sábado, 02 de agosto del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nueva Galaxia descubierta

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosas que pasan    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La galaxia CR7, llamada así en homenaje a Cristiano Ronaldo

 

La Galaxia CR7, tiene el nombre del futbolistal del R. Madrid Cristinao Ronaldo que, es muy admirado por su descubridor, y dice, que la Galaxia brilla como el futbolista. Todo un honor para él, ya que no todos podemos tener una galaxia con nuestro propio nombre.

En fin, ¡cosas que pasan!

 

 

 

Existen pocos mortales que tengan ese privilegio y, aunque sea un poco exagerado el hecho, tenemos que convenier en que, su descubridor, tenía la potestad para elegir el nombre que le viniera en gana. Sin embargo, los méritos del personaje están limitados a un ámbito muy reducido y, en honor a la verdad, sus hechos, por muy loables que puedan ser, para la Humanidad, tienen poca importancia.

emilio silvera

Sin las estrellas… ¡No estaríamos aquí!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                           

Hemos logrado determinar con precisión nuestros orígenes como especie mediante precisos análisis genéticos; por ejemplo, los estudios llevados a cabo sobre los genes de las mitocondrias pertenecientes a individuos de todas las poblaciones del mundo y de todas las razas.

Estudiando el A D N mitocondrial de miles de personas se ha llegado a formular la llamada “Teoría de la Eva Negra”, según la cual todos nosotros, los Homo sapiens sapiens, procedemos de una hembra que vivió en algún lugar de África hace ahora unos tres cientos mil años.  Otros estudios se han realizado mediante el análisis del polimorfismo del cromosoma Y.

  

 

 

Igual que la niña mira ensimismada hacia las estrellas lejanas del cielo, tratando de escoger la más hermosa, ponerle un nombre y hacerla suya. También muchas personas han tratado de hace los mismo cuando, en soledad, en espacios abiertos y en plena Naturaleza, ha podido estar en simbiosis plena con aquellos cuerpos celestes que, mediante invisibles hilos de plata, tienen atada la Tierra para que, nunca, podamos dejar de verlas.

Para los amantes de la belleza, el Universo supo muy bien crear sus obras y, mediante su dinámica y su ritmo de movimiento y energía, ha sabido traernos las estrellas y los mundos que, inundados de luz, pudieron hacer posible que surgiera la vida. Los antiguos filósofos, los artistas y los poetas otorgaban a la luz una posición especial entre los fenómenos del mundo natural.

Amanecer GIF - Conseguir el mejor gif en GIFERAmanecer Sol GIF - Amanecer Sol Planeta - Discover & Share GIFsGIFs de sol - Amaneceres, atardeceres, disparos desde el espacio |  USAGIF.comGIFs de sol - Amaneceres, atardeceres, disparos desde el espacio |  USAGIF.com

 

Todo gana con la luz, sea cual pudiera ser su estado en relación al movimiento planetario, todos los escenarios que su inmensa miríada de fotones hacen incidir sobre las cosas, las hace más mucho más atractivas y son expuestas con luz cegadora o mortecina, cenicienta o medio en brumas pero, siempre, dejará ver la Naruraleza en su presencia.

Cómo enseñar a tu hijo a apreciar la belleza

Ese ingrediente llevamos dentro de nosotros, llamado curiosidad, nos lleva a perseguir el saber del Universo

La Física es la Ciencia que estudia las leyes que determinan las estructura del Universo con referencia a la materia y la energía de la que está constituído. Se ocupa no de los cambios químicos que ocurren, sino de las fuerzas que existen entre los objetos y las interrelaciones entre la materia y la energía. Tradicionalmente, el estudio se dividía en campos separados: calor, luz, sonido, electricidad, magnetismo y mecánica (Física clásica).

 

                                   Los científicos de Cambridge que estudian qué va a terminar con la  humanidad (y cómo salvarnos) - BBC News Mundo

                                                        Queremos saber el por qué de las cosas

 

Cuál es el origen de la frase 'somos polvo de estrellas' de Carl Sagan?

Sí, estamos hechos de Polvo de Estrellas. En ellas se “fabricaron” los materiales de los que estamos hechos. De hecho, cerca del 99% de nuestro cuerpo está hecho de cuatro elementos químicos: carbono, hidrógeno, oxígeno y nitrógeno. Siendo el oxígeno el que más abunda con un aproximado de 65% y seguido por el carbono que ocupa un poco más del 19%

 

Vida ¿De qué estamos hechos?  - Podcast Ciencia EXtrema - CienciaEs.comEl universo en el hombre | ArchivoRevista Ideele

Todos los elementos que nos conforman, de los que están constituidos todos los seres vivos de la Tierra (posiblemente de otros muchos mundos también), han sido elaborados en “las entrañas” de las estrellas, que mediante la fusión nuclear han transformado el elemento más sencillo (Hidrógen0), en otros que, como el Carbono, son esenciales para la vida.

                             WISE: Nebulosas Corazón y Alma en Infrarrojo

 

“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopea? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.

Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)

 

Nombre de los brazos más importantes de la Vía Láctea | Nebulosas, Vía  lactea, Galaxia

 

Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazón (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una región de la galaxia donde muchas estrellas se están formando. IC 1805 (la nebulosa Corazón) es a menudo llamada también como la nebulosa delPerro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.

 

Cinturón de Orión - Concepto, características y estrellas

                    El Cinturón de Orión, formado por las tres estrellas Alnitak, Alnilam y Mintaka

 

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

 

Aquí está la única fuerza que une a la Humanidad, es el aliciente y la energía para seguir adelante

 

CONSTELACION_ORION_Egipto_Sothis_ana_vazquez_hoys_

Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA).

Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

 

Telescopio James Webb encuentra estrellas masivas del Universo primitivo |  Quinto Poder

 

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

En el centro de la Nebulosa del Corazón ¿Qué poderes

Seguimos en la Nebulosa del Corazón (otra región) donde se aglomeran las estrellas masivas

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

 

Mars Society Argentina on X: "Que pasa si comparamos al Sol con otras otras  estrellas conocidas? Sirius la estrella mas cercana al Sol queda a 8.7 años  luz de distancia, tiene un

 

La masa máxima de las estrellas puede rondar las 200/250 masas solares, es decir, ser 200 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

           La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol

 

 

Eta Carinae  (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo que la misma estrella eyecta al Espacio para aliviar su tensión y evitar su destrucción.

 

Betelgeuse tiene 1.000 veces el díametro de nuestro Sol. Pero la estrella más grande conocida es:

 

VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacío” estelar.

 

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en pre-secuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.

El Color de las estrellas indican de qué materiales están conformadas y, así se comprueba mediante el estudio de sus espectros.

 

Temperatura de las estrellas – ASTRO

 

 

  • Color azul, como la estrella I Cephei
  • Color blanco-azul, como la estrella Spica
  • Color blanco, como la estrella Vega
  • Color blanco-amarillo, como la estrella Proción
  • Color amarillo, como el Sol
  • Color naranja, como Arcturus
  • Color rojo, como la estrella Betelgeuse.

 

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

 

Colores y temperaturas de las estrellas

 

Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.

La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanómetros (nm).

 

El Sol

 

          Aunque es una estrella pequeña, el Sol contiene el 99% de la masa del sistema solar

Imponentes protuberancias que surgen de las reacciones solares y que llegan hasta la Tierra en forma de partículas muy energéticas produciendo las Auroras Boreales y dañando los ingenios tecnológicos que, en el espacio, vigilan el clima, las comunicaciones, ect.

De qué está hecho el Sol

 

El espectro solar y el elemento extraterrestre: el helio | Quimitube

 

Líneas de Fraunhofer en el espectro solar y sus longitudes de onda en nanómetros (milmillonésimas de metro)

La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.

La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más vieja es la estrella.

 

http://animalderuta.files.wordpress.com/2010/10/188091main_d-protoplanetary-082907-5161.jpg

Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

 

 

La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.

 

 

111216 constants units diagram 730

 

 

Las siete constantes que en el Sistema Internacional de Unidades definen las magnitudes físicas básicas (longitud, masa, tiempo…) se «actualizarán» a partir de 2018 para fijar aún más sus valores y de paso redefinir cuál es su relación de cara a obtener otras unidades derivadas.

Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

 

 

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

 

Las fuerzas fundamentales

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Bueno, el hipotético Gravitón no encontrado hasta el momento

Y

Las constantes fundamentales

 

Constante

Símbolo

Valor en unidades del SI

Aceleración en caída libre

g

9,80665 m s-2

Carga del electrón

e

1,60217733(49) × 10-19 C

Constante de Avogadro

NA

6,0221367 (36) × 1023 mol-1

Constante de Boltzmann

K=R/NA

1,380658 (12) × 10-23 J K-1

Constante de Faraday

F

9,6485309 (29) × 10C mol-1

Constante de los gases

R

8,314510 (70) × J K-1 mol-1

Constante de Loschmidt

NL

2,686763 (23) × 1025 mol-3

Constante de Planck

h

6,6260755 (40) × 10-34 J s

Constante de Stefan-Boltzmann

σ

5,67051 (19) × 10-8 Wm-2 K-4

Constante eléctrica

ε0

8,854187817 × 10-12 F m-1

Constante gravitacional

G

6,67259 (85) × 10-11 m3 Kg-1 s-2

Constante magnética

μ0

4π × 10-7 Hm-1

Masa en reposo del electrón

me

9,1093897 (54) × 10-31 Kg

Masa en reposo del neutrón

mn

1,6749286 (10) × 10-27 Kg

Masa en reposo del protón

mp

1,6726231 (10) × 10-27 Kg

Velocidad de la luz

c

2,99792458× 10m s-1

Constante de estructura fina

α

2 π e2/h c

 

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.

 

                                                                         

 

La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de ec y h(el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si eh y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.

 

Si pudiéramos coger una Gran Nave super-lumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnétars creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de sucesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.

 

Resultado de imagen de Las fuerzas y constantes son las mismas por todo el Universo

 

El Universo tiene un equilibrio armónico debido a que las fuerzas y constantes son las mismas en todas sus regiones por muy alejadas que éstas se puedan encontrar.

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

 

 

 

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partiendo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espacio-tiempo a su alrededor.

emilio silvera

Son muchos, los mundos como la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTROFÍSICA

El sistema solar de TRAPPIST-1 está a 40 años luz: Reportaje

La estrella que alberga siete ‘Tierras’ tiene el doble de edad que el sol

 

 

 

Recreación artística del sistema de TRAPPIST-1 NASA/JPL/CALTECH

TRAPPIST-1 se formó hace entre 5.400 y 9.800 millones de años

Un sistema solar repleto de ‘Tierras’

 

 

Imagen relacionada

 

 

TRAPPIST-1, la estrella enana roja en torno a la cual orbitan al menos siete planetas con características parecidas a la Tierra, tiene casi el doble de edad que nuestro sol. Un equipo de científicos estima que este sistema solar, situado a unos 40 años luz, se formó hace entre 5.400 y 9.800 millones de años (frente a los 4.500 millones de años que tiene el nuestro).

Los detalles de este estudio difundido por la NASA serán publicados próximamente en la revista The Astrophysical Journal y son un ejemplo del gran interés que ha suscitado el descubrimiento, el pasado febrero, de estas siete Tierras. Y es que tres de ellas se encuentran a una distancia de su estrella que, en teoría, les permitiría tener agua líquida, lo que deja abierta la puerta a que puedan albergar algún tipo de vida.

Para determinar si algún organismo puede sobrevivir en un planeta fuera del Sistema Solar es importante conocer la edad de su estrella. Los astros jóvenes emiten con más frecuencia llamaradas de radiación de muy alta intensidad que bombardean la superficie de los mundos que orbitan alrededor. Si esos planetas son jóvenes, sus órbitas pueden ser también poco estables.

¿Mundos habitables?

 

 

Resultado de imagen de Otros mundos habitables

 

 

No obstante, explican los autores del estudio, que se trate de una estrella «bastante vieja» no implica necesariamente que haya más posibilidades de que los planetas que tiene alrededor tengan vida, pues también significa que han estado expuestos durante miles de millones de años a una radiación estelar que podría haber evaporado grandes cantidades de agua. Marte es un ejemplo de un planeta que probablemente albergó agua líquida en su superficie en el pasado, pero que perdió la mayoría del agua y su atmósfera debido a la radiación solar.

«Si hay vida en esos planetas, diría que tiene que ser un tipo de vida muy dura porque ha sido capaz de sobrevivir a escenarios potencialmente extremos durante miles de millones de años», ha declarado Adam Burgasser, científico de la NASA y autor principal del estudio.

Las futuras observaciones con los telescopios espaciales Hubble y James Webb intentarán determinar si los planetas de TRAPPIST-1 tienen atmósferas y si se parecen a la de la Tierra.

Son muchos ¡Los enigmas que no sabemos desvelar!

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Archaeopteryx eslabón perdido entre dinosaurios y aves.

                 Hablamos del eslabón perdido pero, son muchos los cabos sueltos que no hemos sabido unir

¿Qué es lo que nos apartó tan decisivamente de todas las otras especies con las que compartimos el planeta? ¿En qué momento de nuestra historia evolutiva aparecieron las diferencias que nos separaron de los demás criaturas? ¿La denominada “mente” (o mundo mental) es algo específico de los humanos o se trata de un rasgo de la psicología animal? ¿Por qué surgió el lenguaje? ¿Qué es eso que llamamos cultura, y que muchos consideran el sello de la Humanidad?  ¿Somos la única especie que puede presumir de ella? Y quizás la más crucial de todas: ¿por qué estas diferencias nos escogieron a nosotros y no a otras especies?

Son preguntas que, a veces, no sabemos contestar y, sin embargo, sabemos que alma-mente y cuerpo, conforman un conjunto armonioso que hacen de nosotros seres únicos en el Universo.

Tenemos unos sensores que nos permiten sentir emociones como la tristeza, la ternura, el amor o la alegría.  Nos elevamos y somos mejores a través de la música o la lectura de unos versos.  Igualmente podemos llegar al misticismo del pensamiento divino, o incluso profundizar en los conceptos filosóficos de las cosas hasta rozar la metafísica.

Imagen relacionada

Lisa Kelly The Voice – YouTube

             Lisa Kelly de las Celtic Woman

Alguien dijo: ” Cuando las palabras no alcanzan para expresar todo lo que el ser humano quiere decir los artistas acuden a la música. Dicen que es ¡el lenguaje del alma! y recurren a ella para ¡compartir pensamientos y emociones”.Lo cierto es que, nos hace mejores y nos eleva a un plano .

La música es el lenguaje de las emociones, pero ¿qué es el amor? ¿Quién no ha sentido alguna vez ese nudo en el estómago y perdido las ganas de comer? ¿Quién no ha sentido alguna vez ese sufrimiento profundo de estar alejado del ser amado y el inmenso gozo de estar junto a ella/él?

Al igual que todo lo grande está hecho de cosas pequeñas, lo que entendemos por felicidad esta compuesto de efímeros momentos en los que ocurren cosas sencillas que, la mayoría de las veces, ni sabemos apreciar. Una simple mirada, una caricia, estar juntos aante ese paisaje de ensueño… ¡Son momento inolvidables!

Lo que llamamos inteligencia está dentro de todos nosotros, unos tienen más cantidad de ese ingrediente y otros tenemos menos.  Aparece con el lenguaje, pero ya desde la cuna el niño muestra una actividad sensorial y motriz extraordinaria que, a partir del primer año, presenta todos los caracteres de comprensión inteligente.  Con la ayuda de su entorno, el niño va realizando las adaptaciones sensoriales elementales construidas por reflejos.

Mas tarde, aparecerán los numerosos estadios de las adaptaciones intencionales de libre inclinación que acabaran conduciendo al individuo a desarrollar una personalidad única, con el poder de inventar mediante la deducción o combinación mental de los hechos que ve y conoce por el mundo real y que puede dar lugar a crear situaciones y mundos de fantasía, es la creación de la mente.  Con las vivencias del entorno, lo que se enseña y lo que aprende por el estudio, se forma una personalidad o menos elevada según factores de índole diversa que nunca son los mismos, en cada caso se dan circunstancias muy individualizadas.

Todos quedamos marcados para el resto de nuestras vidas en a lo que de niño nos han enseñado, nos han querido y el entorno familiar en el que nos tocó vivir, son cosas que se gravan a fuego en la mente limpia del niño que de esta manera, comienza su andadura en la vida condicionado por una u otra situación que le hace ser alegre y abierto o taciturno, solitario y esquivo con una fuerte vida interior en la que, para suplir las carencias y afectos, se crea su propio mundo mental y privado.

La  mente Humana es un bien “divino”, no se trata de una cosa más, es algo muy especial y tan complejo y poderoso que, ni nosotros mismos, sus poseedores, tenemos una idea clara de dónde puede estar el límite.

La mente guarda nuestra capacidad intelectual, tiene los pensamientos dormidos que afloran cuando los necesitamos, es la que guía nuestras actitudes y comportamientos, la voluntad y todos los procesos psíquicos conscientes o inconscientes, es la fuente creadora o destructora y, en definitiva, es lo que conocemos por “ALMA” y que, en realidad, es la consciencia.

Todas las cosas son, pero no de la misma manera, hay esencia y sustancia que conviven para conformar al sujeto que ES.  “Somos” parte del Universo y estamos en el tiempo/espacio para desarrollar una misión que ni nosotros mismos conocemos, vamos imparables hacia ella y actuamos por instinto.  Nos dieron las armas necesarias para ello: Inteligencia, Instinto y curiosidad… Y, mucha imaginación.  Esos ingredientes nos transportan de manera imparable hacía el futuro inexorable que nos está reservado. Aunque por otra parte pienso que, todo tiene un principio y un fin. No creo que la Humanidad sea una excepción y sí un eslabón intermedio en el proceso natural de cambios que, en todo se produce, ¡en la vida también!

El conjunto de nuestras mentes tiene un poder infinito que, de momento, está disperso, las ideas se pierden y cuando nacen no se desarrollan por falta de medios y de apoyos, es una energía inútil que, invisible, está vagando por el sin ser aprovechada.

Estoy totalmente seguro de que nuestros cerebros ven el mundo que les rodea bajo su propia perspectiva, es decir, lo filtra y en buena medida lo crea, el cerebro no es pasivo, sino que, todo lo que percibe lo transmite “a su manera”, desde su propia percepción, desde su propia realidad, desde su propio mundo físico de todos los y experiencias que tiene registrados para conformar un entorno y un mundo de las propias ideas.

Si pudiéramos “ver” lo que ve un perro, nos quedaríamos asombrados del mundo tan diferente al nuestro que percibe su cerebro con sus propias y percepciones físicas y psíquicas.

Nosotros, los humanos, somos algo y nuestros cerebros no están en proporción con el peso de nuestros cuerpos si nos comparamos con el resto de los animales.  Tanto es así que, si el cuerpo del ser humano siguiera las proporciones, con respecto al cerebro, que se dan como media en los mamíferos, nuestros cuerpos deberían pesar casi diez toneladas (aproximadamente lo que pesa un rinoceronte).

                                             No siempre “nuestro mundo”, coincide con el mundo

Nuestro cerebro es potente y tiene capacidades para “crear” su propio mundo, así pensamos que el mundo que vemos, oímos y tocamos es el mundo “real”, sin embargo, estaría mejor decir que es un mundo real humano, otros lo ven, lo oyen y lo perciben de manera diferente a la nuestra, así que, en nuestro propio mundo, para ellos, la realidad y el mundo es diferente, la que conforme sus cerebros.

No podemos ni comunicarnos con seres que comparten con nosotros el mismo planeta.  Estos seres, de diversas morfologías y diferentes entornos en sus formas de vida, tienen un desarrollo cerebral distinto y, a veces, ni sabemos que es lo que tienen (caso de las plantas y vegetales en ).

Resultado de imagen de La diferencia con animales que comparten con nosotros el mismo planetaResultado de imagen de La diferencia con animales que comparten con nosotros el mismo planeta

Bueno, al menos eso es lo que se cree, manera de confirmarlo no tenemos

Pensemos que si eso es así en nuestro propio mundo, ¿cómo podríamos contactar con seres pertenecientes a mundos situados en Galaxias alejadas miles de millones de kilómetros de la nuestra? Bueno, posiblemente podríamos hacerlo despuès de un tiempo de mutua, toda vez que, según creo, serían muy similares a nosotros en lo esencial y, las inteligencias terminan por comprenderse.

Al principio, ni siquiera podríamos comunicarnos con ellos cuyos lenguajes abstractos y matemáticas estarían conformados de manera muy diferente mediante una organización distinta de signos y guarismos pero, finalmente, una cierta similitud de sus cerebros con los nuestros, harían posible un entendimiento, ya que, ellos y nosotros tendríamos, es muy posible, las mismas percepciones del universo. No se descarta la posibilidad de Civilizaciones que, basadas en el Carbono, como la nuestra, esté conformada por seres similares o parecidos a nosotros.

Y, a esto, sólo una cosa tenemos clara: ¡Sabemos tan poco!

emilio silvera

Seguimos sin saber, lo que la materia oscura es

Autor por Emilio Silvera    ~    Archivo Clasificado en Reportajes de prensa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lisa Randall

Lisa Randall

Física teórica. Universidad de Harvard

Pongamos una estructura clásica de chiste… Van un físico teórico, un poeta y un cuñado y se encuentran al doblar una esquina con un inmenso montón de materia oscura. El físico, feliz, saca lápiz y papel y comienza a formular como loco. El poeta se inspira y dice: “puedo escribir los versos más oscuros esta noche”. Mientras el cuñado, echa mano de su móvil, se hace un selfie, lo sube a Instagram y publica un post “aquí, con todo lo negro… #materiaoscura #misteriosdelespacio”. Por una vez (y sin que sirva de precedente), el cuñado y el físico teórico están igual de acertados porque nadie ha podido hasta ahora describir con precisión de qué está compuesta la materia oscura, a pesar de que según un reciente estudio presentado en la reunión anual de la American Physical Society Division of Particles and Fields, sabemos que el 26% del universo está compuesto por materia oscura y que el 70% es energía oscura. Solo el 4% restante sería materia ordinaria, es decir, la que podemos observar y medir. En realidad, para ser más precisos, como aclara Lisa Randall, se trata de “la estructura del universo” la que “está hecha de materia oscura”. Randall es catedrática de física teórica de la universidad de Harvard y una de las personas que más aportes ha hecho sobre este tema. Se trata, además de una científica arriesgada y original, acostumbrada a transitar caminos que muchos ni siquiera imaginan.

Resultado de imagen de La materia oscura

                     Todo el Universo (según dicen), está impregnado de “materia oscura

Aunque no podamos verla, la existencia de la materia oscura no es una cuestión de fe. Sabemos que está ahí (aunque sus partículas, al no absorber, reflejar o emitir luz no pueden ser observadas directamente) por los efectos que produce sobre otros objetos que sí podemos ver (como su influencia en las gravitaciones de estrellas o galaxias). El primero en formular la presencia de una materia invisible fue el astrónomo Fritz Zwicky en 1933 y desde entonces algunas de las mentes más brillantes de nuestro planeta están empecinadas en tratar de describir con mayor precisión qué esconde esta escurridiza materia.

Randall se ha convertido, según el periódico británico The Guardian, en una “superestrella” de la ciencia gracias a sus teorías. Una de ellas, formulada en su último libro, relaciona la extinción de los dinosaurios hace 66 millones de años con un disco de materia oscura presente en la Vía Láctea. No se trata, por supuesto, de que a este gran enigma se le puede echar la culpa de todo (hablamos de Física, no de política). La hipótesis de Randall está sustentada en observaciones realizadas por el telescopio Fermi de la NASA y espera poder demostrarla gracias a los datos que está recogiendo el satélite Gaia de la Agencia Espacial Europea.

Resultado de imagen de La materia oscura

“Podemos aprender mucho de la materia oscura. Hay un montón de analogías sorprendentes acerca de la forma en que pensamos en la materia oscura y la forma en que tratamos temas sociales o políticos”, asegura Randall; por ejemplo, “todavía tendemos a confiar más en lo que podemos ver directamente”. Algo que es un error, puesto que lo que no vemos es mucho mayor de lo que somos capaces de observar. Una reflexión más que pertinente en estos tiempos confusos, sobre todo viniendo de alguien con la capacidad de abstracción de la científica norteamericana, quien se atreve a plantear con autoridad la posibilidad de que existan otras dimensiones en nuestro universo. Recurramos pues a una de sus analogías tomando prestadas sus palabras en el artículo que le dedicó The Guardian: “¿En qué deberíamos gastar el dinero. ¿Qué recordaremos dentro de cien años? ¿Vamos a recordar que descubrimos el bosón de Higgs o vamos a recordar algún bombardeo en concreto sobre Siria?. Los gastos no son tan distintos”. Y es que hay cosas que no vemos y otras que no queremos ver…