jueves, 23 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física no duerme

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

    Se quiere publicar los resultados completos obtenidos en BaBar detector Y Belle

” Durante la última década BaBar y Belle han estudiado la física de la parte inferior y el encanto mesones, leptones tau, estados quarkonium pesados​​, etc, que se produjeron en el PEP-II y anillos KEKB e + e-almacenamiento. Las dos colaboraciones desarrolladas contiuously cada vez más sofisticadas técnicas para extraer la máxima cantidad de información de los datos.

A menudo, estas técnicas se han utilizado en muchos análisis. Sin embargo, como la mayoría de BaBar de y más de 600 publicaciones de Belle son en la revista Physical Review Letters, Physical Review D Rapid Communications, y Physics Letters, donde el límite de páginas impuestas por las revistas no permiten una descripción completa de los análisis, muchos detalles de esta obra nunca se han publicado. La física de los B-Fábricas abordarán este problema proporcionando descripciones de todas las técnicas desarrolladas por los experimentos, y una visión global de las mediciones. Esto proporcionará una referencia esencial para los físicos que trabajan en la próxima generación de Fábricas Súper sabor”

Future Analysis

“Más de ocho años de datos de física de partículas cristalinas se mantienen disponibles para su análisis o re-análisis por lo menos hasta 2018, ahora ese proyecto a largo plazo de acceso a datos de BaBar es completa. El proyecto conserva un conjunto completo de datos de BaBar – todos femtobarns 530-plus inversas de ella – por, en cierto sentido, el tiempo de parada para ello, integrándola en un seguro de las actualizaciones, correcciones de errores y parches capullo computacional. Cualquier cosa que pueda interrumpir el ambiente de computación en donde se guarda cuidadosamente los datos se aloja por una disposición inteligente de los servidores, software y máquinas virtuales en red.

El proyecto BaBar LTDA es parte de un creciente movimiento para preservar los datos conseguidos con tanto esfuerzo para las generaciones futuras, en lugar de permitir que se desvanezca en el olvido, atrapado en medios de almacenamiento que han quedado obsoletas. BaBar tomó datos de las colisiones electrón-positrón en PEP II colisionador de SLAC 1999-2008, mientras que en busca de indicios de por qué la materia y la antimateria no llena el universo en su lugar.

photo

Photos: Reidar Hahn, Fermilab

Cuando el experimento BaBar en el SLAC National Accelerator Laboratory cerró en abril de 2008, que puso fin a casi nueve años de la toma de datos en las desintegraciones de partículas subatómicas llamadas mesones B. Pero eso era apenas el final de la historia de los 500 científicos que trabajan en el experimento. En noviembre se celebraba la publicación de su artículo 400, y que esperan que los próximos años van a producir al menos 100 más.

No sólo son investigadores BaBar ocupados explorar las sutilezas de sus preguntas originales, pero también están utilizando datos BaBar para arrojar luz sobre otros misterios que pueden y de hecho surgir. Ahora los datos están listos.

“Somos el primer esfuerzo de conservación de datos para llegar a un estado tan madura”, a pesar de los numerosos criterios del proyecto LTDA debía cumplir, dijo Tina Cartaro, coordinador de informática de Babar. Los datos tuvieron que ser fácil de administrar y fácil de mantener con un mínimo de esfuerzo, agregó la coordinadora Tina Cartaro.”

Entre 1999 y 2008, en el acelerador de partículas del SLAC, se produjeron más de 500 millones de mesones B, y sus contrapartidas de antimateria llamados B-bar. Así, los científicos observaron cómo estas partículas incumplían la simetría CP. El problema para observar la ruptura de la simetría T residía en que los mesones B se desintegran irreversiblemente en pocas billonésimas de segundo, impidiendo invertir su situación inicial y final. La solución se ha encontrado mediante la correlación cuántica entre los dos B, que permite que la información de la partícula que se desintegra primero se utilice en ese momento para determinar el estado de su partícula compañera que aún vive. Los investigadores han descubierto que el estado de este último mesón B se transforma en otro unas seis veces más a menudo en un sentido que en el inverso.

Observan la ruptura de simetría temporal en un líquido de spín quiral gracias al efecto Hall anómalo

En física no se deja de experimentar para saber como funciona la Naturaleza y si sus leyes son estables.   Por ejemplo, el magnetismo de un imán es debido a los momentos magnéticos libres (espines) de los átomos que lo constituyen. En un material paramagnético, al aplicar un campo magnético, estos espines se alinean paralelamente al campo, en otro caso están orientados al azar. Un imán permanente es un material ferromagnético en el que el acoplamiento entre los espines es suficientemente fuerte para mantener su alineamiento. Muchos materiales paramagnéticos dejan de serlo a muy baja temperatura debido a una ruptura espontánea de la isotropía (simetría continua de rotación) en su estado fundamental. Un paramagneto cuántico es un material que mantiene su paramagnetismo a temperaturas muy bajas.

“Ruptura de simetría en el tiempo en las leyes de la Física Una investigación liderada por el Instituto de Física Corpuscular, centro mixto del CSIC y la Universidad de Valencia, ha obtenido evidencias de la ruptura de la simetría en el tiempo en las leyes de la Física. El hallazgo, que se publica en la revista Physical Review Letters, ha contado con el apoyo de la colaboración internacional BaBar del laboratorio SLAC (Stanford Linear Accelerator Center) del Departamento de Energía de Estados Unidos en la Universidad de Stanford (California).

En experimentos previos con partículas conocidas como mesones K y B, se observó que no se cumplía la simetría CP. El teorema CPT indica que, para cualquier sistema de partículas, las simetrías deben mantenerse equilibradas, es decir, si la simetría CP no se cumple, la simetría T tampoco. El investigador Fernando Martínez Vidal añade que “la clave para medir directamente la ruptura de la simetría T nos la dio el experimento BaBar del SLAC, que fue diseñado para el estudio en profundidad de la asimetría entre materia y antimateria”.

“Cualquier indicio de ruptura de la simetría CPT requeriría un serio replanteamiento de nuestro entendimiento de la Naturaleza”

Eso es lo que han dicho reputados físicos reconocidos mundialmente, y, si eso es así (que lo es), parece que estamos entrando en una nueva era del conocimiento. El tiempo discurre inexorablemente. En la historia del universo y en los sistemas complejos, la evolución temporal está asociada al aumento de entropía. Dicho de otro modo, con el paso del tiempo, el desorden siempre crece a partir de una situación inicial más ordenada.

La-Entropia-y-el-fin-del-Universo.jpg

 

               El Universo como sistema cerrado está aumentando constantemente su entropía. Acodáos de la sencilla y maravillosa ecuación  S = k log W que figura en la cabecera de la lápida de Boltzmann como reconocimiento a su ingenio.  La sencilla ecuación (como todas las que en Física han tenido una enorme importancia, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

El tiempo discurre inexorablemente. En la historia del universo y en los sistemas complejos, la evolución temporal está asociada al aumento de entropía. Dicho de otro modo, con el paso del tiempo, el desorden siempre crece a partir de una situación inicial más ordenada.

Para explicarlo, podemos imaginar que vemos hacia atrás una película en la que un jarrón cae al suelo y se rompe en pedazos. Veremos como retroceden las imágenes y las piezas rotas del jarrón se vuelven a juntar para mostrarse de nuevo perecto. Nos percataríamos muy rápido de que lo que observamos es imposible desde el punto de vista de las leyes físicas, porque sabemos que no es posible que los pedazos vuelen del suelo y se ordenen formando un jarrón. Y eso es porque desde nuestro punto de vista, “

                     Lo que se rompe roto queda en el pasado y todo corre hacia el futuro

Ahora bien, para una partícula aislada, el paso del tiempo parece el mismo hacia delante y hacia atrás, es decir, su movimiento es reversible o temporalmente simétrico. Imaginemos que ahora vemos una película en la que aparece una bola de billar que choca contra una banda. Si no nos lo dicen, no seríamos capaces de saber si la proyección de la película va hacia delante o hacia atrás. Esto se debe a que, en ambos sentidos temporales, el movimiento de la bola de billar cumple las mismas leyes físicas. Este concepto se conoce como simetría bajo inversión temporal y nos dice que, en el mundo de las partículas, las teorías físicas son válidas tanto para un sentido de su movimiento como para su inverso, lo que equivale a decir que funcionan igual hacia delante como hacia atrás en el tiempo.

El tiempo tiene una dirección preferente

El investigador José Bernabéu explica: “La ruptura de la simetría temporal o simetría T en física de partículas está relacionada con la asimetría CP existente entre materia y antimateria, necesaria para generar el universo actual de materia en algún momento de su historia. La simetría C afirma que, sabiendo que a cada partícula de la naturaleza le corresponde una antipartícula con carga opuesta, las leyes de la física serían las mismas al intercambiar las partículas con carga positiva con las de carga negativa”.

En el Universo que observamos si existe la antimateria, no la hemos podido localizar de manera innegable y, es posible que ande por ahí y que, incluso, algunos de los fenómenos energéticos de grandes explosiones Gamma que se han detectado pudieran ser el resultado del encuentra de objetos de materia con otros de antimateria pero… ¡No lo sabemos! Si el telescopio Hubble, por ejemplo, captara la imagen de una hermosa galaxias de antimatería, no lo sabríamos, ya que sería exacta a la imagen de la misma galaxia de materia.

 

 

 

Dos representaciones dimensionales de paridad son dadas por un par de estados cuánticos que van entre ellos sobre la paridad. Sin embargo, esta representación puede reducirse siempre a combinaciones lineales de estados; cada uno de ellos es par o impar bajo la paridad. Se dice que todas las representaciones irreductibles de la paridad son de dimensión 1.

 

 

 

 

La paridad es la simetría de Alicia en el país de las maravillas a través del espejo. La simetría P de una ley física indica que dicha ley es invariante si reflejamos el universo en un espejo. La teoría electrodébil de la fuerza nuclear débil en desintegraciones de partículas que involucran neutrinos viola la simetría P lo que fue toda una revolución en su momento (Premio Nobel de Física en 1957, justo un año después del descubrimiento). La cromodinámica cuántica, la teoría de la fuerza fuerte, no viola la paridad (en el mismo sentido que la teoría electrodébil). Sin embargo, como se teorizó hace más de 10 años (Dmitri Karzeev et al., PRL 1998) y se ha descubierto experimentalmente…

Pero hablábamos de simetría y la simetría P, que señala que las leyes de la física permanecerían inalteradas bajo inversiones especulares, es decir, el universo se comportaría igual que su imagen en un espejo. Estas dos simetrías combinadas dan lugar a la simetría carga-paridad o simetría CP. En experimentos previos con partículas conocidas como mesones K y B, se observó que no se cumplía la simetría CP. El teorema CPT indica que, para cualquier sistema de partículas, las simetrías deben mantenerse equilibradas, es decir, si la simetría CP no se cumple, la simetría T tampoco.

La simetría CPT es un principio fundamental de invariancia o simetría de las leyes físicas que establece que bajo transformaciones simultáneas que involucren la inversión de la carga eléctrica, la paridad y el sentido del tiempo las ecuaciones de evolución temporal de un proceso físico y las de un proceso análogo en que:

  1. Conjugación de carga (C).Todas las partículas se sustituyen por sus correspondientes antipartículas.
  2. Inversión de paridad (P). Se invierte la paridad espacial de proceso (esto tiene que ver con el intercambio de derecha e izquierda, y con el cambio en el espin de las partículas).
  3. Inversión temporal (T). Se invierte el sentido del tiempo.

son invariantes y vienen descritos por las mismas ecuaciones y arrojan los mismos resultados. Pero la Física es amplia y podríamos también, hablar aquí de sus teorías como, por ejmplo…

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartid cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

La teoría cuántica de campos es una disciplina de la físicaque aplica los principios de la mecñanica cuántica a los sistemas clásicos de campos contiinuos, por ejemplo, el campo electromanético. Una consecuencia inmediata de esta teoría es que el comportamiento cuántico de un campo continuo es equivalente al de un sistema de partículasn 1 cuyo número no es constante, es decir, que pueden crearse o destruirse. También se la denomina teoría de campos cuánticos, TCC o QFT, sigla en inglés de quantum field theory.

Su principal aplicación es la fñisica de altas energías, donde se combina con los postulados de la relatividad especial. En este régimen se usa para estudiar las partículas subatómicas y sus interacciones, y permite explicar fenómenos como la relación entre espín y estadística, la la simetría CPT, la existencia de la antiomateria, etc.

Dispersión de neutrones. La dispersión inelástica de neutrones en un cristal es el resultado de la interacción de un neutrón lanzado contra los átomos en vibración de la red cristalina. En teoría cuántica de campos, el proceso se modeliza de manera más sencilla al introducir los cuantos de las ondas sonoras del cristal, los fonones, entendiéndolo como la absorción o emisión de un fonón por el neutrón.

Dispersión de neutrones. La dispersión inelásctivca de neutrones en un cristal es el resultado de la interacción de un neutrón lanzado contra los átomosá en vibración de la red cristalina.  En teoría cuántica de campos, el proceso se modeliza de manera más sencilla al introducir los cuantos de las ondas sonoras del cristal, los fonones,  entendiéndolo como la absorción o emisión de un fonón por el neutrón.

Pero sigamos con el Teorema CPT, en vitud del cual la operación combinada de cambiar la conjunción de carga C, la paridad P y la inversión temporal T, denotada CPT, es una simetría fundamental de las teorías cuánticas de campo relativistas. A pesar de todo lo que se diga, no se conoce ninguna experiencia de la violación del Teorema CPT. Cuando C, P y T (o dos cualquiera de ellas) son violadas, los principios de la Teoría cuántica de campos relativista no se ven afectados. Sin embargo, la violación de la invariancia CPT cambiaría drásticamente los fundamentos de la teoría cuántica de campos relativista. No se conoce si las supercuerdas  o las supersimetrías obedecen versiones del Teorema CPT.

La simetría CPT es una simetría fundamental de las leyes físicas bajo transformaciones que implican la inversión simultánea de la carga, la paridad, y el tiempo.  Una consecuencia de esta derivación es que la violación de la CPT indica automáticamente una violación de Lorentz. La implicación de la simetría CPT es que una “imagen en espejo” de nuestro universo – con todos los objetos que tienen sus posiciones reflejadas en un plano imaginario, toda momentos invierte y con toda la materia reemplazado por antimateria – evolucionaría exactamente bajo nuestras leyes físicas. La transformación CPT convierte nuestro universo su “imagen en espejo” y viceversa en. La simetría CPT es reconocida como una propiedad fundamental de las leyes físicas.

La teoría de las partículas elementales considera tres formas básicas de simetría: simetría especular, simetría de carga y simetría temporal (en el lenguaje de la física la simetría especular es denominada P, de paridad; la simetría de carga, C y la simetría temporal,T).

En la simetría especular todos los sucesos ocurren exactamente igual si son observados directamente o reflejados en un espejo. Ello implica que no existe ninguna diferencia entre izquierda y derecha y nadie sería capaz de distinguir su propio mundo de otro reflejado en un espejo. La simetría de carga predice que las partículas cargadas se comportarán exactamente igual que sus antipartículas, las cuales tiene exactamente las mismas propiedades pero carga opuesta. Y de acuerdo con la simetría temporal, las cosas sucederían exactamente igual con independencia de que el tiempo transcurra hacia delante o hacia atrás.

Publica emilio silvera

Fuentes diversas.

Nuevos materiales, nuevos procesos, nuevos dispositivos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 


En los últimos años se han desarrollado materiales que, debido a su estructura nanométrica, presentan nuevas propiedades, y por tanto tienen aplicaciones en campos tan diversos como son la transmisión de información mediante luz, el almacenamiento de datos, la generación y el transporte de energía eléctrica, la síntesis de catalizadores, la elaboración de textiles más resistentes, o la implantación de nuevos implantes óseos.

El gran número de nuevos materiales y dispositivos demostradores que se han desarrollado en estos años ha sido fruto, por un lado del desarrollo de sofisticadas técnicas de síntesis, caracterización y manipulación que se han puesto a punto y, por otro, del gran avance en los métodos de computación en la nanoescala (técnicas ab-initio, dinámica molecular, etc.) que se han probado en las grandes instalaciones dedicadas al cálculo científico de altas prestaciones. Es precisamente la combinación de experimentos punteros con métodos teóricos precisos un elemento esencial para comprender un gran número de procesos y mecanismos que operan en la nanoescala. En concreto, una de las aportaciones teóricas más importantes al desarrollo de la Nanotecnología ha llegado de la mano de la Teoría de Funcionales de la Densidad (DFT, en sus siglas en inglés) por la que en 1998 Walter Kohn recibió el Premio Nobel en Química, compartido  con John A. Pople, “padre” de la Química Cuántica. Con respecto al desarrollo experimental, cabe resaltar el alto grado de desarrollo de las técnicas SPM para ver y manipular la materia a escala nanométrica en multitud de ambientes diferentes (ultra alto vacío, humedad controlada, celdas catalíticas, temperaturas variables,…). Esta capacidad nos ha permitido diseñar nuevos experimentos con los que comprender el comportamiento de nuevos materiales y dispositivos. Dado la gran variedad de materiales y sus  aplicaciones, es imposible en un artículo presentar una visión completa de la situación de la Nanotecnología, por lo que nos vamos a limitar a presentar algunos ejemplos que ilustran el estado actual de este campo.

Hacia la electrónica molecular

Debido a su tamaño nanométrico, las estructuras moleculares pueden poner de manifiesto nuevas propiedades electrónicas. Sin embargo, la necesidad de poder producir estructuras nanométricas de forma masiva, tal y como requieren las aplicaciones industriales hace que la manipulación individual de nano-objetos como las moléculas pase a un segundo plano, requiriéndose alternativas más útiles para incorporar la Nanotecnología a los procesos de fabricación. Por esta razón, en los últimos años se están estudiando profusamente  las condiciones de formación y las propiedades de capas autoensambladas de diferentes moléculas orgánicas sobre superficies. En estos casos la superficie no sólo proporciona un soporte, sino que posee un papel activo en la formación de diferentes patrones moleculares en dos dimensiones. Así, la posibilidad de generar sistemas autoensamblados de moléculas con propiedades bien definidas y dirigidas hacia la realización de funciones concretas abre un camino para cambiar desde el imperante paradigma del silicio en la electrónica hacia otro basado en la electrónica molecular. Este nuevo paradigma será mucho más rico por la gran diversidad de componentes moleculares que pueden entrar en juego. Entre los componentes prometedores para la Nanotecnología, que están relacionados con las moléculas orgánicas, y que habrá que tener en cuenta en el futuro de la microelectrónica, estarán los fullerenos, los nanotubos de carbono y el grafeno, de los que hablamos a continuación.

Los fullerenos o “bucky-balls”

Con este nombre se denomina al conjunto de distintas moléculas cerradas sobre sí mismas con formulación. El más conocido, por lo estable y abundante en naturaleza es el llamado Cn. El más conocido, por lo estable y abundante en la Naturaleza es el llamado C60, que está formado por 12 pentágonos y 20 exágonos, dispuestos como en un balón de futbol. Las aplicaciones Nanotecnológicas que se pueden derivar del uso de esta molécula están todavía en fase de estudio y son muy variadas. Sin embargo, aunque actualmente no existen aplicaciones concretas ya se han sintetizado más de mil nuevas moléculas basadas en fullereno y hay más de cien patentes internacionales registradas. El carácter rectificador de los fullerenos les hace atractivos para su uso en electrónica molecular.

La formación de este tipo de estructuras se produce más fácilmente de lo que podemos imaginar, pues son uno de los principales integrantes de la carbonilla y se generan abundantemente en cualquier combustión. Sin embargo, a día de hoy uno de los principales problemas para su utilización es el de conseguir una síntesis controlada de fullereno. Esto requiere complicadas técnicas, tales como la vaporización del grafito o la pirolisis láser, que normalmente producen exclusivamente los fullerenos más estables. Recientemente se ha propuesto un nuevo método para conseguirlo basado en principios “nano”. Se trata de partir de una molécula precursora sintetizada de forma tal que sea como un fullereno abierto, con los enlaces rotos saturados por hidrógeno. Esta molécula se puede plegar sobre sí misma mediante una transformación topológica de manera que de lugar a un fullereno. Se trata de partir de una estructura plana (un recortable) para posteriormente ensamblar un objeto en tres dimensiones. Este plegado se consigue mediante un proceso des-hidrogenación catalizada por una superficie. Una vez que la molécula plana ha perdido estos hidrógenos se cierran sobre sí misma de forma expontánea formando un fullereno.

Este proceso se ha podido seguir, entre otras técnicas, mediante imágenes de microscopía túnel in-situ. Los mecanismos existentes en el proceso se pueden entender gracias a los cálculos ab-initio que apoyan la investigación experimental. Esta combinación pone de manifiesto como una molécula plana de carbono sin hidrógeno se pliega expontáneamente. La belleza de este nuevo método de síntesis reside en que si se sintetizan moléculas precursoras planas con diferentes topologías se pueden conseguir moléculas cerradas de diferentes formas, tamaños e incluso que contengan átomos diferentes al Carbono. Así se ha sintetizado por primera vez la molécula C57 N3 sobre una superficie.

¡La Naturaleza! La NASA encontró fulerenos esféricos o buxkybolas en la nebulosa Tc1 a 6.000 años-luz. Posiblemente sean una de las moléculas más bellas que podamos encontrar, es una de las formas más estables del carbono, y sus 60 átomos se distribuyen formando 20 hexágonos y 12 pentágonos que ofrecen una forma idéntica al clásico balón de fútbol.

Nanotubos de Carbono

Si el descubrimiento del C60 fue un hito importante para la Nanotecnología, el de los llamados Nanotubos de Carbono lo ha superado con creces. Los Nanotubos de Carbono, unas diez mil veces más finos que un cabello, presentan excelentes propiedades físicas y su fabricación resulta relativamente económica. Un cable fabricado de Nanotubos de Carbono resultaría diez veces más ligero que uno de acero con el mismo diámetro pero sería ¡cien veces más resistente! A estas impresionantes propiedades mecánicas se le añaden unas interesantes propiedades eléctricas, puesto que pueden ser tanto conductores como aislantes, según la topología que presenten.

Un Nanotubo de Carbono se obtiene mediante el plegado sobre sí mismo de un plano atómico de grafito (enrollándolo). Según como se pliegue el plano grafítico se obtiene un Nanotubo que puede conducir la corriente eléctrica, ser semiconductor o ser aislante. En el primer caso, los Nanotubos de Carbono son muy buenos conductores a temperatura ambiente, pudiendo transportar elevadas densidades de corriente. En el segundo presentan propiedades rectificadoras. Por otra parte, si inducimos defectos en la estructura podemos generar moléculas semiconductoras y así formar diodos o transistores. Es decir, tenemos todos los elementos en nuestras manos para construir nanocircuitos basados en Carbono.

Grafeno

A un solo plano atómico de grafito se le llama grafeno, y éste, a diferencia del grafito, es difícil de obtener. Recientemente, mediante cálculos teóricos, se han realizado predicciones acerca de las importantes propiedades electrónicas que podría tener este material. Entre ellas una altísima movilidad electrónica y una baja resistividad, de manera que estos planos atómicos podrían ser los futuros sustitutos del silicio en los dispositivos electrónicos. Ahora bien, al día de hoy, estas propuestas provienen esencialmente de cálculos teóricos y, por tanto, antes de que el grafeno pase a sustituir al silicio en la electrónica del futuro, es necesario verificar las predicciones teóricas en el laboratorio. Actualmente, éste es un campo muy activo de investigación, y muchos grupos están trabajando en la obtención de capas de grafeno soportadas sobre diferentes materiales, como polímeros o aislantes, para poder determinar sus propiedades eléctricas y comprobar las predicciones teóricas.

El estudio de grafeno sobre metales de transición es un campo muy activo de investigación ya que las capas de grafeno crecen de manera fácil, muy controladas y con un bajo número de defectos sobre estas superficies. Además el grafeno sobre un substrato forma patrones conocidos como redes de Moiré, en las que la periodicidad atómica de las dos redes cristalinas (substrato y grafeno), coincide cada dos-tres nm, dando lugar a deformaciones de la capa de grafeno, que se reflejan como prominencias en la imagen STM.

Nanohilos

No sólo las moléculas, los Nanotubos o el grafeno son las apuestas para sustituir al silicio. Otros elementos como los Nanohilos fabricados a partir de materiales semiconductores o los Nanohilos metálicos tendrán también cierto protagonismo. En concreto, los Nanohilos semiconductores presentan un gran potencial como transistores pero también presentan aplicaciones en campos como octoelectrónica o en la fabricación de censores biológicos. Por otro lado los Nanohilos metálicos, cuya síntesis controlada es más difícil, poseen gran interés como interconectores. En el caso de los Nanohilos formados de materiales Ni, Co o Fe se puede aprovechar también su potencial comportamiento magnetorresisitivo para ser usados en dispositivos de almacenamiento magnético. Los Nanohilos metálicos son interesantes a su vez porque los efectos de tamaño inducen en ellos la aparición de transiciones de fase martensíticas y la aparición de configuraciones no cristalinas.

En el siguiente hablaremos de las Nanopartículas y la fuente de estos conocimientos aparece publicada en…


Imagen de la Página Inicial de la Revista

Editadas por la RSEF.

Publica: emilio silvera

Nuevos Materiales, nuevos procesos, nuevos dispositivos. II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://www.youtube.com/watch?v=5po3PmnpMxc&list=PLvRiw-zVApcpfzHUuoFV9tMIYcfN-Vjf_

Miguel Ángel

https://www.facebook.com/video.php?v=10152657763624179

 

 

 

Una investigación ha desarrollado una nueva estructura cuántica capaz de emitir fotones individuales de color rojo. El avance, que se publica en la revista Nature Materials, se basa en el confinamiento cuántico que se genera en cada uno de los puntos y que les permite modular la energía de la luz que emiten.

En este trabajo han participado investigadores de la Universidad de Zaragoza, el Institut de Recerca en Energia de Catalunya (IREC), la Universidad de Barcelona y del Instituto de Ciencia de Materiales de Barcelona del CSIC. El investigador Jordi Arbiol de este último explica:

“El resultado final son hilos unidimensionales, de tamaño nanométrico, compatibles con la tecnología electrónica actual, que permitirían crear dispositivos a mayor escala con un control total de la emisión de luz, fotón a fotón”.

Pero centrémonos en el trabajo que aquí se prenta hoy y que comienza hablando de los…

nanohilos cuánticos

Nanohilos

No sólo las moléculas, los Nanotubos o el grafeno son las apuestas para sustituir al silicio. Otros elementos como los Nanohilos fabricados a partir de materiales semiconductores o los Nanohilos metálicos tendrán también cierto protagonismo. En concreto, los Nanohilos semiconductores presentan un gran potencial como transistores pero también presentan aplicaciones en campos como octoelectrónica o en la fabricación de censores biológicos. Por otro lado los Nanohilos metálicos, cuya síntesis controlada es más difícil, poseen gran interés como interconectores. En el caso de los Nanohilos formados de materiales Ni, Co o Fe se puede aprovechar también su potencial comportamiento magnetorresisitivo para ser usados en dispositivos de almacenamiento magnético. Los Nanohilos metálicos son interesantes a su vez porque los efectos de tamaño inducen en ellos la aparición de transiciones de fase martensíticas y la aparición de configuraciones no cristalinas.” Veamos que pasa con las Nanopartículas.

Nanopartículas

Quizás, junto a los nanotubos de carbono, las nanopartículas representan los materiales que tienen una repercución tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas representan los materiales que tienen una repercusión tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas, debido a su pequeño tamaño, pueden convertirse en diminutos dispositivos capaces de  realizar otras funciones, como transportar un medicamento específico por el torrente sanguíneo sin obstruirlo. Para lograr esto, las nanopartículas deben ser el soporte de capas de moléculas autoensambladas que confieren una funcionalidad adicional a las mismas.

Como su propio nombre indica, el término “nanopartícula” designa una agrupación de átomos o moléculas que dan lugar a una partícula con dimensiones nanométricas. Es decir, que su tamaño está comprendido entre 1 y 100 nm. Dependiendo de cuáles sean los átomos o moléculas que se agrupan se originarán diferentes tipos de nanopartículas. Así, por ejemplo, tendremos nanopartículas de oro, de plata o nanopartículas magnéticas si están formadas por átomos de Fe o Co. Su pequeño tamaño hace que la relación superficie/volumen crezca y por tanto que estas estructuras tengan unas propiedades características y esencialmente distintas a las que presenta el material en volumen.

Una estrategia para la formación de nanopartículas es recubrirlas con distintas capas de manera tal que cada una aporte funcionalidades diferentes al sistema. Así, por ejemplo, recientemente se han descrito nanopartículas cuyo interior está formado por un material magnético, como el Co, seguido de una capa intermedia de SiO2 que aporta estabilidad al sistema y finalmente una superficie de oro.

El tamaño final de la nanopartícula es de 3 nm, y esta estructura laminar hace que tengan un núcleo magnético que posibilite su guiado, y una superficie de oro que facilite  el autoensamblado de moléculas orgánicas o biológicas para diferentes  aplicaciones. Entre éstas destaca su uso como biosensores. Para ello se inmoviliza material biológico, como ácido desoxirribonucleico (ADN) o el llamado ácido nucléico péptidico (PNA, del inglés peptide nucleic acid), que siendo un ácido nucléico artificial, presenta un “esqueleto” molecular formado por enlaces peptidicos y una estructura de bases nucleicas exactamente igual a la del ADN. El PNA puede reconocer cadenas complementarias de ADN, incluso con mayor eficiencia para la hibridación que la que representa el ADN para reconocer su hebra complementaria. Por este motivo, el PNA se ha propuesto como sonda para la fabricación de biosensores altamente eficientes. Estas macromoléculas unidas a superficies o nanopartículas son capaces de detectar diferentes analítos de interés, particularmente otars moléculas biológicas.

Sin embargo, el concepto de nanopartícula debe concebirse en un sentido más amplio ya que no sólo puede estar basada en un núcleo inorgánico, pudiéndose sintetizar nanopartículas poliméricas. Yendo un poco más allá una cápsida vírica puede entenderse como una nanopartícula formada por una carcasa proteica. Esta cápsida vírica tiene dimensiones  nanométricas y, en muchos casos, burla con facilidad las membranas celulares. Por esta razón este tipo de “nanopartículas” se proponen para su uso en nanomedicina, y son el objeto de estudios básicos  en los que las herramientas como los microscopios de fuerzas atómicas juegan un papel esencial. En particular, estas herramientas nos permiten caracterizar las propiedades mecánicas y las condiciones de ruptura de cápsidas víricas así como la forma en la que dichas cápsidas se comportan ante, por ejemplo, cambios controlados de humedad.

En un discurso recientemente impartido en la Universidad Europea de Madrid, William F. Clinton, ex-Presidente de los EE.UU, afirmó que ” el cometido del siglo XXI será salvar al mundo del cambio climático, regenerar la economía y crear empleo. El futuro más allá será la Nanotecnología y la biotecnología”. El propio W.F. Clinton fue el impulsor de la Iniciativa Nacional de Nanotecnología durante su mandato, convirtiendo durante los últimos 10 años a EE.UU en el líder mundial en la generación de conocimientos básicos y aplicados en el ámbito de la Nanotecnología.

Nadie pone en duda las afirmaciones de W.F. Clinton sobre el papel de la Nanotecnología en nuestro futuro a medio y largo plazo, por lo uqe es imperativo estar suficientemente preparados para construir este nuevo paradigma científico. En el caso concreto de España, las dos últimas ediciones del Plan Nacional de I+D+I han encumbrado las investigaciones en Nanociencia y Nanotecnología a la categoría de Acción Estratégica. En la actualidad se están poniendo en marcha varios centros dedicados a Nanotecnología. Dichas iniciativas son producto, por lo general, de costosos impulsos puntuales, locales, dirigidos por científicos con iniciativa, pero no son fruto de una actuación de conjunto, planificada siguiendo una estrategia  quiada por unos objetivos ambiciosos, en los que impere la coordinación y el uso eficiente de los recursos. La actual coyuntura económica no invita al optimismo a este respecto, por lo que sería necesario poner en marcha iniciativas que promuevan la adquisición de infraestructuras, la formación de técnicos, la coordinación entre centros emergentes, etc.

Otro punto sobre el que no hay que descuidarse tiene que ver con la formación, en todos los niveles educativos, en Nanotecnología. En este sentido son numerosas las universidades españolas que ofrecen cursos de master y/o doctorado con contenidos relacionados con la Nanotecnología. Sin embargo, muchos de estos cursos tienen pocos estudiantes inscritos, al igual que ocurre con muchos estudios de grado relacionados con las ciencias básicas. La tarea de fascinar y atraer a nuestros jóvenes hacia la ciencia debe comenzar mucho antes. En este sentido, los conceptos inherentes a la Nanotecnología deben formar parte del conocimiento que debe llegar a los estudiantes de educación secundaria, como ocurre en países como Alemania, Finlandia, Taiwán, Japón, EE.UU., etc. Además, la Nanotecnología es una materia que causa cierta fascinación a los adolescentes por lo que puede ser un buen punto de partida para incentivar las vocaciones científicas. Esta ha sido una de las principales razones por las que los autores de este artículo junto con otros investigadores (Carlos Briones del Centro de Astrobiología y Elena Casero de la Universidad Autónoma de Madrid) accedieron a la petición de la Fundación Española de Ciencia y Tecnología (FECyT) para escribir una Unidad Didáctica de Ciencia y Tecnología. Dicho libro ya se encuentra en todos los institutos españoles de educación secundaria y bachillerato, y se puede descargar desde la web de la FECyT. Esperemos que esta pequeña contribución, junto con otras de mayor calado que deben promoverse desde las diversas administraciones públicas, permita tomar la senda que nos lleve a medio plazo hacia la tan ansiada sociedad basada en el conocimiento.

Imagen de la Página Inicial de la Revista

Fuente: Revista Española de Física. Volumen 23 Nº 4 de 2009

Los Autores:

D. José Ángel Martín Gago, del Instituto de Ciencia de Materiales de Madrid, Concejo Superior de Investigaciones científicas, Centro de Astrobiología /CSIC/INTA), Instituto Nacional de Técnica Aerpespacial, y, D. Pedro A. Serena Domingo, del Instituo de Ciencia y Materiales de Madrid y del Consejo Superior de Investigaciones Científicas.

Si la Naturaleza bosteza… ¡Nosotros a Temblar!

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Alerta Roja en Islandia pendiente de una peligrosa erupción volcánica.

Se ha producido una erupción en el volcáb Bárdarbunga, al norte del Glacial Dyngjujokull.

El Volcan llevaba en silencio más de cien años. Claro que, los ciclos de la Naturaleza son mayores que los de los humanos.

 

Imagen del 18 de abril de 2010 que muestra humo y cenizas saliendo del...

Imagen del 18 de abril de 2010 que muestra humo y cenizas saliendo del volcán Eyjafjallajokull S.OLAFS EFE

EFE Berlín

 

 

 

La Oficina Meteorológica de Islandia (IMO) detectó este viernes una erupción en una fisura en el norte del volcán Bárdarbunga y elevó a rojo el nivel de alerta para la aviación sobre la zona, aunque aún no ha detectado cenizas.

La erupción comenzó al norte del glaciar Dyngjujökull pasada la medianoche y cerca de dos horas y cuarenta minutos pareció que la actividad disminuía.

 

 

En Islancia ya tienen experiencia de estos sucesos

 

El temblor sísmico fue registrado por la cámara web situada en el área y también por todas las estaciones sísmicas.

El Bárdarbunga, uno de los volcanes de mayor tamaño de Islandia, está bajo un glaciar y no entra en erupción desde hace más de un siglo.

Fuente: El MUNDO.

En Física hablamos de masa, inercia…, ¡de tántas cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando hablamos de masa, nos estamos refiriendo a la medida de la inercia de un cuerpo, es decir, su resistencia a la aceleración. Todos sabemos la inmensa cantidad de combustible que se necesita para enviar al espacio exterior a esos transbordadores que llevan suministros y astronáutas al espacio exterior para el mantenimeinto de la Estación Espacial Internacional. El esfuerzo, es vencer la masa que se quiere transportar hasta que esta, alcanzando los 11 km/s de velocidad, pueda escapar de la fuerza de gravedad de la Tierra y poder así, cumplir con su cometido.

De acuerdo con las leyes de Newton del movimiento, si dos masas distintas, m1 y m2, son hechas colisionar en ausencia de cualquier otra fuerza, ambas experimentaran la misma fuerza de colisión. Si los dos cuerpos adquieren aceleraciones a1 y a2, como resultado de la colisión, entonces m1 a1 = m2 a2. Esta ecuación permite comparar dos masas. Si una de las masas se considera como una masa estándar, la masa de todas las demás puede ser medida comparándola con esta masa estándar. El cuerpo utilizado para este fin es un cilíndro de un kilógramo de una aleación de platino iridio. llamado el estándar internacional de masa. La masa definida de esta forma es llamada masa inercial del cuerpo.

Las masas también se pueden definir midiendo la fuerza gravitacional que producen. Por tanto, de acuerdo con la ley de gravitación de Newton, mg = Fd2 / MG, donde M es la masa de un cuerpo estándar situado a una distancia d del cuerpo de masa mg; F es la fuerza gravitacional entre ellos, y G es la constante gravitacional. La masa definida de esta forma es la masa gravitacional. En el siglo XIX, Roland Eötvös (1848-1919) demostró experimentalmente que las masas inerciales y gravitatorias son indistinguibles, es decir, m1 = mg.

Aunque la masa se define formalmente utilizando el concepto de inercia,  es medida habitualmente por gravitación. El peso (W) de un cuerpo es la fuerza con la que un cuerpo es atraído gravitacionalmente a la Tierra, corregido por el efecto de la rotación, y es igual al producto de la masa del cuerpo y la aceleración en caída libre (g), es decir, W = mg.

masapeso002

            Kilogramo patrón.

El kilogramo (unidad de masa) tiene su patrón en: la masa de un cilindro fabricado en 1880, compuesto de una aleación de platino-iridio (90 % platino – 10 % iridio), creado y guardado en unas condiciones exactas, y que se guarda en la Oficina Internacional de Pesos y Medidas en Sevres, cerca de París.

masapeso001
Una balaza mide solo cantidad de masa.

La masa es la única unidad que tiene este patrón, además de estar en Sevres, hay copias en otros países que cada cierto tiempo se reúnen para ser regladas y ver si han perdido masa con respecto a la original.

No olvidemos que medir es comparar algo con un patrón definido universalmente.

¿Y el peso?

De nuevo, atención a lo siguiente: la masa (la cantidad de materia) de cada cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con una unidad diferente: el Newton (N).

La UNIDAD DE MEDIDA DEL PESO ES EL NEWTON (N)

Entonces, el peso es la fuerza que ejerce la gravedad sobre una masa y ambas magnitudes son proporcionales entre sí, pero no iguales, pues están vinculadas por el factor aceleración de la gravedad.

En el lenguaje común, el peso y la masa son frecuentemente usados como sinónimos; sin embargo, para fines científicos son muy diferentes. La masa es medida en kilogramos; el peso, siendo una fuerza, es medido en newtons (símbolo N. Unidad del SI de la fuerza, siendo la fuerza requerida para comunicar a una masa de un kilogramo una aceleración de 1 m s –2). Es más, el peso depende de donde sea medido, porque el valor de g es distintos en diferentes puntos de la superficie de la Tierra. La masa, por el contrario, es constante donde quiera que se mida, sujeta a la teoría especial de la relatividad. De acuerdo con esta teoría, publicada por Albert Einstein en 1905, la masa de un cuerpo es una medida de su contenido total de energía.

Energía cinética
Energía potencial gravitatoria
Energía química

Por tanto, si la energía del cuerpo crece, por ejemplo, por un aumento de su energía cinética o temperatura, entonces su masa también crece. De acuerdo con esta ley, un aumento de energía ΔE está acompañado de un aumento de masa Δm, en conformidad con la ecuación de masa-energía  Δm = ΔE/c2, donde c es la velocidad de la luz. Por tanto, si un kilo de agua se eleva de temperatura en 100 K, su energía interna aumentará en 4 x 10 -12 kg. Este es, por supuesto, un incremento despreciable y la ecuación de masa-energía es sólo significativa para energías extremadamente altas. Por ejemplo, la masa de un electrón es siete veces mayor si se mueve con relación a un observador al 99% de la velocidad de la luz.

Ya sabemos que, se ha comprobado una y mil veces que, la teoría de Einstein de la relatividad especial es cierta en el sentido de que, al ser la velocidad de la luz el límite de velocidad del Universo, nada puede ir más rápido que la luz, cuando un cuerpo viaja a velocidades cercanas a la de la luz, a medida que se acerca a ella, puede ver como su masa aumenta, ya que, la energía de movimiento se convierte en masa al no poder conseguir su objetivo de marchar más rápido que la luz.

En los anillos enterrados en las entrañas de la Tierra, haces de partículas son lanzadas a la velocidad de la luz para que colisionen y, su peso aumenta conforme se van acercando a ese límite marcado por el universo.

La masa relativista de un cuerpo medida por un observador (un físico del LHC que mide el aumento de masa de los protones a medida que adquieren velocidad en el acelerador de partículas del CERN) con respecto al cual este cuerpo se mueve. De acuerdo con la teoría de Einstein, la masa m de un cuerpo moviendose a velocidad v está dada por  m = m0/√ (1 – v2 / c2), donde m0 es su masa en reposo y c es la velocidad de la luz. La masa relativista solo difiere significativamente de la masa en reposo si su velocidad es una fracción apreciable  de la velocidad de la luz. Si v = c/2, por ejemplo, la masa relativista es un 15% mayor que la masa en reposo.

Según las consecuencias obtenidas en el proyecto Manhattan, lo que sí es seguro es que, una pequeña fracción de materia, contiene una gran cantidad de energía. Según nos decía Asimov: “…un sólo gramo de materia se podría convertir en energía eléctrica que bastaría para mantener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años. O bien, la energía que representa un sólo gramo de materia es equivalente a la que se obtendría de quemar unos 32 millones de litros de gasolina”.

Una cosa si que nos puede quedar muy clara: Aunque sabemos algunas cosas sobre la masa y lo que entendemos por la energía, no podemos decir que, al día de hoy, “sepamos de verdad”, lo que la masa y la energía son.

Seguiremos aprendiendo.

emilio silvera