viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cómo se pudieron formar las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Cartwheel.galaxy.arp.750pix.jpg

Todavía, en pleno comienzo del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias. Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron suceder las cosas, cómo se formaron los grandes cúmulos de galaxias.

La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.

Resultado de imagen de Embriones de galaxias

La formación de galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras,  formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequelas sólo tienen mil millones y, algunas macrogalaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.

http://3.bp.blogspot.com/-JZweUMiOr30/TlI4XAA3e0I/AAAAAAAAAGo/JzB6D2f81IM/s1600/Choques+entre+galaxias.jpg

En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, segú todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.

Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentreaciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.

Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grabdes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias.

Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas protogalaxias, que contendrían quizá un millón de estrellas cada una. Estas protogalaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”

El cúmulo de galaxias Abell 1689 desvía la luz

Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotogrrafía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1.689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).

Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿cómo pudieron llegar aquí? En realidad, nadie lo sabe.

Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:

¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!

 

 

Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

http://paolera.files.wordpress.com/2012/11/hst_macs0647_z11.jpg

En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.

Sabemos que,  para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de  haber comenzado siendo agrupada también.

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

Se pudieron formar los núcleos y los átomos de la materia

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzanda la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel que titulé,  ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:

– La edad actual del universo visible ≈ 1060 tiempos de Planck

– Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

– La masa actual del Universo visible ≈ 1060 masas de Planck

– Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

– Densidad actual del universo visible ≈10-120 de la densidad de Planck

– Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

– Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría canbida en el Universo, el átomo sería mayor.

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto matrerial vciajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordáos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

File:Supercúmulo de Virgo.jpg

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos .   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones– atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

Sí, de todo eso hemos podido saber pero, ¿cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la matería se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.

¡Es todo tan complejo!

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han demostrado que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.

La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”

Resultado de imagen de Los Universos múltiples

 

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflacción, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el esntusiamo.

Resultado de imagen de Los estudios del MAPW y la distribución de materia en el Universo

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

Ωbh= 0,002267 + o,000558/  0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

n= 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ= 0,812 ± 0.026

                      Los tres ingenios que estudian el problema planteado

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σson el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

En el artículo nos dicen:

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.”

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

Las fronteras del conocimiento sobre el Universo se amplían día a día y, a no tardar mucho podremos saber sobre:

  • Las caracterísiticas de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de reionización”.

Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

 

         Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, enrealidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

 

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Graedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

Resultado de imagen de Las tres clases de universo

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

Screenshot of CERN's new blog

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inmensa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

Resultado de imagen de Las galaxias más lejanas captadas hasta el momento

Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.

Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.

¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

Resultado de imagen de Las galaxias más lejanas captadas hasta el momento

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

Para más abundamiento, se incluyen hoy dos entrevistas que el Pais publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones.La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.

emilio silvera

Seguimos avanzando… ¡A tientas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia ABC

¿Todas las galaxias, en el centro de una esfera de agujeros negros?

Una nueva investigación sugiere que lo que llamamos materia oscura podrían ser, en realidad, agujeros negros primordiales

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente – NASA/JPL-Caltech/A. Kashlinsky (Goddard)

Resultado de imagen de Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo

Todas las galaxias, incluída la nuestra, podrían estar completamente rodeadas por una enorme esfera de agujeros negros. Esa es la extraordinaria conclusión de un equipo de investigadores del Centro Espacial Goddard, de la NASA, que ha sugerido la posibilidad de que la misteriosa y hasta ahora esquiva materia oscura esté hecha, en realidad, de “agujeros negros primordiales“, esto es, formados durante el primer segundo tras el Big Bang.

Para Alexander Kashlinsky, director de la investigación, la idea es consistente con lo que observamos en el fondo cósmico, tanto en la longitud de onda del infrarrojo como en la de los rayos X, y puede explicar también las masas inesperadamente elevadas de los dos agujeros negros en proceso de fusión observadas el año pasado, durante la primera detección de ondas gravitacionales. El estudio se acaba de publicar en The Astrophysical Journal Letters.

“Este estudio -explica el investigador- constituye un gran esfuerzo para unir toda una serie de ideas y observaciones y ver lo bien que encajan. Y resulta que encajan sorprendentemente bien. Si esto es correcto, entonces todas las galaxias, incluyendo la nuestra, serían parte de una gran esfera de agujeros negros, cada uno de ellos de aproximadamente 30 masas solares”.

Resultado de imagen de telescopio espacial Spitzer

Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo. Los científicos reportaron una irregularidad excesiva en ese brillo, y concluyeron que probablementese se debía a la suma de los brillos de las primeras fuentes de luz que iluminaron el Universo primitivo, hace más de 13.000 millones de años. Estudios posteriores confirmaron que este brillo del fondo cósmico de infrarrojos (CIB, por sus siglas en inglés) tiene la misma e inesperada estructura irregular también en otras partes del cielo.

Chandra X-ray Observatory.jpg

En 2013, otra investigación hizo lo mismo, pero esta vez observando el brillo del fóndo cósmico en el rango de los rayos X (CXB), utilizando el telescopio espacial Chandray en la misma porción de cielo en la que se había medido el brillo en el infrarrojo. Las primeras estrellas, que emiten la mayor parte de su radiación en el espectro visible y en el ultravioleta, no contribuyen en exceso al CXB.

El resultado fue que los brillos irregulares en el fondo cósmico coincidían muy bien tanto en los rayos X como en el infrarrojo. Y el único objeto conocido capaz de ser lo suficientemente luminoso en cualquier rango de energía es un agujero negro. Los investigadores, pues, concluyeron que los agujeros negros primordiales, los que se formaron durante el Big Bang, debieron de ser muy abundantes entre las primeras estrellas, tanto como para constituir al menos una de cada cinco de las fuentes que contribuyen al CIB.

No es materia oscura, sino agujeros negros

Resultado de imagen de No es la materia oscura, son los agujeros negros

Y aquí es donde entra en juego la materia oscura, cuya auténtica naturaleza sigue siendo uno de los problemas no resueltos más importantes de la astrofísica. Cinco veces más abundante que la materia ordinaria, de la que están hechas todas las galaxias, estrellas y planetas que podemos ver, la materia oscura no “brilla”, es decir, no emite radiación, en ninguna longitud de onda, por lo que resulta indetectable para cualquiera de nuestros instrumentos. Sabemos que está ahí, sin embargo, porque su fuerza gravitatoria obliga a la materia ordinaria (la que sí podemos ver) a moverse de formas que, sin la existencia de esa masa invisible, serían imposibles.

Hasta ahora los físicos han tratado de construir modelos teóricos que puedan explicar la materia oscura con una partícula exótica muy masiva, pero todas las pruebas llevadas a cabo para encontrar esa hipotética partícula han fracasado sin excepción.

Resultado de imagen de Buscan partículas de materia oscura

Según Kashlinsky, “estos estudios están proporcionando resultados cada vez más sensibles, reduciendo lentamente el abanico de parámetros donde las partículas de materia oscura se podrían ocultar. Pero el fracaso a la hora de encontrarlas ha llevado a un renovado interés por el estudio de lo bien que los agujeros negros primordiales -agujeros negros formados en primera fracción de segundo del universo- podrían funcionar como materia oscura”.

Los físicos creen que hay varias formas en que el universo temprano, muy caliente y en rápida expansión, pudo producir agujeros negros primordiales en la primera milésima de segundo tras el Big Bang. Y cuanto más tarde se pusiera en marcha este mecanismo, mayores serían los agujeros negros “fabricados” por el Universo recién nacido. Dado que la “ventana” para crear estos agujeros negros dura apenas una fracción de segundo, los agujeros negros primordiales, según los investigadores, deberían de estar todos dentro de un estrecho rango de masas.

Ondas gravitacionales, la primera pista

Resultado de imagen de ondas gravitacionales ejemplos

El Observatorio LIGO (Laser Interferometer Gravitational-Wave Observatory), hace algún tiempo que detectó las ondas gravitacionales causadas por la fusión de dos agujeros negros a 1.300 millones de años luz de distancia. Fue la primera vez que se lograba detectar las ondas gravitacionales que había predicho Einstein hace un siglo, pero también fue la primera detección directa de un agujero negro en toda la historia de la Ciencia. La señal captada por los investigadores aportó información sobre las masas de los dos agujeros negros en proceso de fusión: 29 y 36 masas solares, respectivamente. Valores inesperadamente grandes y, sobre todo, sorprendentemente similares.

Imagen relacionada

“Según cuál sea el mecanismo que está actualdo -explica Kashlinsky- los agujeros negros primordiales podrían tener propiedades muy similares a las detectadas por LIGO. Si asumimos que ese es el caso, y que LIGO captó la fusión de dos agujeros negros nacidos en el universo temprano, entonces podemos estudiar las consecuencias que esto tiene en nuestra comprensión de cómo el cosmos, en última instancia, evolucionó”.

En su nuevo trabajo, Kashlinsky analiza lo que podría haber sucedido si la materia oscura realmente consiste en una gran población de agujeros negros similares a los detectados por LIGO. Esos agujeros negros, por ejemplo, distorsionaron la distribución de la masa en el universo temprano, añadiendo una pequeña fluctuación que tuvo consecuencias cientos de millones de años más tarde, cuando las primeras estrellas empezaron a formarse.

Resultado de imagen de La materia caliente del universo primordial

Durante los primeros 500 millones de años de existencia del Universo, la materia ordinaria estaba demasiado caliente como para unirse y formar las primeras estrellas. Pero la materia oscura no resultó afectada por la temperatura ya que, debido a su propia naturaleza, no depende de la radiación e interactúa fundamentalmente a través de la gravedad. Agregándose a causa de esta atracción gravitatoria, la materia oscura se agrupó primero en estructuras llamadas “mini halos”, lo que proporcionó una serie de “semillas gravitacionales” alrededor de las cuales la materia ordinaria pudo ir acumulándose. Así, el gas caliente (la materia ordinaria) se fue acumulando alredodor de los “mini halos”, dando lugar a “paquetes” de gas lo suficientemente densos como para colapsar sobre sí mismos y formar las primeras estrellas.

Kashlinsky observa que si efectivamente los agujeros negros son la materia oscurael proceso de formación estelar sucedería más rápidamente y se producirían con más facilidad las irregularidades en la luminosidad del fondo cosmico observadas en el rango de los infrarrojos por el telescopio Spitzer. Y esto sería así incluso si solo una pequeña parte de los “mini halos” estuviera produciendo estrellas.

Resultado de imagen de Halos de materia oscura

Por supuesto, los agujeros negros también capturarían una parte del gas caliente que era atraído lor los “mini halos”. Esa materia, se recalentaría según se fuera acercando a los agujeros negros y terminaría, también, por producir rayos X. Juntas, la luz infrarroja procedente de las primeras estrellas y los rayos X emitidos por la materia atraída por los agujeros negrosproducirían los mismos efectos que los científicos han observado en los brillos en CIB y el CXB.

De vez en cuando, además, alguno de estos agujeros negros primordiales pasaría lo suficientemente cerca de otro como para ser capturado por su gravedad y formar un sistema binario. Durante eones, los dos agujeros negros de esos sistemas binarios se orbitarían mutuamente, para terminar fundiéndose en uno solo, como el encontrado el año pasado por los detectores LIGO.

“Las futuras observaciones de LIGO -afirma Kashlinsky- nos dirán mucho más sobre la población de agujeros negros en el Universo, y no hará falta demasiado tiempo para saber si el escenario que propongo se sostiene o no”.