidad de casas de madera, fue unas 200 veces más elevado que el terremoto de San Francisco de 1906 en el que se liberó cuatro veces más energía. También aquí salen perdiendo, como siempre, los pobres.

Por otra parte, no podemos olvidar que la superficie del globo terrestre está dominada por las aguas, y los seres humanos viven en la Tierra seca. Sin embargo, vienen los tsunamis. La predicción de estas catástrofes continúa siendo imposible. Se tienen datos, se localizan las zonas de más frecuencia, y conocen las fallas de desgarre y las inversas, los ciclos, etc., pero el conocimiento es aún escaso para prevenir dónde y cuándo se producirán temblores.

Resultado de imagen de Las olas sísmicas que se pueden provocar por terremotos submarinos

Las olas sísmicas que se pueden provocar por terremotos submarinos se propagan durante miles de kilómetros a velocidades de 550 – 720 Km/h, perdiendo en su viaje muy poca potencia. Estas olas, prácticamente invisibles en el mar, se levantan hasta una altura de 10 metros en agua poco profundas y pueden llegar a golpear las costas con intensidades de potencia en superficie vertical de hasta 200 – 500 MW/m2, y con impactos horizontales de intensidad y potencia entre 10 – 100 MW/m2. Son, pues, mucho más potentes que los ciclones tropicales y causan grandes daños tanto materiales como en pérdida de vidas humanas.

emilio silvera

La Geotectónica

Autor por Emilio Silvera    ~    Archivo Clasificado en La Geotectónica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los grandes accidentes de la superficie terrestre (el fondo marino, los continentes y sus cordilleras) han sido generados por el imparable movimiento de los rígidos bloques de la litosfera. Las grandes placas oceánicas divergen en las crestas dorsales oceánicas, donde surge el magma creando nueva corteza basáltica, que se desliza a lo largo de fallas hasta que finalmente chocan con los bordes continentales donde se hunden en profundas fosas, zonas de subducción, para ser recicladas en el manto. Aunque el recorrido entre la dorsal y la fosa se completa en 107 años, algunas zonas continentales permanecen muy estables, estando cubiertas por rocas cuya edad es casi veinte veces la edad de las más antiguas cortezas marinas, que a su vez, datan de unos doscientos millones de años.

Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática.

En otras zonas de la litosfera, la afloración de rocas calientes del mando debilita inicialmente y agrietan posteriormente la corteza continental, hasta que finalmente, formando nueva corteza oceánica, separan los continentes. Ejemplos de diversos estadios de este proceso son el Mar Rojo, el golfo de Adén y las fracturas del Valle del Rift, en el este de África.

El movimiento de la placa africana es hacia el Norte a unos 2,15 centímetros cada año, lo cual la llevará a unirse al extremo sur de España dentro de 650.000 años, separando el mar Mediterráneo del océano Atlántico.

Este proceso de separación continental parece ser bastante regular. Se observan periodos de formación montañosa por compresión en el intervalo de cuatrocientos a quinientos millones de años, a los que sigue, unos cien millones de años más tarde, un resurgir de la rotura. Esta secuencia se repite en un ciclo supercontinental en el que se alterna la separación de grandes zonas continentales con su agrupamiento.

Hawaii

 

 

   Imagen de la isla de Hawái desde satélite.

Las plumas de magma que perforan la litosfera también crean focos calientes duraderos que están asociados a los volcanes. Las islas Hawai y la cadena de montañas oceánicas que se extienden desde ellas hasta Kamchatka constituyen la manifestación más espectacular de focos calientes que surgen en medio de la veloz placa del Pacífico, entre los que actualmente se encuentran los ríos continuos de lava del volcán Kilauea y la lenta creación de la futura isla hawaiana de Loihi.

Las enormes plumas de magma que afloran desde las capas profundas del manto han dado origen a grandes superficies de lava, la mayor de las cuales es la meseta oceánica de Ontong Java, que cubre dos millones de kilómetros cuadrados, y la meseta del Decán y la siberiana, que son las mayores formaciones basálticas continentales. La generación de estas extensas formaciones afecta de manera importante a la composición de la atmósfera debido a las grandes emisiones de CO2 y SO2 que las acompañan, y que causan elevaciones de la temperatura troposférica y lluvias ácidas, con los consiguientes efectos cruciales en la biota.

Resultado de imagen de Los procesos energéticos de la geotectónica terrestre

Los procesos energéticos de la geotectónica terrestre son complejos. Incluso resulta todavía incierta la contribución relativa de las fuerzas involucradas en el movimiento de las placas tectónicas. Las dos fuerzas más importantes están asociadas a la convección del material caliente del manto y al hundimiento de las zonas frías, con flotabilidad negativa, de la litosfera oceánica en las zonas de subducción. Este último proceso es debido a diferencias de densidad, máxima a una profundidad de doscientos o trescientos kilómetros, que generan un momento de fuerzas en el manto viscoso responsable de la principal fuerza convectiva.

Las velocidades de las placas, al ser estudiadas, se observa que las que cuentan con una mayor proporción de sus bordes en zonas de subducción se mueven a velocidades de 60 a 90 kilómetros por millón de años, mientras que la velocidad de las placas en las que no hay hundimiento de bloques es inferior a 40 kilómetros por millón de años.

Resultado de imagen de Volcanes

Sin embargo, la contribución de la emisión de material del manto no es despreciable, ya que la considerable energía potencial gravitatoria de extensas zonas de rocas calientes hace que se genere nueva corteza marina en las dorsales oceánicas con una velocidad que es, al menos, tres veces superior a la velocidad con que se genera en los planos abisales.

La combinación de ese “tirar” a lo largo de las zonas de subducción y de “empujar” en las dorsales da lugar a velocidades, para las placas más rápidas, de aproximadamente 20 cm/año durante cortos periodos de tiempo. Entre estas placas que se mueven rápidamente se encuentran no sólo los pequeños bloques como Nazca y Cocos, sino también la enorme placa del Pacífico, lo cual indica que la fuerza de arrastre del manto, proporcional al área y a la velocidad, debe ser relativamente pequeña.

La mayor parte del flujo de calor que se ha medido en la Tierra debe atribuirse a la formación de nueva litosfera oceánica.

emilio silvera

La Vía Láctea… ¡Esa desconocida!

Autor por Emilio Silvera    ~    Archivo Clasificado en La vecindad galáctica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

Es nuestra Galaxia y, sin embargo, no la podemos contemplar en su totalidad y cómo es en realidad. Es una paradoja que podamos ver otras situadas a miles o millones de años luz de nosotros pero, la nuestro no.

Dicen que un enorme vacío hace que la Vía Láctea viaje por el Universo a dos millones de kilómetros por hora. Dos grandes fuerzas gobiernan su movimiento y la hace viajar a esa descomunal velocidad. Esa es la conclusión obtenida por un estudio que se publicó en Nature Astronomy.

La Vía Láctea vista desde el telescopio ALMA, en Chile. ESO / EPV

Mientras lee estas líneas, usted atraviesa el universo a una velocidad de dos millones de kilómetros por hora. No se trata de una fantasía, sino de un hecho contrastado que, hasta ahora, los astrónomos no sabían explicar del todo.

Resultado de imagen de el supercúmulo de Shapley

La teoría más aceptada dice que el supercúmulo de Sharpley, la mayor concentración de galaxias en el universo cercano, nos atrae con su empuje gravitatorio, acelerando a la Vía Láctea a esa vertiginosa velocidad. Pero esa propuesta no cuadraba con las observaciones del movimiento y la trayectoria del grupo local, el cúmulo de galaxias que engloba a Andrómeda y la Vía Láctea, nuestro diminuto vecindario en la inmensidad del universo.

Ahora, un nuevo estudio publicado hoy apunta a un segundo culpable. Se trata de una enorme región del universo que está a unos 500 millones de años luz y que, en términos cosmológicos, está vacía.

Lo cierto es que nuestra galaxia es la única que no podemos ver directamente y, de ella, desconocemos aún, algunas cuestiones que las hemos clasificado en el ámbito de la conjetura.

Hasta ahora solo existían pequeños indicios de este vacío y nadie había conseguido cuantificar sus efectos o localizarlo”

 

 

 Imagen relacionada

El astrofísico Yehuda Hoffman, de la Universidad Hebrea de Jerusalén, y el resto de su equipo, ha realizado una simulación en tres dimensiones del movimiento de la Vía Láctea por el universo cercano. Se han basado en observaciones de la velocidad de 8.000 galaxias hechas con el telescopio espacial Hubble y otros instrumentos. Los resultados, publicados en Nature Astronomy, confirman la existencia de esa región con una baja densidad de estrellas y galaxias que repele a la Vía Láctea justo en la dirección del supercúmulo de Sharpley, que a su vez la atrae con la masa de sus miles de galaxias. La suma de ambas fuerzas hace que la Vía Láctea viaje a esos dos millones de kilómetros por hora respecto a la velocidad constante de la radiación cósmica de microondas, generada tras el Big Bang.

Imagen relacionada

El universo se expande a una velocidad definida por la constante de Hubble, explica Hoffman. Si se resta esa aceleración, el “efecto neto [de la nueva región] sobre la Vía Láctea es de repulsión”, explica. “Hasta ahora solo existían pequeños indicios de este vacío y nadie había conseguido cuantificar sus efectos o localizarlo”, señala. Este vacío, bautizado como repulsor dipolo, “aporta la otra mitad de la historia para explicar al completo el movimiento de la galaxia tal y como lo observamos”, resalta Hoffman.

El nuevo mapa muestra cómo el “atractor” y el “repulsor” influyen en un área del universo de unos 500 millones de años luz y que contiene otras grandes concentraciones de materia como el supercúmulo de Perseo-Piscis, el cúmulo de Hércules, la constelación de Lepus y Laniakea, el supercúmulo que habitamos los terrícolas. “Hasta donde sabemos esta es la mayor reconstrucción del universo local que se ha realizado”, asegura Hoffman.

Resultado de imagen de Un gran vacío encontrado en el Universo

La nueva región del universo descrita en el estudio no está realmente vacía, pero sí tiene menos estrellas y galaxias de lo normal y, por lo tanto, es mucho menos densa que las agrupaciones de cúmulos galácticos. El equipo de Hoffman espera que en el futuro se consiga observar la luz de estrellas en esta región.

El astrónomo añade que las características observadas para la Vía Láctea no tienen nada de especial en un universo que contiene unos dos billones de galaxias. “Su comportamiento parece muy común y encaja perfectamente con el modelo estándar de la cosmología”, que describe la estructura y evolución del universo a partir del Big Bang, resalta. “En este sentido, Copérnico tenía razón, no hay nada que nos haga especiales dentro del universo”, concluye.

Nature Astronomy

Atisbar en los agujeros negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

NASA Selecciona una Misión Para Estudiar los Agujeros Negros

 

04.01.17.- La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.

Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.

“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.

El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.

 

 

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA

 

 

 

Noticias NASA

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias NASA    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El Sistema Solar y Más Allá Está Repleto de Agua

 

10.04.15.- A medida que las misiones de la NASA exploran nuestro sistema solar y buscan nuevos mundos, están encontrando agua en lugares sorprendentes. El agua es una pieza fundamental en nuestra búsqueda de planetas habitables y vida más allá de la Tierra que vincula de forma sorprendente mundos aparentemente dispares.

“Las actividades científicas de la NASA han proporcionado en los últimos años una ola de descubrimientos asombrosos relacionados con el agua que nos inspiran para continuar investigando nuestros orígenes y las fascinantes posibilidades de vida en el Universo”, dijo Ellen Stofan, científico jefe de la agencia.”Podríamos estar cerca de responder finalmente a la pregunta de si estamos solos en nuestro sistema solar y más allá.”

Los elementos químicos que componen el agua, hidrógeno y oxígeno, son algunos de los más abundantes en el universo. Los astrónomos detectan la firma del agua en nubes moleculares gigantescas en el espacio interestelar, en los discos de materia de los que nacen nuevos sistemas planetarios, y en las atmósferas de planetas gigantes orbitando otras estrellas.

Existen muchos mundos que se piensa que tienen agua líquida debajo de su superficie, y muchos otros que tienen agua en forma de hielo o vapor. El agua se encuentra en cuerpos primitivos tales como cometas y asteroides, y en planetas enanos como Ceres. Las atmósferas y el interior de los cuatro planetas gigantes – Júpiter, Saturno, Urano y Neptuno – se cree que contienen enormes cantidades de materia líquida, y sus lunas y anillos tienen cantidades sustanciales de hielo de agua.

Tal vez los mundos oceánicos más sorprendentes son las cinco lunas heladas de Júpiter y Saturno que presentan fuertes evidencias de océanos debajo de sus superficies: Ganímedes, Europa y Calisto en Júpiter, y Encélado y Titán de Saturno.

El Telescopio Espacial Hubble proporcionó recientemente poderosas evidencias de que Ganímedes posee un océano de agua salada bajo su superficie, probablemente localizado entre dos capas de hielo.

La NASA está explorando nuestro Sistema Solar y más allá para comprender el funcionamiento del Universo, buscando agua y vida entre las estrellas.
La NASA está explorando nuestro Sistema Solar y más allá para comprender el funcionamiento del Universo, buscando agua y vida entre las estrellas. Image Credit: NASA

 

Europa y Encelado se cree que tienen un océano de agua líquida bajo su superficie, en contacto con rocas ricas en minerales, y podrían tener los tres ingredientes necesarios para la vida tal y como la conocemos: agua líquida, elementos químicos esenciales para los procesos biológicos, y fuentes de energía que podrían ser usadas por los seres vivos. La misión Cassini de la NASA ha revelado que Encelado es un mundo activo con géiseres de hielo. Investigaciones recientes sugieren que podría haber actividad hidrotermal en su suelo oceánico, un ambiente potencialmente adecuado para los organismos vivos.

Naves de la NASA también han encontrado indicios de agua en los cráteres en sombra permanente sobre Mercurio y la Luna, que mantienen un registro de impactos de hielo a través del tiempo como recuerdos criogénicos.

Mientras que por un lado nuestro Sistema Solar parece estar anegado en agua en algunos lugares, otros parecen haber perdido grandes cantidades de agua.

En Marte, las misiones de NASA han encontrado claras evidencias de que el Planeta Rojo habría tenido agua en su superficie durante largos periodos de tiempo en el pasado. El rover Curiosisty descubrió un antiguo lecho del río que existía en medio de condiciones favorables para la vida tal como la conocemos.

Más recientemente, los científicos de la NASA utilizando telescopios terrestres, fueron capaces de estimar la cantidad de agua de Marte que se ha perdido con el paso de los eones. Llegaron a la conclusión de que el planeta una vez tuvo agua líquida suficiente para formar un océano que ocupó casi la mitad del hemisferio norte de Marte, en algunas regiones alcanzando profundidades de más de 1,6 kilómetros. Pero, ¿dónde se fue el agua?

Está claro para algunos de que está en los casquetes polares de Marte y por debajo de la superficie. También parece que gran parte de la atmósfera primitiva de Marte fue despojada por el viento de partículas cargadas que fluyen del Sol, haciendo que el planeta se seque. La misión MAVEN de la NASA está trabajando en órbita alrededor de Marte para esclarecerlo.

La historia de cómo Marte se secó está íntimamente ligada a la forma en que la atmósfera del Planeta Rojo interactúa con el viento solar. Los datos de las misiones solares de la agencia – incluyendo STEREO, Observatorio de Dinámica Solar, SDO, y la planificada Solar Probe Plus – son vitales para ayudar a entender mejor lo que sucedió.

Comprender la distribución del agua en nuestro sistema solar es de gran importancia para comprender cómo se formaron los planetas, las lunas, cometas y otros objetos hace unos 4.500 millones de años a partir del disco de gas y polvo que rodeaba nuestro Sol.