domingo, 24 de enero del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos?

Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez?  Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales,  pensaremos como nos enseño Einstein, a una mayor escala,  en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

                        Hay en todas las un ritmo que es parte de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Irulan.

 

 

Regresión Cósmica

    hemos imaginado estar en otros niveles

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

                            Siempre nos ha gustado imaginar

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

 


Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

                                                               Douglas

  los hay que creen, que la vida, es única en la Tierra

Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

        Nuestro Universo es como es las constantes son las que son

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!


 

 

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

 

 


   En nuestro planeta, como en otros, en cualquier charca caliente surgir la vida

Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano.  El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal (que hoy parece descartado).

Todo dependerá de cual sea el de la densidad de materia.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.

Miniatura

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión-

 

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras

Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.

emilio silvera

Siempre aprendiendo

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber: ¡Ese viaje interminable!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

http://mivozcolombia.files.wordpress.com/2011/09/indiferencia-1.jpg

¡NO! Así no podemos avanzar, que nos dejen libres para pensar, para poder “ver”. La creatividad del pensamiento tiene que estar sólo supeditada al libre albedrío de cada cual. Así ha estado avanzando el mundo desde que…tenemos noticias de todas aquellas civilizaciones que fueron y que, expresaron sus para que nosotros, muchos años más tarde, las pudiéramos desarrollar. Sin aquellos conocimientos no serían posibles éstos.

Qué verdad es, nunca te acostarás sin algo nuevo. Aquí, en este mismo lugar, ocurre eso con frecuencia y, de vuestros comentarios he obtenido a veces conclusiones en las que, por mí mismo, no habría pensado. Como se suele decir, cuatro ojos ven más que dos.

http://trinityeyes.files.wordpress.com/2008/07/000af072-4891-1f0a-97ae80a84189eedf_p64.jpg

Por ejemplo, en el trabajo que denominé  ¿Qué haríamos sin la Física?, aparte de otras muchas intervenciones, me llamó la atención la de Fandila (14.2.1) en la que se refiere a la fotónica y la cuántica y llega a preguntarse si no debería llamarse “cuantónica”. Kike (14.2.1.1) que entabla el diálogo con él, lleva la conversación al del avance de la Ciencia a la que compara con la evolución de las especies. Ambos llevan su parte de razón.

Muchos de los problemas que surgen en de la Física moderna han sido abordados mediante su modelado e implementación en ordenadores, donde hay aplicaciones que requieren una enorme capacidad de cálculo. Prácticamente en todas las disciplinas de la Física se requiere obtener soluciones a problemas que consisten en la optimización de funciones en un determinado espacio de búsqueda. En otras palabras, muchas aplicaciones en Física consisten en solucionar problemas de optimización, que en numerosas ocasiones no se pueden abordar con herramientas matemáticas clásicas, debido a la complejidad del espacio de búsqueda, o de la función objetivo, o ambas cosas a la vez.

Algoritmos genéticos

para la optimización de funciones no tan sencillas.

de ejemplo

Nos dice el Autor del programa: “En este programa incluí algunas mejoras para “optimización de funciones sencillas”,  la función que viene implementada está dada por:  f(x,y)=x^2+2*y^2-0.3*cos(3*PI*x)-0.4*cos(4*PI*y)+0.7

Este hecho fue constatado prácticamente desde el advenimiento de los ordenadores como herramienta fundamental en la ciencia moderna. Así, ya en los años 60 surgieron diversas herramientas para solucionar problemas de optimización no abordables con técnicas clásicas, entre ellas algoritmos que imitiban comportamientos de la naturaleza. Específicamente,  se comprobó que el paradigma de la selección natural y supervivencia del más fuerte (pieza clave de las teorías Darwinianas sobre la evolución de las especies) podía ser fácilmente reproducible en un ordenador, y aplicable a la resolución de estos problemas de optimización difíciles.

 

           Siempre hemos sabido soluciones

Está claro que, ante la adversidad, la mente humana siempre se ha crecido y, en este caso de la computación no podía ser de otra manera, así que, cuando se llegó a un nivel de imposible resolución por los métodos clásicos, surgió la necesidad de un nuevo paradigma de computación, que proddujo la generación de algoritmos capaces de obtener soluciones de buena calidad en estos casos de optimización difíciles. Diversos investigadores se concentraron en la imitación de sistemas naturales para resolver estos problemas, generando los diversos algoritmos que forman parte de la computación evolutiva.

Pongamos un ejemplo:

Hallá por el mes de febrero de 2009, pude asistir a un Seminario que tuvo lugar en la Universidad III donde mi hijo Isat Estudiaba Derecho ADE, y con el Título de Computación Evolutiva y Algoritmos basados en las hormigas para la inteligencia artificial, pude disfrutar de un tiempo mágico que me transportó al futuro. La reseña que salió fue la siguiente:

“La Inteligencia Artificial (IA) vive una segunda juventud, según lo visto en el Seminario Internacional sobre el tema celebrado en la Universisdad Carlos III de Madris, donde han presentado nuevas técnicas de computación evolutiva, algoritmos basados en hormigas para, el manejo de robots, o, posibles de la IA a la economía, los juegos, y la fusión de datos.

El campo de la Inteligencia Artificial ha cambiado mucho desde los años setenta, cuando se aspiraba a encontrar el “solucionador general de problemas”, un algoritmo, programa o sistema que permitiera resolver de formar autónoma cualquier problema. “A día de hoy se piensa que no existe y que lo que tenemos es un conjunto de algoritmos y sistemas que en su conjunto denominamos técnicas de Inteligencia Artificial”, explica el José Manuel Molina, organizador del Segundo Seminario Internacional sobre Nuevas Cuestiones en Inteligencia Artificial promovido por los cuatro grupos de Inteligencia Artificial del departamento de Informática, celebrado del 2 al 6 de febrero en la Universidad Carlos III de Madrid (UC3M).

Entre Darwin y hormigas inteligentes

Son mucho más inteligentes de lo que creemos, juzgar por el tamaño… no sería aconsejable.

Allí han presentado sus trabajos algunos expertos internacionales en la materia, que cada vez encuentra relaciones y aplicaciones más sorprendentes. La Teoría de la Evolución de Charles Darwin, por ejemplo, podría aplicarse a la resolución de problemas con ordenadores. En eso trabaja el investigador del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Méjico), Carlos Coello, un especialista en técnicas de optimización multiobjetivo de procesos complejos en ingeniería mediante técnicas genéticas. Otro invitado al seminario, Silvano Cincotti, de la Universidad de Genova (Italia) explicó cómo se pueden estas técnicas a la economía actual y fundamentalmente cómo modelar la realidad utilizando agentes inteligentes.

¿Computación Evolutiva? Hasta dónde llegaremos?

La presencia de la naturaleza en la Inteligencia Artificial no acaba en la denominada computación evolutiva. Otro científico de la Universidad Libre de Bruselas (Bélgica) que impartió un seminario en esta reunión, Dorigo, presentó el algoritmo de optimización basado en colonias de hormigas que inventó, que consiste en una técnica probabilística para resolver determinados problemas de computación. Este algoritmo, que puede utilizarse para manejar pequeños grupos de robots, forma parte de la ” Swarm Intelligence ” (inteligencia basada en enjambres), famosa a raíz del Presa del recientemente fallecido Michael Crichton. Esta especialidad busca el desarrollo de comportamientos complejos a partir de la interacción de un conjunto de agentes que tienen unas reglas de actuación muy sencillas. La unión hace la fuerza.

La conclusión más importante que se ha podido extraer del seminario celebrado en la UC3M es que la Inteligencia Artificial es un área que no tiene un único objetivo, si no que ha incorporado muchas técnicas diferentes para conseguir dotar de cierta inteligencia algunas soluciones. “La técnica es una función del problema y así hay técnicas para que las máquinas puedan de la experiencia, que identifiquen a las personas, que interpreten el entorno, que razonen las acciones más prometed oras, etc”, explica Molina, que dirige el grupo de investigación de Inteligencia Artificial Aplicada de la UC3M. El mayor reto, explica, es que las máquinas sean capaces de realizar tareas que no estén preprogramadas, para que puedan elaborar una estrategia que va más allá de lo pensado en un principio.

La , aunque no refleje la realidad exacta…, se acerca bastante

Está claro que, pretendemos imitar la naturaleza y , la Inteligencia Artificial evolucione como lo hicimos nosotros mismos, y, si eso se consigue…¿Qué podrá pasar en el futuro?

El mayor problema al que se enfrentan los científicos en este área es la necesidad de sistematizar toda la investigación que se está llevando a cabo en Inteligencia Artificial en todo el mundo para poder unificar las diferentes técnicas que se desarrollan. “La idea es una integración y sinergias que permitan ver ese conjunto de técnicas como un todo”, explica el profesor Molina, aunque aclara que la percepción que se tiene sobre este tema a nivel social es bastante diferente porque se espera mucho de la IA, tal vez por lo que se ve en las películas de ciencia ficción. “La gente ya espera ver a R2D2 por la calle y todavía queda mucho para eso”, concluye.”

Robot (I.A)

       Tendremos que esperar un poco

A partir de todo esto quise profundizar un poco en el y, me leí múltiples trabajos de autores especializados que me posibilitaron tener una idea más clara y profunda de hasta donde podemos llegar en el futuro que, de seguir por el camino emprendido, pocos límites tendrá eso que llaman la Inteligencia artificial Evolutiva.

Por otra parte, desde hace algunos años, existe la convicción de que buena parte del desarrollo tecnológico del futuro dependerá de nuestra capacidad para fabricar dispositivos con un tamaño comprendido entre el de los átomos (< 1 nm) y el de los dispositivos actuales (≈ 100 nm). Con estas dimensiones la materia presenta comportamientos peculiares, en muchos casos de origen cuántico, que no resultan de una extrapolación de sus propiedades macroscópicas (mecánicas, electrónicas, magnéticas, químicas y ópticas) y que, por ello, son a menudo sorprendentes.

             Modelo de la estructura molecular de un ribosoma

 Estas dimensiones corresponden al territorio límite entre la química molecular y supremolecular y la física del estado sólido para unas pocas celdas unidad. El estudio de la materia a escala nanométrica y su utilización para la fabricación de componentes y dispositivos con prestaciones avanzadas y novedosas reciben el nombre respectivamente de nanociencia y nanotecnología.

Nano alude a la nanómetro, una unidad de longitud que equivale a la millonésima parte de un milímetro. Por ende, entonces, este prefijo indica el estudio de las diversas disciplinas a nivel atómico y molecular.  Pero… ¿cuántos átomos equivalen a un nanómetro? Tan solo entre tres y cinco.

En este sentido, estamos en de comenzar a distinguir algunos de  los conceptos que enumeramos anteriormente. Por un lado, la nanociencia se encarga del estudio de las propiedades y los fenómenos a escala nanométrica. La nanotecnología, por su parte, sería la encargada de la manipulación y producción de materiales, estructuras y sistemas a tal escala. Sin embargo, el límite entre nanociencia y nanotecnología resulta cada vez menos tangible. En simples palabras, se puede decir que la nanotecnología utiliza el conocimiento científico proporcionado por la nanociencia para la manipulación y producción de diversos materiales (por medio de complejas tecnologías). Por esta razón, es posible la utilización de tales conceptos de forma equivalente (aunque no por eso sea correcta).

Es por esto que muchos de los avances que hoy se encuadran bajo el nombre de “nanotecnología” no son más que nanociencia, porque sientan las bases para el futuro desarrollo de una tecnología que permita la manipulación de átomos y moléculas. Sin embargo, sería incorrecto decir que en la actualidad no hay ningún desarrollo nanotecnológico (aunque sí se puede afirmar que sus aplicaciones son reducidas, teniendo en cuenta lo mucho que se espera de las mismas), porque entre ellos se pueden mencionar el térmico (desarrollado en 2004 por Aspen Aeogels), los colchones que repelen sudor y polvo, los cosméticos personales ajustados a edad, raza, sexo, tipo de piel y actividad física, y los vestidos que impiden las infecciones en heridos y quemados, entre algunos otros.

Curiosamente,  existe una creencia arraigada en amplios sectores de la comunidad cinetífica de que la Fotónica (conjuntos de tecnologías relacionadas con la Luz) es un campo que cae fuera del universo de la nanotecnología. La creencia se apoya en el clásico criterio de Rayleigh de que la resolución espacial de un óptico está limitada por la olongitud de onda de luz (≈ 500 nm) y por ello es próxima al micrómetro, muy lejos de los requisitos  de la nanotecnología. Esta visión es sin duda errónea y hoy en día la fotónica está íntimamente implicada con la nanotecnología e incluso se puede hablar propiamente de nanofotónica, de un modo similar a como se habla de nonoelectrónica o nanomagnetismo.

[interior+2.JPG]

Como antecedente de esta sinergia recordemos que la espectroscópica óptica constituyó una herramienta fundamental en el descubriomiento de la estructura atómica de la materia y de la física cuántica. Desde una perspectiva más aplicada y espectacular cabe mencionar la utilización de nanopartículas metálicas para colorear el vidrio en tiempos de los romanos (como la famosa vasija de Ligurco del siglo IV) Esta técnica se volvió a recuperar a finales de la Edad Media y se , por ejemplo, para colorear las vidrieras de las Catedrales.

La invisibilidad ya es un hecho del pasado que no pertence unicamente a la ficción con la realización de materiales en tres dimensiones que permiten hacer desaparecer objetos y no precisamente es magia, sino que son capaces de desviar la luz visible.  Se han realizado experimentos con nano objetos es decir con 1 millonesima de milímetro, y segun los resultados, nada impide el mismo principio para hacer invisible a una persona, un tanque o un incluso un petrolero. Estos metamateriales (Que desvian la luz) deben inclinar la luz alrededor del objeto, de manera que lo envuelva y después recupere su forma original. El observador ya no ve la perturbación en la luz y de esta manera el objeto desaparece a a su vista. Aunque una de las más inmediatas de estos metamateriales podría ser la construcción de lentillas especiales que permitan ver hasta un virus o las moléculas del ADN, lo que excita más la imaginación tiene que ver con la invisibilidad descrita por autores como H.G. Wells “El hombre invisible”.

110302051620 sp microscopio2 226 Reino Unido desarrollaron el microscopio más potente del mundo

Se ha construído el microscopio electrónico más potente del mundo mediante la captación de las ondas evanescentes de luz con bolas de vidrio que es la base de esa tecnología. El uso de la luz visible, para observar los objetos de ese diminuto tamaño, rompe en cierto modo las reglas lumínicas, donde existe una propiedad física llamada límite de difracción que establece lo más pequeño que el ojo puede captar. Las ondas de luz se expanden hacia fuera de forma natural e inevitable por lo que limitan el en que pueden ser enfocadas, y por ende, el tamaño del objeto que pueden reflejar.

Los métodos de campo cercano permiten examinar y resolver patrones de iluminación de dimensiones nanométricas con técnicas ópticas. Esto es posible con la utilización de las ondas evanescentes en la vecindad del patrón. A larga distancia (región de Franhoufer) estas ondas desaparecen y peredemos información clave del objeto, la asociada a las componentes periodicas de alta frecuencia espacial o pequeño período. Naturalmente que para introducirse en la zona de ondas evanescentes y detectarlas se hace preciso a las técnicas de micro y nano-mecánica de forma que podamos físicamente a ellas.

¿Qúe no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón, ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo.

Concretamente, la microscópica óptica de barrido de cuerpo cercano, se ha desarrollado utulizando diferentes configuraciones para obetener con una resolución espacial de unas decenas de nanómetros. La tecnología necesaria para el posicionamiento a escala nanométrica estaba ya disponible desde la invención del microscopio electrónico de barrido por efecto túnel.

Lo primero que hay que mencionar es que hablamos de poder manipular los átomos y las moléculas de forma individual, colocándolos en posiciones concretas y fabricando elementos o engranajes. Por ejemplo, la empresa Nanorex  vende sistemas de diseño para esta tecnología, pudiendo apreciarse en las distintos engranajes diseñados con moléculas

Esta manipulación se ha podido realizar gracias al descubrimiento y uso del microscopio electrónico de efecto túnel. Lo que nos lleva a la realidad de que, la Física es la que hace avanzar la técnica y la tecnología, así como también es la “” del descubrimiento de nuesvos materiales y técnicas que nos llevan de manera directa hacia el futuro.

La luz ejerce una cierta fuerza sobre la materia, que es insignificante para objetos macroscópicos, pero es si hablamos de nanopartículas. Por ello, con las técnicas ópticas, no solamente somos capaces de observar objetos de tamaño nanométrico o inferiores, sino que además podemos desplazarlos, manipularlos y atraparlos.

                          Micrografía (50X) con microscopía electrónica de barrido (SEM) de las capas de la piel con una grándula en el centro…

Las fuerzas electromagnéticas son mismo capaces de frenar o enfriar átomos así como de atraparlos. En el caso del enfriamiento se utiliza la fuerza de scattering causada por un haz láser que se propaga en dirección opuesta al movimiento del átomo. El momento lineal del fotón es transferido íntegramente al átomo. Para que la fuerza sea significativa el láser se sincroniza a una frecuencia próxima (y ligeramente inferior para compesnar el corrimiento debido al efecto ) a la resonancia de una transición atómica con el fin de incrementar significativamente la sección eficaz de absorción. Como la posterior reemisión del fotón es isótropa no se pierde el momento lineal atómico ganado en el proceso de absorción.

Microfotografías del microscopio electrónico de barrido de la membrana nuclear. Oservénse los complejos proteicos que forman los poros nucleares. Esta maravilla que nos lleva a saber y comprender más sobre la naturaleza de las cosas, hubiera sido imposible sin la utilización de la luz.

El tema en el que hemos desembocado nos podría llevar horas y días hablando de la Manipulación óptica de átomos, moléculas y nanopartículas, de las propiedades ópticas de losnanomateriales, de los efectos del confinamiento cuántico, de los diodos luminiscentes y láseres, de la realidad de la fotónica que hace posible la espectroscopía de moléculas individuales e interviene en mil maravillas que, la gente corriente ni puede imaginar y que será, sin duda alguna (junto a otras técnicas nuevas) lo que nos llevará al futura de la informática y de la Inteligencia Artificial, a la que por cierto, habrá que vigialar de cerca.

http://img.robotikka.com/wp-content/uploads/2011/05/avances-inteligencia-artificial.jpg

¡¡ Cuidado!!

La Inteligencia Artificial ha despertado un gran interés por sus diversas en nuestro mundo cotidiano, facilitándonos y automatizando las tareas intelectuales, siendo potencialmente útil en cualquier ámbito de la actividad intelectual humana. También, dentro de esta área de trabajo que es la Inteligencia Artificial, encontramos las redes neuronales, que tienen la capacidad de “” mediante complejos ajustes en las relaciones que existen entre los nodos o , permitiendo reconocer y clasificar formas o patrones. Por otro lado, están los algoritmos genéticos, que se basan en la tan reconocida teoría de la Evolución Genética, y en la idea de la supervivencia del más apto, reduciendo aun más la posibilidad del error, como decíamos al principio.

Aunque sumergido en todas estas complejidades que, pareciendo del futuro son de hoy, me pasó el tiempo volando y, con la intención de llevar a todos ustedes algunas de las cosas quen están actualmente en frenética efervescencia en laboratorios de todo el mundo, para así, poder comentar sobre lo que nos parece y, hasta donde nos llevará todo esto que, siendo bueno en un principio, podría desembocar en un escenario no deseado si, por nuestra ambición de sin tasa, damos más prerrogativas de las que serían racionales, a seres artificiales que podrían, con el tiempo, convertirse en nuestros dueños.

emilio silvera