miércoles, 28 de octubre del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué es un bosón? ¿y que es un bosón gauge?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un bosón es una partícula elemtal (o estado ligado de partículas elementales, por ejemplo, un núcleo atómico o átomo) con espín entero, es decir, una partícula que obedece a la estadísitca de Bose-Einstein (estadísictica cuántica), de la cual deriva su nombre. Los bosones son importantes para el Modelo estándar de las partículas. Son bosones vectoriales de espín uno que hacen de intermediarios de las interacciones gobernadas por teorías gauge.

En física se ha sabido crear lo que se llama el Modelo estándar y, en él, los Bosones quedan asociados a las tres fuerzas que lo conforman, el fotón es el Bosón intermediario del electromagnetismpo, los W+, w- y Zº son bosones gauge que transmiten la fiuerza en la teoría electrodébil, mientras que los gluones son los bosones de la fuerza fuerte, los que se encargan de tener bien confinados a los Quarks conformando protones y neutrones para que el núcleo del átomo sea estable. La Gravedad, no se ha dejado meter en el modelo y, por eso su bosón no es de gauge. El gravitón que sería la partícula mediadora de la gravitación sería el hipótetico cuanto de energía que se intercambia en la interacción gravitacional.

Ejemplos de los Bosones gauge son los fotones en electrodinámioca cuántica (en física, el fotón se representa normalmente con el símbolo \gamma \!, que es la letra griega gamma), los gluones en cromodinámica cuántica y los bosones W y Z en el modelo de Winberg-Salam en la teoría electrodébil que unifica el electromagnetismo con la fuerza débil. Si la simetría  gauge de la teoría no está rota, el bosón gauge es no masivo. Ejemplos de nbosones gauge no masivos son el fotón y el gluón.

Si la simetría gauge de la teoría  es una simetría rota el bosón gauge tiene masa no nula, ejemplo de ello son los bosones W y Z . Tratando la Gravedad, descrita según la teoría de la relatividad general, como una teoría gauge, el bosón gauge sería el gravitón, partícula no masiva y de espín dos.

File:Electron-positron-scattering.svg

Diagrama de Feynman mostrando el intercambio de un fotón virtual (simbolizado por una línea ondulada y \gamma \,) entre un positrón y un electrón.De esta manera podemos llegar a comprender la construcción que se ha hecho de las interacciones que están siempre intermediadas por un nosón mensajero de la fuerza.

En el modelo estándar, como queda explicado,  hay tres tipos de bosones de gauge: fotones, bosones W y Z y gluones. Cada uno corresponde a tres de las cuatro interacciones: fotones son los bosones de gauge de la interacciones electromagnética, los bosones W y Z traen la interacción débil, los gluones transportan la interacción fuerte.  El gravitón, que sería responsable por la interacción gravitacional, es una proposición teórica que a la fecha no ha sido detectada. Debido al confinamiento del color, los gluones aislados no aparecen a bajas energías.

 

Aquí, en el gráfico, quedan representadas todas las partículas del Modelo estándar, las familias de Quarks y Leptones que conforman la materia y los bones que intermedian en las interacciones o fuerzas fundamentales que están presentes en el Universo. La Gravedad no ha podido ser incluida y se ha negado a estar unida a las otras fuerzas. Así el bosón que la transnmite, tampoco está en el modelo que es incompleto al dejar fuera la fuerza que mantiene unidos los planetas en los sistemas solares, a las galaxias en los cúmulos y nuestros pies unidos a la superficie del planeta que habitamos. Se busca una teoría que permita esta unión y, los físicos, la laman gravedad cuántica pero… ¡no aparece por ninguna parte!

 http://1.bp.blogspot.com/_HG3RuD3Hmls/TRET9YfPcqI/AAAAAAAAFhI/CtvwqESOw04/s1600/MC01.jpg

 

 

Llegados a este punto tendremos que retroceder, para poder comprender las cosas, hasta aquel trabajo de sólo ocho páginas que publicó  Max Planck  en 1.900 y  lo cambió todo. El mismo Planck se dio de que, todo lo que él había tenido por cierto durante cuarenta años, se derrumbaba con ese trabajo suyo que, venía a decirnos que el mundo de la materia y la nergía estaba hecho a partir de lo que el llamaba “cuantos”.

Supuso el nacimiento de la Mecánica Cuántica (MC), el fin del determinismo clásico y el comienzo de una nueva física, la Física Moderna, de la que la Cuántica sería uno de sus tres pilares junto con la Relatividad y la Teoría del Caos. Más tarde, ha aparecido otra teoría más moderna aún por comprobar, ¿las cuerdas…?

El universo según la teoría de las cuerdas sería entonces una completa extensa polícroma SINFONIA ETERNA de vibraciones, un multiverso infinito de esferas, una de ellas un universo independiente causalmente, en una de esas esferas nuestra vía láctea, en ella nuestro sistema solar, en él nuestro planeta, el planeta tierra en el cual por una secuencia milagrosa de hechos se dió origen a la vida autoconsciente que nos permite preguntarnos del cómo y del por qué de todas las cosas que podemos observar y, también, de las que intiuimos que están ahí sin que se dejen ver.

Claro que, cuando nos adentramos en ese minúsculo “mundo” de lo muy pequeño, las cosas difieren y se apartan de lo que nos dicta el sentido común que, por otra parte, es posible que sea el común de los sentidos. Nos dejamos guiar por lo que observamos, por ese mundo macroscópico que nos rodea y, no somos consciente de ese otro “mundo” que está ahí formando parte del universo y que, de una manera muy importante incide en el mundo de lo grande, sin lo que allí existe, no podría existir lo que existe aquí.

Interacciones en la naturaleza

                                   Interacciones en la naturaleza

 

 Albert Einstein habría dicho que “es más importante la imaginación que el conocimiento”, el filósofo Nelson Goodman ha dicho que “las formas y las leyes de nuestros mundos no se encuentran ahí, ante nosotros, listas ser descubiertas, sino que vienen impuestas por las versiones-del-mundo que nosotros inventamos – ya sea en las ciencias, en las artes, en la percepción y en la práctica cotidiana-.”

Sin embargo yo, humilde pensador, me decanto por el hecho cierto de que, nuestra especie,  siempre llegó al conocimiento a través de la imaginación y la experiencia primero, a la que más tarde,  acompañó largas secciones de estudio y muchas horas de mediatación y, al final de todo eso, llego la experimentación que hizo posible llegar a lugarés ignotos que antes nunca, habían podido ser visitados. De todo ello, pudieron surgir todos esos “nuevos mundos” que, como la Mecanica Cuántica y la Relatividad, nos describían el propio mundo que nos era desconocido.

Cuando comencé éste trabajo sólo quería dar una simple explicación de los bosones y su intervención en el mundo de lo muy pequeño pero…

      Demócrito de Abdera

No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que  para determinar  si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.

Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa , no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.

Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.

En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.

A todo esto, una buena sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón?  Hoy, la tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.

                    Este es, el resultado ahora de la colisión de protones en el LHC

Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.

Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar un cabo de cuerda. Se corta y… ¡ya tenemos dos!

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.

¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos , el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se producen los fenómenos que podemos contemplar en la Naturaleza y, si de camino, podemos llegar a saber el por qué de su comportamiento… ¡mucho mejor!

       El camino será largo y, a veces, penoso pero… ¡llegaremos!

Nuestra insaciable curiosidad nos llevará lejos en el saber del “mundo”. llegaremos al corazón mismo de la materia para conmprobar si allí, como algunos imaginan, habitan las cuerdas vibrantes escondidas tan profundamente que no se dejan ver. Sabremos de muchos mundos habitados y podremos hacer ese primer contacto tántas veces soñado con otros seres que, lejos de nuestro región del Sistema solar, también, de manera independiente y con otros nombres, descubrieron la cuántica y la relatividad. Sabremos al fín qué es la Gravedad y por qué no se dejaba juntar con la cuántica. Podremos realizar maravillas que ahora, aunque nuestra imaginación es grande, ni podemos intuir por no tener la información necesaria que requiere la imaginación.

En fín, como decía Hilnert: ¡”Tenemos que saber, sabremos”!

emilio silvera

¿Qué es un bosón? ¿y que es un bosón gauge?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un bosón es una partícula elemtal (o estado ligado de partículas elementales, por ejemplo, un núcleo atómico o átomo) con espín entero, es decir, una partícula que obedece a la estadísitca de Bose-Einstein (estadísictica cuántica), de la cual deriva su nombre. Los bosones son importantes para el Modelo estándar de las partículas. Son bosones vectoriales de espín uno que hacen de intermediarios de las interacciones gobernadas por teorías gauge.

En física se ha sabido crear lo que se llama el Modelo estándar y, en él, los Bosones quedan asociados a las tres fuerzas que lo conforman, el fotón es el Bosón intermediario del electromagnetismpo, los W+, w- y Zº son bosones gauge que transmiten la fiuerza en la teoría electrodébil, mientras que los gluones son los bosones de la fuerza fuerte, los que se encargan de tener bien confinados a los Quarks conformando protones y neutrones para que el núcleo del átomo sea estable. La Gravedad, no se ha dejado meter en el modelo y, por eso su bosón no es de gauge. El gravitón que sería la partícula mediadora de la gravitación sería el hipótetico cuanto de energía que se intercambia en la interacción gravitacional.

Ejemplos de los Bosones gauge son los fotones en electrodinámioca cuántica (en física, el fotón se representa normalmente con el símbolo \gamma \!, que es la letra griega gamma), los gluones en cromodinámica cuántica y los bosones W y Z en el modelo de Winberg-Salam en la teoría electrodébil que unifica el electromagnetismo con la fuerza débil. Si la simetría  gauge de la teoría no está rota, el bosón gauge es no masivo. Ejemplos de nbosones gauge no masivos son el fotón y el gluón.

Si la simetría gauge de la teoría  es una simetría rota el bosón gauge tiene masa no nula, ejemplo de ello son los bosones W y Z . Tratando la Gravedad, descrita según la teoría de la relatividad general, como una teoría gauge, el bosón gauge sería el gravitón, partícula no masiva y de espín dos.

File:Electron-positron-scattering.svg

Diagrama de Feynman mostrando el intercambio de un fotón virtual (simbolizado por una línea ondulada y \gamma \,) entre un positrón y un electrón.De esta manera podemos llegar a comprender la construcción que se ha hecho de las interacciones que están siempre intermediadas por un nosón mensajero de la fuerza.

En el modelo estándar, como queda explicado,  hay tres tipos de bosones de gauge: fotones, bosones W y Z y gluones. Cada uno corresponde a tres de las cuatro interacciones: fotones son los bosones de gauge de la interacciones electromagnética, los bosones W y Z traen la interacción débil, los gluones transportan la interacción fuerte.  El gravitón, que sería responsable por la interacción gravitacional, es una proposición teórica que a la fecha no ha sido detectada. Debido al confinamiento del color, los gluones aislados no aparecen a bajas energías.

 

Aquí, en el gráfico, quedan representadas todas las partículas del Modelo estándar, las familias de Quarks y Leptones que conforman la materia y los bones que intermedian en las interacciones o fuerzas fundamentales que están presentes en el Universo. La Gravedad no ha podido ser incluida y se ha negado a estar unida a las otras fuerzas. Así el bosón que la transnmite, tampoco está en el modelo que es incompleto al dejar fuera la fuerza que mantiene unidos los planetas en los sistemas solares, a las galaxias en los cúmulos y nuestros pies unidos a la superficie del planeta que habitamos. Se busca una teoría que permita esta unión y, los físicos, la laman gravedad cuántica pero… ¡no aparece por ninguna parte!

 http://1.bp.blogspot.com/_HG3RuD3Hmls/TRET9YfPcqI/AAAAAAAAFhI/CtvwqESOw04/s1600/MC01.jpg

 

 

Llegados a este punto tendremos que retroceder, para poder comprender las cosas, hasta aquel trabajo de sólo ocho páginas que publicó  Max Planck  en 1.900 y  lo cambió todo. El mismo Planck se dio de que, todo lo que él había tenido por cierto durante cuarenta años, se derrumbaba con ese trabajo suyo que, venía a decirnos que el mundo de la materia y la nergía estaba hecho a partir de lo que el llamaba “cuantos”.

Supuso el nacimiento de la Mecánica Cuántica (MC), el fin del determinismo clásico y el comienzo de una nueva física, la Física Moderna, de la que la Cuántica sería uno de sus tres pilares junto con la Relatividad y la Teoría del Caos. Más tarde, ha aparecido otra teoría más moderna aún por comprobar, ¿las cuerdas…?

El universo según la teoría de las cuerdas sería entonces una completa extensa polícroma SINFONIA ETERNA de vibraciones, un multiverso infinito de esferas, una de ellas un universo independiente causalmente, en una de esas esferas nuestra vía láctea, en ella nuestro sistema solar, en él nuestro planeta, el planeta tierra en el cual por una secuencia milagrosa de hechos se dió origen a la vida autoconsciente que nos permite preguntarnos del cómo y del por qué de todas las cosas que podemos observar y, también, de las que intiuimos que están ahí sin que se dejen ver.

Claro que, cuando nos adentramos en ese minúsculo “mundo” de lo muy pequeño, las cosas difieren y se apartan de lo que nos dicta el sentido común que, por otra parte, es posible que sea el común de los sentidos. Nos dejamos guiar por lo que observamos, por ese mundo macroscópico que nos rodea y, no somos consciente de ese otro “mundo” que está ahí formando parte del universo y que, de una manera muy importante incide en el mundo de lo grande, sin lo que allí existe, no podría existir lo que existe aquí.

Interacciones en la naturaleza

                                   Interacciones en la naturaleza

 

 Albert Einstein habría dicho que “es más importante la imaginación que el conocimiento”, el filósofo Nelson Goodman ha dicho que “las formas y las leyes de nuestros mundos no se encuentran ahí, ante nosotros, listas ser descubiertas, sino que vienen impuestas por las versiones-del-mundo que nosotros inventamos – ya sea en las ciencias, en las artes, en la percepción y en la práctica cotidiana-.”

Sin embargo yo, humilde pensador, me decanto por el hecho cierto de que, nuestra especie,  siempre llegó al conocimiento a través de la imaginación y la experiencia primero, a la que más tarde,  acompañó largas secciones de estudio y muchas horas de mediatación y, al final de todo eso, llego la experimentación que hizo posible llegar a lugarés ignotos que antes nunca, habían podido ser visitados. De todo ello, pudieron surgir todos esos “nuevos mundos” que, como la Mecanica Cuántica y la Relatividad, nos describían el propio mundo que nos era desconocido.

Cuando comencé éste trabajo sólo quería dar una simple explicación de los bosones y su intervención en el mundo de lo muy pequeño pero…

      Demócrito de Abdera

No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que  para determinar  si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.

Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa , no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.

Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.

En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.

A todo esto, una buena sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón?  Hoy, la tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.

                    Este es, el resultado ahora de la colisión de protones en el LHC

Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.

Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar un cabo de cuerda. Se corta y… ¡ya tenemos dos!

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.

¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos , el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se producen los fenómenos que podemos contemplar en la Naturaleza y, si de camino, podemos llegar a saber el por qué de su comportamiento… ¡mucho mejor!

       El camino será largo y, a veces, penoso pero… ¡llegaremos!

Nuestra insaciable curiosidad nos llevará lejos en el saber del “mundo”. llegaremos al corazón mismo de la materia para conmprobar si allí, como algunos imaginan, habitan las cuerdas vibrantes escondidas tan profundamente que no se dejan ver. Sabremos de muchos mundos habitados y podremos hacer ese primer contacto tántas veces soñado con otros seres que, lejos de nuestro región del Sistema solar, también, de manera independiente y con otros nombres, descubrieron la cuántica y la relatividad. Sabremos al fín qué es la Gravedad y por qué no se dejaba juntar con la cuántica. Podremos realizar maravillas que ahora, aunque nuestra imaginación es grande, ni podemos intuir por no tener la información necesaria que requiere la imaginación.

En fín, como decía Hilnert: ¡”Tenemos que saber, sabremos”!

emilio silvera

 

¡La Curiosidad! La madre del saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Recordando el pasado    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Buscando Historias del Pasado

 

                      ¡Qué bonito sería si las piedras pudieran hablar!  ¿Qué nos contarían éstas?

Todos los asiduos a este lugar, sabéis de mi curiosidad insaciable por las cosas, por lo que pasó, por las Civilizaciones antiguas, por los misterios que la materia encierra, y, en fin, por el Universo y las historias de las criaturas que lo pueblan y que, en la antigüedad,  estuvieran aquí.

Existen lugares en los que, se han conservado más vivos y realistas los recuerdos del pasado y, en la India, donde al contrario que en la China, no cruzan el cielo los Dragones, serpientes o Aves monstruosas, nos dicen que fueron máquinas, las que, para el asombro de todos, cruzaban el cielo.

luz-magica

James Churchward, el desconcertante estudioso inglés cuyas investigaciones no son nada desdeñables, siempre y cuando no se aproximan a las especulaciones teosofistas, nos habla de un manuscrito que contiene la descripción de una nave aérea de hace 20.000 años.

“La energía” –detalla en una obra redactada varios lustros antes de que se hablara de astronaves y satélites artificiales- se obtiene de la atmósfera de manera simple y poco costosa. En la obra daba una amplia explicación del motor y sus compartimentos y cámaras y de las increíbles propiedades que la nave tenía que, incluso, podía quedar estática en el aire, o, salir disparada como un rayo hacia lo más alto del cielo hasta desaparecer de la vista.

¿Fantasías? Escuchemos un relato de la Academia Internacional de Investigaciones sánscritas de Mysore: “Los manuscritos cuya traducción del sánscrito presentamos, describen varios tipos de “vimana” (naves que se mueven por sí mismas), capaces de viajar por su propio impulso por tierra, agua y aire, y, asimismo, de planeta a planeta. Parece que los vehículos aéreos podían detenerse en el cielo hasta quedar inmóviles, y que estaban dotados de instrumentos capaces de señalar, incluso a distancia, la presencia de aparatos enemigos.

(El relato fue publicado en la India por el especialista Maharshi Bharadaja con el título Aeronáutica del pasado prehistórico.)

Numerosísimos testimonios nos vienen a confirman ampliamente lo anterior. Por ejemplo tenemos una amplia muestra en  el Samaranganasutradhara que narra la historia de vuelos fantásticos realizados por el mundo, y hacia el Sol y las estrellas. Un documento de época precristiana nos suministra una detallada descripción del carro celeste de Rama. La narración nos dice: “…el carro se movía por sí solo y era grande y estaba bien pintado; tenía dos pisos, muchas habitaciones y ventanas…”, cuyas hazañas, canta Valmiki el Herodoto indio: “El carro celeste, que posee una fuerza admirable, alada de velocidad, dorado en su forma y en su esplendor… El carro celeste ascendió por encima de la colina y del valle boscoso…alado como el rayo, dardo de Indra, fatal como el relámpago del cielo, envuelto en humo y destellos flameantes, rápida proa circular” (del Ramayana, que narra la epopeya de Rama).

Centenares y centenares de historias semejantes nos podemos encontrar a lo largo de las tradiciones hundúes: “ahí va la divina Maya volando en un carro de oro circular, que mide 12.000 codos de circunferencia, capaz de alcanzar las estrellas”, y, hete aquí el “caballo metálico del cielo” del rey Satrugit y el “carruaje del aire” del rey Pururavas. También el siglo IV de nuestra era encontramos a un héroe aeronauta, el monje budista Gunarvarman, quien se va desde Ceylán a Java en un aparato similar a los antiguos, sacado quién sabe de dónde.

Según se deduce de estos antiquísimos manuscritos en sánscrito, aquellos hindúes prehistóricos (o lo que realmente pudieran ser), no utilizaban aquellos ingenios voladores para excursiones de placer, sino que, según nos cuentan los relatos, las acciones bélicas eran también cotidianas que describen terribles batallas.

File:Angkor Wat 005.JPG

Un bajorrelieve en Angkor Wat (Camboya) representa a Rávana  Rávana peleando en la batalla de Lanka, el clímax del Ramaiana.

Rávana, el rey de los demonios de Ceylán, enemigo mortal de Rama, “voló sobre los adversarios (según nos narra un manuscrito del año 500 a, de C.) haciendo caer ingenios que causaron grandes destrucciones. Finalmente, fue capturado y muerto, y su máquina celeste cayó en manos del capitán hindú Ram Chandra, quién, sirviéndose de ella, voló a la capital, Adjhudia…”

Y esto no son más que bagatelas. “El Bhisma Parva –recuerda Drake- menciona armas como la “verga de Brahma” y el “Rayo de Indra”, cuyos efectos se parecen a los producidos por la energía nuclear. El Drona Parva nos habla del “señor Mahadeva” y de sus terribles lanzas volantes (¿misiles?) capaces de destruir ciudades enteras fortificadas…, y describe las fantásticas armas de Agni, que aniquilaron ejércitos completos y devastaron la Tierra como bombas de Hidrógeno.”

¿Es posible que no se hayan conservado trazas de estos alucinantes conflictos? Los restos existen, y numerosísimos –responden los investigadores-. Basta que nos tomemos la molestia de ir en su busca. No es una empresa fácil, desde luego, puesto que, desde hace milenios la jungla se ha espesado sobre las ruinas, pero si consiguiéramos localizar todas las “ciudades muertas” de la gran península, constelaríamos el mapa de la India de tantos puntos como los que, en un Atlas, nos indican los centros de población actuales.

De vez en cuando aparecen descripciones a este respecto que nos dejan perplejos. El explorador De Camp, por ejemplo, refirió haber visto, en la zona que se extiende entre el Ganges y los montes Rajmahal, ruinas carbonizadas por algo que no podía ser un simple incendio, por violento que éste fuera. Algunas piedras gigantescas aparecían fundidas y desenterradas en varios puntos, “como bloques de estaño afectados por la salpicadura de una colada de acero”.

Más al Sur, el oficial británico J. Campbell se topó, en los años veinte, con ruinas similares, y quedó sorprendido por un extrañísimo detalle: en el pavimento semivitrificado de lo que debió de ser un patio interior, parecían haber sido impresas, por una fuerza desconocida, formas de cuerpos humanos.

Otros viajeros refieren haber descubierto en el corazón de los bosques indios ruinas de edificios nunca vistos, con paredes “semejantes a gruesas losas de cristal” asimismo perforadas, resquebrajadas y corroídas por agentes desconocidos. Y habiendo penetrado en una de estas construcciones, parecida a una cúpula baja, el explorador y cazador H. J. Hamilton se encontró con la mayor sorpresa de su vida.ç

“En una parte –recuerda-, el suelo cedió bajo mis pies con un extraño crujido. Me puse a seguro y, luego, ensanché con la culata del fusil el boquete que se había abierto, y me introduje en él. Me encontré en una estancia larga y estrecha que recibía luz por una grieta de la bóveda. Al fondo, vi una especie de mesa y un asiento del mismo “cristal” de que estaban hechas las paredes.

En el asiento, se enroscaba una forma extraña, e contornos vagamente humanos. Observándola de cerca, me pareció, al principio, que se trataba de una estatua deteriorada por la acción del tiempo, pero, luego, descubrí algo que me llenó de horror: bajo el “vidrio” que revestía aquella estatua, ¡se podían distinguir claramente los detalles del esqueleto!”.

Muros, muebles y seres humanos vitrificados… ¿Qué tremendos secretos se esconden entre las líneas del Mahabrata y del Drona Parva?

Bueno, lo cierto, amigos míos, es que, todas estas historias y vestigios del pasado, desatan nuestra imaginación y nos llevan a especualr con lo que podría haber sido, y, lo que de cierto está presente en todas esas Historias que cuentan y que, por cada persona que las cuenta, aumenta en detalles fantásticos que la alejan de una realidad que nadie ha llegado ni llegará nunca a conocer.

emilio silvera

¿La teoría cuántica y la Gravedad, dentro de las cuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                 Sí, a veces la Física, parece un Carnaval. Imaginamos universos que… ¿serán posibles?

Las teorías de cuerdas [TC's] no son una invención nueva, ni mucho menos. La primera TC se inventó a finales de los años sesenta del siglo XX en un intento para encontrar una teoría para describir la interacción fuerte. La idea medular consistía en que partículas como el protón y el neutrón podían ser consideradas como ondas de «notas de una cuerda de violín». La interacción fuerte entre las partículas correspondería a fragmentos de cuerda que se extenderían entre pequeños pedacitos de cuerda, como las telas que forman algunos simpáticos insectos. Para que esta teoría proporcionase el valor observado para la interacción fuerte entre partículas, las cuerdas tendrían que ser semejantes a las de un violín, pero con una tensión de alrededor de unas diez toneladas.

La primera expresión de las TC’s fue desarrollada por Jöel Scherk, de París, y John Schwuarz, del Instituto de Tecnología de California, quienes en el año 1974 publicaron un artículo en el que demostraban que la TC podía describir la fuerza gravitatoria, pero sólo si la tensión en la cuerda se tensiometrara alrededor de un trillón de toneladas métricas. Las predicciones de la teoría de cuerdas serían las mismas que las de la relatividad general a escala de longitudes normales, pero diferirían a distancias muy pequeñas, menores que una trillonésima de un cm. Claro está, que en esos años, no recibieron mucha atención por su trabajo.

Ahora se buscan indicios de la teoría de cuerdas en los grandes aceleradores de partículas donde parece que algunos indicios nos dicen que se va por el buen camino, sin embargo, nuestros aceleradores más potentes necesitarían multiplicar por un número muy elevado su potencia para poder, comprobar la existencia de las cuerda situadas a una distancia de 10-35 m, lugar al que nos será imposible llegar en muchas generaciones. Sin embargo, en las pruebas que podemos llevar a cabo en la actualidad, aparecen indicios de una partlicula de espín 2 que todos asocian con el esquivo Gravitón, y, tal indicio, nos lleva a pensar que, en la teoría de supercuerdad, está implícita una Teoría Cuántica de la Gravedad.

Los motivos que tuvo la comunidad científica, entonces, para no brindarle la suficiente atención al trabajo de Scherk y Schwuarz, es que, en esos años, se consideraba más viable para describir a la interacción fuerte a la teoría basada en los quarks y los gluones, que parecía ajustarse mucho mejor a las observaciones. Desafortunadamente, Scherk murió en circunstancias trágicas (padecía diabetes y sufrió un coma mientras se encontraba solo en su estudio). Así, Schwuarz se quedó solo, en la defensa de la teoría de cuerdas, pero ahora con un valor tensiométrico de las cuerdas mucho más elevado.

Pero con los quarks, gluones y también los leptones, en la consecución que se buscaba, los físicos entraron en un cuello de botella. Los quarks resultaron muy numerosos y los leptones mantuvieron su número e independencia existencial, con lo cual seguimos con un número sustancialmente alto de partículas elementales (60), lo que hace que la pregunta ¿son estos los objetos más básicos?

Si esos sesenta objetos fuesen los más básicos, entonces también aflora otra pregunta ¿por qué son como son y por qué son tantos? Los físicos quisieran poder decir «salen de esto», o «salen de esto y aquello», mencionar dos principios bien fundamentales y ojalá tan simples que puedan ser explicados a un niño. La respuesta «porque Dios lo quiso así» posiblemente a muchos les cause «lipotimia»,  ya que esa respuesta nos lleva a reconocer nuestra ignorancia y, además, la respuesta que esperamos no pertenece al ámbito de la religión. Por ahora, ¿cuál es la última que puede dar la ciencia?

   Particulas mediadoras de las fuerzas y de la materia

El cuello de botella incentivó a que se encendiera una luz de esperanza. En 1984 el interés por las cuerdas resucitó de repente. Se desempolvaron las ideas de Kaluza y Klein, como las que estaban inconclusas de Scherk y Schwuarz. Hasta entonces, no se habían hecho progresos sustanciales para explicar los tipos de partículas elementales que observamos, ni tampoco se había logrado establecer que la supergravedad era finita.

El ser humano –en función de su naturaleza– cuando se imagina algo muy pequeño, piensa en un puntito de forma esférica. Los físicos también son seres de este planeta y, para ellos, las partículas elementales son como puntitos en el espacio, puntos matemáticos, sin extensión. Son sesenta misteriosos puntos y la teoría que los describe es una teoría de puntos matemáticos. La idea que sugieren las TC’s es remplazar esos puntos por objetos extensos, pero no como esferitas sino más bien como cuerdas. Mientras los puntos no tienen forma ni estructura, las cuerdas tienen longitud y forma, extremos libres como una coma “,” (cuerda abierta), o cerradas sobre sí misma como un circulito. Si el punto es como una esferita inerte de la punta de un elastiquito, la cuerda es el elástico estirado y con él se pueden hacer círculos y toda clase de figuras. Está lleno de posibilidades.

Muchas son las imágenes que se han elaborado para representar las cuerdas y, como nadie ha visto nunca ninguna, cualquiera de ellas vale para el objetivo de una simple explicación y, las cuerdas que se han imaginado han tomado las más pintorescas conformaciones para que, en cada caso, se adapten al modelo que se expone.

diferencia entre un punto y una coma. Según la teoría de cuerdas importa, y mucho. Por su extensión, a diferencia del punto, la cuerda puede vibrar. Y hacerlo de muchas maneras, cada modo de vibración representando una partícula diferente. Así, una misma cuerda puede dar origen al electrón, al fotón, al gravitón, al neutrino y a todas las demás partículas, según cómo vibre. Por ello, la hemos comparado con la cuerda de un violín, o de una guitarra, si se quiere.

Al dividir la cuerda en dos, tres, cuatro, cinco, o más partes iguales, se generan las notas de la escala musical que conocemos, o técnicamente, los armónicos de la cuerda. En general, el sonido de una cuerda de guitarra o de piano es una mezcla de armónicos. Según la mezcla, la calidad (timbre) del sonido. Si distinguimos el tono de estos instrumentos, es por la «receta» de la mezcla en cada caso, por las diferentes proporciones con que cada armónico entra en el sonido producido. Pero, también es posible hacer que una buena cuerda vibre en uno de esos armónicos en particular, para lo cual hay que tocarla con mucho cuidado. Los concertistas lo saben, y en algunas obras como los conciertos para violín y orquesta, usan este recurso de «armónicos». Así, la naturaleza, con su gran sabiduría y cuidado para hacer las cosas, produciría electrones, fotones, gravitones, haciendo vibrar su materia más elemental, esa única y versátil cuerda, en las diversas (infinitas) formas que la cuerda permite.

 

Mientras que una partícula ocupa un punto del espacio en cada instante del tiempo (y su historia en el tiempo seguiría una línea en el espacio-tiempo –la línea del mundo), una cuerda abierta ocupa una línea en el espacio y para cada instante del tiempo. Su historia seguiría, pues, una superficie bidimensional que sería “la hoja del mundo”.

Es decir, una partícula ocupa un punto del espacio en todo momento. Así, su historia puede representarse mediante una línea en el espaciotiempo que se le conoce como «línea del mundo». Por su parte, una cuerda ocupa una línea en el espacio, en cada instante de tiempo. Por tanto, su historia en el espaciotiempo es una superficie bidimensional llamada la «hoja del mundo». Cualquier punto en una hoja del mundo puede ser descrito mediante dos números: uno especificando el tiempo y el otro la posición del punto sobre la cuerda. Por otra parte, la hoja del mundo es una cuerda abierta como una cinta; sus bordes representan los caminos a través del espaciotiempo (flecha roja) de los extremos o comas de la cuerda (figura 12.05.03.02). La hoja del mundo de una cuerda cerrada es un cilindro o tubo (figura 12.05.03.03); una rebanada transversal del tubo es un círculo, que representa la posición de la cuerda en un momento del tiempo.

No cabe duda que, de ser ciertas las TC’s, el cuello de botella queda bastante simplificado. Pasar de sesenta objetos elementales a una sola coma o circulito es un progreso notable. Entonces, ¿por qué seguir hablando de electrones, fotones, quarks, y las demás?

Que aparentemente las cosas se simplifican con las TC’s, no hay duda, pero desafortunadamente en física las cosas no siempre son como parecen. Para que una teoría sea adoptada como la mejor, debe pasar varias pruebas. No basta con que simplifique los esquemas y sea bella. La teoría de las cuerdas está –se puede decir– en pañales y ha venido mostrado distintas facetas permeables. Surgen problemas, y se la deja de lado; se solucionan los problemas y una avalancha de trabajos resucitan la esperanza. En sus menos de treinta años de vida, este vaivén ha ocurrido más de una vez.

Uno de los problemas que más afecta a la cuerda está ligado con su diminuto tamaño. Mientras más pequeño algo, más difícil de ver. Es una situación que se agudiza en la medida que se han ido corrigiendo sus permeabilidades. En sus versiones más recientes, que se llaman supercuerdas, son tan superpequeñas que las esperanzas de ubicarlas a través de un experimento son muy remotas. Sin experimentos no podemos comprobar sus predicciones ni saber si son correctas o no. Exagerando, es como una teoría que afirmara que los angelitos del cielo tienen alitas. ¿Quién la consideraría seriamente?

La propia base conceptual de la teoría comporta problemas. Uno de ellos, es el gran número de dimensiones que se usan para formularla. En algunos casos se habla de 26 o, en el mejor, de 10 dimensiones para una cuerdita: espacio (son 3), tiempo (1) y otras seis (o 22) más, que parecen estar enroscadas e invisibles para nosotros. Por qué aparecieron estas dimensiones adicionales a las cuatro que nos son familiares y por qué se atrofiaron en algún momento, no lo sabemos. También, la teoría tiene decenas de miles de alternativas aparentemente posibles que no sabemos si son reales, si corresponden a miles de posibles universos distintos, o si sólo hay una realmente posible. Algunas de estas versiones predicen la existencia de 496 fuerzones, partículas como el fotón, que transmiten la fuerza entre 16 diferentes tipos de carga como la carga eléctrica. Afirmaciones como éstas, no comprobables por la imposibilidad de hacer experimentos, plagan la teoría de cuerdas. Quienes alguna vez intentaron trabajar matemáticamente en las cuerdas, muchas veces deben haber pensado de que lo que estaban calculando más se asemejaba a juegos de ejercicios que la consecución de una base matemática teórica tras objetivo de dar un paso trascendental en el conocimiento de la naturaleza. Ahora, los que tienen puesta su fe en ella suelen afirmar que se trata de una teoría que se desfasó de la natural evolución de la física, que su hallazgo fue un accidente, y no existe aún el desarrollo matemático para formularla adecuadamente.

En las teorías de cuerdas, lo que anteriormente se consideraba partículas, se describe ahora como ondas viajando por las cuerdas, como las notas musicales que emiten las cuerdas vibrantes de un violín. La emisión o absorción de una partícula por otra corresponde a la división o reunión de cuerdas.

La Teoría de cuerdas trata de incorparar la Gravedad a las otras tres fuerzas y completar asíel panorama actual de la Física de Partículas en el Modelo Estándar en el que sólo están incluídas estas tres interacciones de arriba, la Gravedad queda fuera por surgir infinitos no renormalizables que, desaparecen en la Teoría de supercuerdas de 26 dimensdiones de espacio tiempo para los Bosones y de 10 y 11 dimensiones de espacio tiempo para los Ferniones.

El trabajo que aquí hemos leido lo he obtenido de fuentes diversas y, como tantos otros, nos dice más o menos lo que todos. La realidad de la Teoría de supercuerdas está en que no podemos llegar a ese límite necesario de los 10-35 m, donde supuestamente, está instalada la cuerda, y, como llegar a esa distancia nos exige una energía de 1019 GeV con la que no podemos ni soñar. Seguirán, por mucho tiempo, las especulaciones y cada cual, tendrá su idea, su propia teoría, toda vez que, ninguna de ellas podrá ser verificadas y mientras eso sea así (que lo es), todas las teorías tendrán la posibilidad de ser refrendadas…algún día.

 ¿Dónde estarán las respuestas?

Sin embargo, una cosa es cierta, es la única teoría, la de supercuerdas, que nos da cierta garantía de que vamos por el buen camino, en su desarrollo aparecen indicios confirmados por los experimentos, como por ejemplo, la aparici´çon de una partícula de espín 2, el Gravitón que nos lleva a pensar que, en la teoría de supercuerdas está integrada una teoría Cuántica de la Gravedad que nos, podrá llevar, hasta esos primeros momentos del Big Bang que ahora quedan tan oscuros a la vista de los observadores y, de la misma manera, nos dejará entrar en la Singularidad de un Agujero Negro para poder ver (al fin) lo que allí pueda haber, qué clase de partículas o de materia se ha podido formar en un material tan extremadamente denso como el de la singularidad.

Habrá que tener paciencia con la Teoría de cuerdas y con el hallazgo tan esperado del Gravitón que nos confirmará, al fín, que la Gravedad como las demás interacciones, también está cuantizada y tiene su Bosón transmisor. De lo que no acabo de estar seguro es…del hecho en sí, de que podamos univer la Gravedad con la cuántica…¡son tan dispares! y habitan en reinos tan diferentes.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

                                                       El Tiempo, el Universo, el Inicio de todo.

Se han llevado a cabo muchos modelos y las distintas teorías que circulan por ahí nos hablan de muchas cuestiones. Sin embargo, la singularidad -de la que suponemos que surgió todo- es lo que predice la relatividad general para aquel pasado, y cerca de ella la curvatura (del espacio) debe de ser muy alta; la singularidad anula la relatividad clásica, y habrá que tomar en cuenta los efectos cuánticos. A fin de comprender las condiciones iniciales del universo, debemos dirigirnos a la mecánica cuántica, y el estado cuántico del universo determinará las condiciones del universo clásico. De hecho, hasta el momento nadie ha podido ir más allá, para llegar al Tiempo de Planck, y, en consecuencia, no se sabe que pudo pasar en aquellas primeras fracciones de segundo después del Big Bang.

En realidad, lo que allí surgió fue una descripción de evolución cósmica de una extraña belleza. Todas las líneas del universo divergen de la singularidad de la génesis, como las líneas de longitud proceden del polo norte en el globo terráqueo.

Algunos dicen que la pregunta de cuándo empezó el tiempo o cuándo terminará no tiene ningún sentido: “Si es correcta la afirmación de que el espacio-tiempo es finito pero limitado, dijo Hawkins en una ocasión, la singularidad que nos predicen en el Big Bang es más bien como el polo norte de la Tierra. Preguntar qué ocurre antes de la singularidad es como preguntar que ocurre en la superficie de la Tierra dos kilómetros al norte del Polo norte. Es una pregunta sin sentido.”

El tiempo imaginario, en opinión de Hawkins, era el tiempo de antaño y el tiempo futuro, y el tiempo que nosotros conocemos no es más que la sombra de la simetría rota del tiempo original. Cuando una calculadora contesta “error” si se le pregunta el valor de la raíz cuadrada de -1, nos está diciendo, a su modo, que ella pertenece a este universo, y no sabe como indagar en el universo como era antes del momento de la génesis. Y este es el estado de la ciencia, hasta que tengamos las herramientas para explorar el régimen muy diferente que prevalecía cuando empezó el tiempo.

Postrados ante el tiempo inexorable que pasa, nada podemos hacer por detenerlo, estamos supeditados a su transcurrir y, el que se nos ha concedido, debe ser aprovechado para SABER, esa simple pabra que nos liberará y nos separá del resto de las criaturas de la Tierra a las que, de4 alguna manera, deberíamos tratar de entender. ¿Sabemos acaso si piensa una Ballena?

Otro enfoque cuántico de la génesis, defendida por John Wheeler, subraya la cuantización del espacio mismo. Así como la materia y la energía están hechas de cuántos, afirma esta línea de razonamiento, también el espacio debe ser cuantizado en sus cimientos. A Wheeler le gustaba comparar el espacio cuántico con el mar: contemplado desde una órbita, la superficie del océano parece lisa, pero si salimos en un bote de remos a recorrer la superficie, “vemos la espuma y las olas que rompen. Y con esta espuma es como describimos la estructura del espacio y las escalas más pequeñas”.

Nunca podremos escapar de las voraces faces del Tiempo, y de la misma manera, tampoco podremos hacerlo de la Singularidad de un agujero negro si osamos  traspasar el Horizonte de sucesos. En el universo actual, la estructura espumosa del espacio se manifiesta en la constante aparición de partículas virtuales. En el universo muy primitivo -lo cual significa antes del Tiempo de Planck-,  el espacio habría sido un mar encrespado, realmente, y su flujo cuántico zarandeado por las tempestades quizá dominó todas las interacciones. ¿Cómo nos orientaremos aquí?

Wheeler, un estadista mayor que aprendió ciencia de Einstein y Bohr, y a su vez educó a toda una generación de físicos, pensaba que la respuesta estaba en la geometría del espacio-tiempo. “¿Qué más hay allí con lo cual construir una partícula, excepto la geometría misma?” preguntaba. Wheeler comparó el flujo cuántico del universo primitivo con un complicado nudo marinero, de tal tipo que parece imposible de desenredar, pero que se logra si uno encuentra el cabo de la cuerda y le da un tirón del modo adecuado. En la analogía, el nudo es la geometría hiperdimensional del universo original, la cuerda enredada el universo que habitamos hoy.

          J. Wheeler

Penrose había dicho: “No creo que pueda alcanzarse nunca una verdadera comprensión de la naturaleza de las partículas elementales sin una simultánea comprensión más profunda de la naturaleza del mismo espacio-tiempo.” Para Wheeler, esto era verdad con respeto al universo como un todo:

“El espacio es un continuo.” En décadas pasadas, esto se suponía desde el comienzo cuando se preguntaba: “¿Por qué el espacio tiene tres dimensiones? Hoy, en cambio, preguntamos: “¿Cómo logra el mundo dar la impresión de que tiene tres dimensiones?” ¿Cómo puede haber algo semejante en un continuo espaciotemporal excepto en los libros? ?De qué modo podemos considerar el espacio y la “dimensionalidad”, si no es como palabras próximas para designar un soporte, un sustrato,  una “pregeometría”, que no tiene ninguna propiedad tal como la dimensión.

     La geometría del espaciotiempo está determinada por la materia

Así lo demostró Riemann y también otros

Para responder a tales preguntas, argüía Wheeler, la ciencia tendría que elevarse por encima de sí misma en un nuevo ámbito, “un mundo de leyes sin leyes”, en el que, como enseña el principio cuántico de indeterminación, la respuesta depende de la pregunta formulada. El mundo, creíamos antaño, existe “allí fuera”, independiente de todo acto de observación. Pensábamos que el electrón,  dentro del átomo, tenía en cada momento una posición definida y un momento definido. Lo cierto es que, las respuestas, no siempre dependen de quién las formule, sino que, vendrán razonadas siempre conforme al que las pueda contestar. No siempre obtenemos las mismas respuestas a las mismas preguntas. Las perspectivas de las cosas pueden ser distintasd en función del conocimiento que se tenga de ellas.

Algún día tendremos en nuestras manos los secretos de la física cuántica que es, tanto como decir, que conocemos por fín la materia y sus interacciones, es decir, las fuerzas que intervienen para que sean posibles todos los cambios de fase que producen elevaciones el nivel de complejidad hasta llegar a la fase química-biológica que conduce, de manera irremediable, a la vida.

En el mundo real de la física cuántica, ningún fenómeno es un fenómeno hasta que es un fenómeno registrado.

Nos queda, pues, una imagen de la génesis como un castillo silencioso e insustancial, donde nuestros ojos que arrojan ondas homéricas innovadoras y las únicas voces son las nuestras. Después de anunciarlo y de hacer nuestros deberes científicos de manera reverente y diligente, planteamos lo mejor que podemos la pregunta de cómo se formó la creación. Llega la respuesta, resonando a través de cámaras abovedas donde se encuentran la mente y el Cosmos. Es un Eco, que aún, no hemos sabido descifrar.

Lástima que el gráfico de arriba no esté centrado para poder ver las complejidades que nos podemos encontrar en cualquiera de las cosas que deseamos comprender, nada resulta fácil y, por supuesto, su dificultad nos lleva a unos beneficios directamente proporcionales a las mismas, de ahí, la importancia de saber.

A base de estas pequeñas parcelas del pensamiento podemos ir avanzando por el camino de la Ciencia que nos lleva hacia lugares donde encontramos las respuestas deseadas y, desde luego, necesarias para poder continuar preguntando. El conocimiento siempre es parcial, los triunfos limitados. Dado que la Naturaleza es “infinita” y tiene por ello, infinidad de cuestiones que debemos resolver, la única manera que tenemos de hacerlo es ir cumpliendo etapas a medida que nuestras mentes evolucionan al compás de los nuevos descubrimientos que nos abren la perspectiva de otros nuevos horizontes hacia los que dirigirnos para poder encontrar aquello que buscamos.

¿Quién le hubiera dicho a E. Rutherford que el átomo era, en realidad, un conjunto conformado en un 99% de espacio vacío y que, su núcleo era, en realidad, 1/100 000 veces más pequeño que el resto? Y, como aquello se descubrió por casualidad como otros tantos secretos del Universo, en los que buscando una cosa nos encontramos con otra muy diferente, los hechos nos marcan la pauta y dejan al descubierto que, posiblemente, sea la misma Naturaleza la que nos lleve y guie hacia el lugar que debemos observar. Es decir, colabora con nosotros en nuestra andadura a la conquista del saber, nos pone delante las cuestiones que no siempre sabemos comprender  y, no siempre sabemos “ver”.

Sin embargo, nuestras mentes evolucionan y las conquistas parciales que se van consiguiendo, se unifican en más amplias teorías que posibilitan llegar a regiones desconocidas de la Naturaleza en el ámbito de la Materia, de la Biología, la Química y, por supuesto, de las estrellas y Galaxias que pueblan nuestro Universo que, por grande y extenso que pueda ser, es, al fin y al cabo nuestra casa. Tan grande y descomunal que tiene cientos de miles de compartimentos, habitaciones y trasteros que, estando llenos de auténticas maravillas, por nuestra juventud, aún no hemos podido buscar los medios para poder llegar hasta ellos y comprobar de qué se trata y que es lo que nos puede decir que nosotros no sepamos.

En cualquier región de nuestro Universo existen misterios, secretos que debemos desvelar. Las respuestas son llaves que nos permiten abrir puertas cerradas que nos llevarán más allá, a lugares fantásticos donde otras puertas cerradas nos esperan para que, tratemos de abrirlas y poder ver, las maravillas que allí permanecen escondidas.

La Historia, desde Babilonia y los Sumerios, ha seguido igual: Una Humanidad que busca incansable las respuestas y, para ello, mirando al cielo y a la tierra, ha tratado siempre de responder a los fenómenos observados y que, para ellos, no tenían explicación.

Muchas han sido las preguntas que encontraron la adecuada respuesta, y, muchas son las preguntas que están a la espera de  que puedan ser contestadas. Investigaciones y experimentos de todo tipo y en los ámbitos más dispares, observaciones con sofisticados aparatos tecnológicos, investigación de la materia en sus más íntimas propiedades, hemos llegado a poder clasificar de manera automática los espectros estelares mediante el uso de técnicas de I.A. sobre Archivos Astronómicos, o, aplicar el efecto de microlente en Cuásares, aprendido a detectar muones en el experimento CMS del LHC, se ha podido aplicar la Mecánica Cuántica relativista a la óptica, hemos sabido fabricar robot que buscan objetivos en entornos inciertos, en lo que se conoce como estrategia de memotaxis mediante la implantación robótica, y, un sinfín de caminos más que estamos recorriendo ahora mismo en muchos campos y, no digamos de las investigaciones en Física de materiales o de fluidos o de hiperconductividad, o, por otra parte esos experimentos y estudios de bosones y fermiones tratando de cambias sus propiedades burlando el Principio de exclusión de Pauli de manera tal que, los fermiones se comporten como bosones y estos como fermiones (sería el futuro de los ordenadores cuánticos de millones de respuestas por segundo).

¿Nos suplirán un día? No puedo contestar a esa pregunta pero, me resisto a admitir que ellos, llegarán a tener sentimientos.

No siempre, la Ciencia, está asentada sobre bases firmes y creencias ciertas, ni los hombres que la forjaron resultan ser los titulares de los méritos que la Sociedad les arroga. ¿Es Edward Lorenz, en realidad, el Padre de la Teoría del Caos? Bueno, como esa pregunta podríamos plantearnos miles y, si nos ponemos a investigar, podremos encontrar que no todos los “descubridores” lo fueron al cien por ciento, sino que, tomaron de otros ideas que, finalmente, posibilitaron la conformación de teorías consistentes que nos llevaron hacia adelante en el largo camino del saber.

Resulta que, los conocimientos, también están cuantizados. Nadie los puede poseer todos.

¡Menos mal! es un gran alivio que así sea, ya que, el saber compartido parece más democrático y, además nos da la sensación de más seguridad. ?Os imaginais alguien con todos los conocimientos del mundo? Si es verdad que el Poder Corrompe, que efecto causaría poseer todos los conocimientos.

emilio silvera