lunes, 27 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Secretos que la Naturaleza esconde

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Gliese581g--478x330.jpg


Hasta el momento parecía que ninguno de los más de 500 planetas extrasolares descubiertos  reunían las excepcionales condiciones que se dan en Gliese 581g, un mundo que tiene tres veces la masa de la Tierra (suficiente para sustentar una atmósfera) y que se encuentra justo en el centro de la zona de habitabilidad de su estrella,  es decir, dentro de la estrecha franja orbital que permite la existencia de agua en estado líquido.

Muchos son los que, como yo, al contemplar los brillantes astros del cielo, se hicieran esas mismas preguntas. Desde los teóricos y los filósofos de la Antigüedad hasta los científicos y los escritores, no ya e ciencia ficción, sino de otras ramas de la literatura incluida la científica, se la hicieron en un momento dado de sus vidas. Ahora, en pleno siglo XXI, la pregunta, al tener más datos disponibles, nos la hacemos con más fuerza cada vez. Sabemos que el Universo es el mismo en todas partes y que en todas las regiones (por muy alejadas que estén) rigen las mismas leyes y constantes universales y, si eso es así (que lo es), no tenemos base científica para negar la existencia de vida inteligente en otros mundos repartidos por las innumerables galaxias y, tal posibilidad, se ha llegado a convertir en una auténtica aventura que, en primer lugar nos ha llevado a buscar mundos similares a nuestra Tierra, y, una vez que estos aparezcan, trataremos de ver, quiénes los pueblan.

Claro que la idea, no es nada nuevo. Hace ya más de 2000 años, Lucrecio, el poeta filósofo romano, razonaba que el nuestro no puede ser el único mundo habitado. “Debo confesaros”, escribió en su De Rerum Natura, “que existen otros mundos en otras regiones del cielo, y diferentes tribus de hombres y tipos de bestias salvajes”. Por estar de acuerdo con Lucrecio, el padre dominico Giordano Bruno pagó con su vida en 1600, pues fue quemado en la hoguera en una piazza romana por orden de la Inquisición.

                                A este le sentó mal el exceso de ultravioletas

Las Civilizaciones extraterrestres hicieron una espectacular entrada en la Ciencia en 1877 cuando el astrónomo italiano Giovanni Schiaparelli le habló al mundo de los Canales de Marte (que había descubierto su colega Ángelo Secchi) diciéndoles que eran artificiales, es decir, hechos por la mano de seres inteligentes. Aquello pico la curiosidad de un adinerado astrónomo americano, Percival Lowell que, construyó un Observatorio especial en Flagstaff, Arizona, con el único propósito de estudiar Marte. Cartografío muchos de los supuestos canales y conjeturó de qué manera los marcianos los habían excavado para irrigar la superficie del desierto planeta con agua extraída de los polos. Esta idea, a su vez, atrajo la imaginación del escritor inglés Herbert George Well, que hizo que los marcianos invadieran la Tierra con War os the Words (1898) con el resultado conocido por todos  en la emisión radiofónica que, cuarenta años después, habiendo sido adaptada paras la radio por el director americano Orson Welles, causó el pánico generalizado cuando se emitió el programa por primera vez, el 30 de Octubre de 1938.

                                                                              Canales de Marte

Marte sigue siendo noticia desde entonces y, cuando no es el agua líquida avistada y que emerge desde su interior, es el misterioso metano detectado en cierta región del planeta y que, bien podría ser un signo de la presencia de vida.

Exactamente veintitrés años después del pánico de 1938, la víspera de Todos los Santos de 1961, un pequeño grupo distinguido de científicos, entre ellos el Químico Americano Melvin Calvin, que acababa de recibir el premio Nobel de Química por su trabajo sobre la fotosíntesis, y el carismático científico americano y personaje de la televisión Carl Sagan se reunieron en el Laboratorio Nacional de Radioastronomía, en Green Bank, Virginia occidental, invitados por un joven astrónomo americano, Frank Drake. El tema a tratar era el de ver la manera de poder detectar señales de radio que pudieran haber emitido algunas Civilizaciones extraterrestres. Aquello desembocó en el considerable proyecto que se conoce por SETI que, habiendo pasado por mil vicisitudes, dejó de ser financiado por la NASA pero, continúa con el apoyo de Instituciones privadas. Todo aquello generó expectativas y creó un ambiente positivo que generó la creación de nuevas disciplinas como la exobiología, bioastronomía o astrobiología, con sus propios institutos, reuniones y publicaciones.

 

 

La falta de peuebas no son, en este caso,  pruebas de ausencia. Simplemente es que, no hemos buscado en la forma adecuada, o, -quizás lo más probable- no tenemos los medios necesarios para buscar en la debida y adedcuadamanera que nos lleve a encontrar la respuesta tan largamente buscada. SETI es el fruto de un artículo escrito por Giuseppe Cocconi y Philip Morrison, lo titularon Searching for Interstellar Communication, y fue publicado en Nature en el año 1959. Allí, fueron recordadas las ideas de Percival Lowell que habló de la vida en Marte y que dio lugar a que todos se preguntaran: ¿Estamos solos en el inmenso Universo?

El sumun de todo este largo historial, vino a plasmarse cuando el 7 de agosto de 1996, se alcanzó su punto culminante. El Administrador de la NASA Daniel Goldin convocó en Washington una conferencia de prensa especial, televisada, presentada por el propio Presidente Clinton, para anunciar al mundo que un grupo de investigadores americanos, dirigidos por el geólogo de la NASA David Mackay, había detectado pruebas de vida pasada en Marte. Ya sabéis, el famoso proyectil fortuito –fragmento de roca- de 1,8 kg que fue descubierto en la Antártida y se pudo saber que, lo más probable, el meteorito, tenía su origen en Marte y su edad era de dieciséis millones de años. Clasificado como ALH 84001, dio tanto que hablar que, aún hoy, de vez en cuando surge alguna noticia sobre tan misterioso visitante.

Claro que, la presencia de vida fosilizada en aquel pedrusco, no convenció a muchos expertos y la cosa se quedó en la incógnita de que podría ser… Claro que, el entusiasmo de la vida en Marte y en otros lugares del Universo, sigue intacta. Si se hiciera una encuesta entre 200 científicos sobre la existencia de vida en otros planetas, el resultado a favor…sería sorprendente.

Claro que, hablamos y hablamos de “vida” en otros mundos y, la mayoría de las veces, lo que tenemos en la mente, es la vida tal como aquí, en la Tierra, la conocemos. Sin embargo, no es ese el camino y, debemos de partir de la base de que, cualquier forma de vida que podamos pensar, por muy extraña que esta nos pudiera parecer, ahí fuera podría estar y, desde luego, tampoco se puede descartar la vida que, como la nuestra o muy parecida, esté en planetas similares al nuestro. Antes de seguir, podríamos hacer una simple reflexión sobre esos procesos que nos llevan a la vida.

Durante el proceso de evolución de nuestro planeta, en las aguas del Océano más primitivo, surgieron sustancias orgánicas complejas y de gran variedad, similares a las integradoras de los actuales organismos vivos. Pero entre estos últimos y la simple solución acuosa de sustancias orgánicas se produce un salto abismal.

 

Un asteroide  pasa junto a  la Tierra -   Internet Agencia

 

Esporas de vida que pudieron llegr del espacio exterior

 

Entre los patógenos, los virus son únicos en su capacidad colectiva de infectar a todo tipo de organismos. Hay virus para plantas, insectos, hongos, e incluso virus que infectan sólo a amebas y bacterias.

 

 

 

 

La base de los organismos vegetales o animales, o sea, el fundamento de los cuerpos de hongos, bacterias, amibas, virus  y otros organismos simples, es el protoplasma, el sustrato material en donde se desarrollan los fenómenos vitales. En su aspecto más externo, el protoplasma se presenta como una masa viscosa semilíquida de color grisáceo, en cuya composición, además del agua, se hallan, un gran número, proteínas y otras sustancias orgánicas y sales inorgánicas. Pero existen en esa mezcla más sustancias, ya que debemos recordar que el protoplasma tiene una organización muy compleja, rasgo que demuestra, en primer lugar, por su estructura concreta, en una determinada distribución especial recíproca de las partículas que forman las distintas sustancias del protoplasma y, en segundo lugar, en una armonía determinada, con un orden especial y con una regularidad concreta de aquellos procesos físicos y químicos que en él se producen.

Así que, la materia viva, la encontramos representada hoy día, por organismos, por sistemas individuales que tienen una forma concreta y una organización precisa y armónica. Nada de esto, como cabe esperar, ocurrió en aquellas primitivas aguas del océano.

Al estudiar diferentes soluciones, entre ellas las de sustancias orgánicas, se demuestras que en éstas las distintas partículas están repartidas de forma más o menos regular por todo el volumen del disolvente, en un estado constante de movimiento y desorden. Por tanto, las sustancias a tratar se encuentra aquí indisolublemente fundida con su medio y, además, no tiene una estructura concreta, con base en la disposición regular de unas partículas con respecto de otras. Sin embargo, no podemos llegar a imaginarnos un organismo que no tenga una estructura y se encuentre disuelto en el medio que le rodea. Por esta razón, en el camino que nos lleva desde las sustancias orgánicas hasta los seres vivos debieron crearse con total seguridad unas formas individuales, unos sistemas separados de su medio y con un orden interior de las partículas de la materia.

Puede obtenerse cristalizada en forma específica para cada especie. La hemoglobina es un cromoproteido formado por una protoporfirina ferrosa llamada hem (4 %) unida como ácido y base a una fracción proteica sulfurada llamada globina (96 %). El hem está formado por 4 núcleos pirrólicos, cada uno constituido por un N unido en el vértice de un anillo de 4 C. Ese núcleo se reúne a los distintos metales (Fe, Cu, Co, Mg) y forma las metalporfirinas. Si el Fe es ferroso toma el nombre de hem y si férrico el de hematina.

Las sustancias orgánicas de bajo peso molecular, como alcoholes o azúcares, si se disuelven en el agua quedan fuertemente desmenuzadas y se distribuyen de forma homogénea, por toda la solución, en forma de moléculas sueltas que quedan más o menos independientes las unas de las otras. Por esta razón sus propiedades dependerán sobre todo, de la estructura de las mismas moléculas y del orden de los átomos de carbono, hidrógeno, oxígeno y otros en el interior de las mismas.

Pero en cuanto aumenta el tamaño de las moléculas, se añaden a estas leyes sencillas de la química orgánica, otras nuevas, y más complejas, cuyo estudio es materia de la química de los coloides. Las soluciones más o menos diluidas de sustancias de peso molecular ligero, son sistemas muy estables en los que el grado de fraccionamiento de la sustancia y la uniformidad en el momento de distribuirse en el espacio no cambian por ellos mismos. En cambio, las partículas de los cuerpos de un peso molecular elevado dan soluciones coloides, características por su inestabilidad. Bajo la influencia de varios factores, estas partículas tienden a dar combinaciones entre ellas mismas, creando así, auténticos enjambres, llamados agregados o complejos. Sin embargo, ocurre con mucha frecuencia que esta unión entre las partículas es tan intensa que la sustancia coloidal se distancia de la solución dejando sedimento. Coagulación es el nombre que recibe este proceso.

Estas sustancias orgánicas disueltas quedan concentradas en puntos concretos, formando unos coágulos en donde las diferentes moléculas o partículas se encuentran ligadas entre ellas de una forma determinada, por lo que se crean relaciones nuevas y más complejas, por la disposición de los átomos en las moléculas, pero también por el orden que adoptan las moléculas entre ellas.

Sustancias Minerales del Plasma

Cloro. En cantidad de 1.80 gramos %o para el Cl globular y 3.60 gramos % para el plasmático, con un índice clorémico de 0,50. Está casi todo ionizado representando los dos tercios del anión del plasma. Dada la facilidad con que atraviesa la membrana del glóbulo rojo, interviene en la regulación del equilibrio iónico sanguíneo.

Fósforo. En cantidad de 4 a 5 miligramos por ciento se encuentra bajo forma de fósforo inorgánico mono y bibásico y orgánico combinado a los prótidos, glúcidos y lípidos.

Azufre. Se encuentra bajo forma inorgánica formando suifatos y orgánica particularmente en las proteínas sulfuradas.

Iodo, bromo y flúor, Se encuentran en pequeñas cantidades.

Sodio. En cantidad de 340 mlg % es el catión predominante en los líquidos extra-celulares ya que la membrana celular se muestra como impermeable para él.

Potasio. Inversamente el potasio se encuentra en mucha mayor cantidad en el interior del glóbulo rojo. Se encuentra en equilibrio con el Na y ambos cationes no se desplazan mutuamente, siendo el predominio de uno de ellos nocivo para el organismo. El plasma contiene 20 mlg %.

Calcio. En cantidad de 10 miligramos por ciento se encuentra, la mitad bajo forma inorgánica y la mitad bajo forma orgánica, unido a las proteínas. Existe una relación entre Ca y P que es igual a 2 y por otra parte el producto de sus concentraciones debe ser mayor de 40.

Otros cationes como el Mg, Cu, Zn, Co, Mn, Ai, etc., se encuentran en pequeñas cantidades y su significación fisiológica es todavía discutida.

Así, mediante estas transiciones y transmutaciones, se llega a lo que se conoce como las sustancias vitales para la vida, y, en nuestro mundo, sabemos los caminos que se han recorrido hasta llegar a nosotros (más o menos), lo cual, es una buena base para pensar en esos posibles “seres extraterrestres” que podrían estar en esos mundos lejanos y que, también se puede pensar que, pudieran estar constituidos a partir de otro elemento distinto del Carbono, la base de la vida en la Tierra. Por mi parte, creo que, “esos seres”, al igual que todos los que existen en la Tierra, estarán constituidos de la misma manera en lo esencial, es decir, estarán basados en los mismos elementos que los seres de la Tierra y, sus morfologías, serán variadas e incluso extrañas, ya que, dependiendo del planeta que los acoja, de los soles que lo calienten, de la Gravedad, de su exposición a las radiaciones, de los océanos, volcanes y las placas tectónicas que muevan aquellos mundos y…de otros muchos factores, dependerá la forma de vida que “allí” nos podamos encontrar pero, eso sí, el Carbono será la base de esas vidas que, como la nuestra, habrán evolucionado hasta…¿quién sabe dónde?

La Química, las limitaciones celulares, los azúcares, el protoplasma, los mecanismos vitales, los ingredientes necesarios que, como el agua, se hacen imprescindibles para llegar a cierto punto desde el que se produce el salto hasta el nivel vital…¿Serán los mismos en todas partes?

                                      Todo lo que podamos imaginar…, será posible y, mucho más


Muchas veces hemos podido leer que sobre la existencia de formas de vida constituidas con componentes moleculares distintos de las proteínas, los ácidos nucleicos y otros constituyentes biológicos típicos, o incluso constituida de otros átomos distintos, como, por ejemplo, con el carbono sustituido por el silicio, su pariente más cercano en la tabla periódica de elementos. Claro que, base válida para tales especulaciones…No la hay, ya que, lo que es capaz de hacer el Carbono, no lo puede hacer el Silicio y, sin embargo, tal verdad, no debería condicionarnos para negar la posibilidad de otras formas de vida que, siendo diferentes a las nuestras, también estén basadas en otros elementos diferentes.

Si nos fijamos en dos vecinos cercanos: Venus y Marte, podemos ver que, el primero se halla más cerca del Sol que la Tierra, y Marte, que se halla más lejos de aquel, ocupan los limites externos de lo que a veces se denomina la zona habitable. De los dos, Venus, con una temperatura superficial cercana a los 500ºC, parece demasiado caliente para albergar la vida (sólo lo parece). Y, no se descarta que lo pudiera haber sido en los primeros tiempos de su formación pero, ¿lo sabremos alguna vez?

                          El sueño de la Humanidad de terraformar Marte tendrá que esperar algunas decenas de años


Marte, por el contrario, con una baja temperatura superficial que se ha comprobado es,  de -53ºC, parece demasiado frío para albergar vida (sólo lo parece), al menos en la superficie. Su atmósfera es tenue, constituida principalmente por dióxido de carbono, parte de la cual se hiela cada invierno para cubrir los polos con un casquete blanco, que primero se creyó que estaba constituido por hielo de agua pero que ahora se ha identificado como lo que denominamos hielo seco, la sustancias expulsada de los extintores de incendio. Sin embargo, hay agua abundante en Marte ; existe en forma de hielo permanente bajo el casquete polar Norte de Hielo Seco en el suelo en la forma de permafrost, como el que se encuentra en alguna parte de Siberia, por ejemplo.

Claro que, las sondas y naves que allí hemos enviado (Mars Phoenix y otras), nos han confirmado que, el agua en Marte está presente y, en algunos lugares emerge desde el subsuelo. Si hubiera hidrógeno molecular disponible, posiblemente podrían existir allí Bacterias similares a algunas formas presentes en las rocas de la Tierra. No sabemos a qué profundidad habría que excavar para encontrarlas.

Bueno, las pruebas que tenemos del pasado de Marte, dejan poco espacio para dudar de que, en el tiempo pasado, el planeta disfrutó de ser un mundo diferente, con un clima más suave, una atmósfera distinta, mares y océanos y, correntías de agua líquida que horadó la superficie, dejando las señales que nuestras sondas nos han podido mostrar de aquel mundo que fue, y, según las actuales circunstancias, todo parece apuntar que, de haber alguna clase de vida en aquel planeta, ésta debe encontrarse bajo la superficie, en las profundas grietas y grutas que, su antigua actividad volcánica dejó y en la que, posiblemente, al existir una temperatura más cálida, el agua pueda correr libremente haciendo posible la existencia de bacterias, líquenes y hongos…(¿quién sabe qué cosas más?) que en la superficie no tienen la posibilidad de subsistir. Acordaos de esas emisiones de metano detectadas por la NASA, nadie conoce su fuente y, las especulaciones están servidas.

Cuando pensamos en esos otros mundos, la imaginaciópn nos lleva a pensar que pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero, también podrían estar caracterizados por diferentes valores de constantes adimensionales (no creo). Estos cambios numéricos alterarían toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados. ¡Qué imaginación, si existieran esos mundos con leyes distintas…No sería en nuestro Universo.

Claro que, a todo esto, todavía no hemos dejado de preguntarnos: ¿De dónde viene la vida? Y, la hipótesis extraterrestre, es, al menos, tan buena como otro cualquiera. En la actualidad, cientos o miles de investigadores dedican su tiempo y esfuerzo a investigar el origen de la vida y, no puedo decir con certeza que, algún día, podamos responder a esa pregunta.

Ya nos resulta asombro saber que, la Vida, apareció en la Tierra hace ahora unos 4.000 millones de años, unos 500 millones de años después de que el planeta se condensara, con los otros planetas del Sistema solar, en un disco de gas y polvo que, giraba alrededor de una joven estrella que iba a convertirse en nuestro Sol. Fenómenos de violencia extrema, incompatible con el mantenimiento de ninguna clase de vida, rodearon este nacimiento. Todo tipo de cuerpos y objetos venidos del exterior golpearon, en aquellos primeros momentos, al recién nacido planeta: Cometas, Asteroides y otros golpearon con saña su incandescente superficie. Pasados aquellos “primeros momentos” la Tierra era poseedora de la materia primigenia que, tratada en la forma adecuada por la Naturaleza, hizo posible el surgir de la vida primaria que, ha podido evolucionar hasta llegar a los pensamientos.

¡Nos quedan tantas sorpresas sobre la Vida! No sólo la que podamos descubrir en el exterior, sino que, también la que está presente en nuestro planeta nos tiene muchas sorpresas reservadas y, para que éstas lleguen, necesitamos saber.

emilio silvera

Preguntamos pero, ¿sabemos responder?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Qué es la vida?

¿Cómo podríamos ensamblar una explicación científica de la génesis de la vida? A simple vista nos puede parecer una tarea sin esperanzas. No creo que buscar fósiles en las rocas más antiguas sea suficiente y nos ofrezca todas las claves necesarias. La mayoría de las delicadas moléculas prebióticas que dieron lugar a la vida habrán sido erradicadas por el inexorable paso del tiempo y la destructora entropía que todo en polvo lo convierte. Es posible, que podamos esperar el hallazgo de algún residuo químico ya degradado de aquellos organismos ancestrales a partir de los cuales evolucionó la vida celular que conocemos.

Claro que, aparte de los fósiles que podamos encontrar en las rocas, existe otra línea de evidencia que, de la misma manera, se remonta al pasado lejano y oscuro, pero que existe aquí y ahora, dentro de las formas de la vida presente. Los biólogos están convencidos de que ciertas reliquias de organismos antiguos siguen viviendo en las estructuras y procesos bioquímicos de sus descendientes, incluyéndonos a nosotros, los seres humanos.

Estudiando cómo funciona la célula moderna podemos tener una visión de los remanentes de la vida ancestral en acción –una molécula peculiar aquí, una reacción química singular allí, de la misma forma que unas monedas fuera de lugar, unas herramientas rústicas del pasado lejano o, cómo los montículos sospechosos que alertan al experimentado arqueólogo. Así, entre los intrincados procesos que tienen lugar dentro de los organismos modernos, sobreviven trazas de vida primordial que establecen un puente con nuestro pasado lejano. Analizando estas oscuras trazas, los científicos han comenzado a reconstruir los caminos físicos y biológicos que pueden haber llevado a la existencia de la primera célula viva.

De todas las maneras, incluso con tales claves bioquímicas, la tarea de reconstrucción seguiría siendo básicamente una conjetura si no fuera por el relativamente reciente descubrimiento de ciertos “fósiles vivientes”: microbios que habitan en ambientes extraños y extremos.

Estos denominados supermicrobios, han sido y continúan  siendo intensamente investigados y según parece, van revolucionar la microbiología. Pudiera ser que estemos atisbando en estos microbios  poco convencionales algo próximo a los primitivos organismos que generaron toda la vida en la Tierra. Claves adicionales pudieran venir de la búsqueda de la vida en Marte y otros planetas, y del estudio de cometas y meteoritos. Reconstruyendo todas estas líneas de evidencia, quizá seamos capaces de deducir, al menos en líneas generales, de qué manera emergió la primera vida en el universo.

Muestras de diversos tipos de microorganismos extremófilos.

Claro que, convendría saber, antes de abordar el problema de su origen, lo que la vida es. Hace menos de un siglo que muchos científicos estaban convencidos de que ese problema estaba a punto de ser resuelto. Los avances en la estructura de la materia a nivel atómico, y los avances en el saber de los componentes moleculares de la célula, elevó de manera excesiva la ilusión de los expertos que, con el paso del tiempo, no se plasmó en realidad, y, la vida, sigue siendo un gran misterio sin resolver.

Una cosa está clara para mí, es posible que la materia, en sus distintas fases y por separado, nos pueda parecer que es algo inerte, pasivo, y hasta “torpe” que sólo suele responder cuando es requerida por fuerzas externas y, sin embargo, en ciertas circunstancias especiales, la materia parece tener una especie de “chispa interior” un algo que, a veces, se nos asemeja a una especie de “vida propia”. Todos conocemos de las transformaciones que, en ciertas condiciones y lugares, pueden producirse en la materia “inerte” que se transmuta en otra cosa muy distinta de lo que en principio era y, dicho cambio, si no es una especie de “extraña vida” ¿qué es lo que es?

Claro que, de ahí hasta lo que conocemos por ¡Vida!, el trecho es grande y en eso andamos. Buscamos incansables una explicación satisfactoria que nos diga lo que la vida es pero, el enigma continúa y los conocimientos se limitan a niveles locales de cuestiones muy concretas que, de ninguna manera, explican lo que queremos saber.

La ciencia continúa en su intento de dar respuesta a los misterios de los orígenes de la vida sobre la Tierra. Esta vez, un grupo de químicos cree haber dado con nuevas pistas sobre la aparición de las primeras moléculas como almacenes de información genética. Sus hallazgos aparecen publicados en la revista británica Nature.

La sensación que se percibe al profundizar en todo este complejo problema es el de que, todo ha surgido a partir del Caos, inmerso en una gran complejidad de factores que no siempre hemos podido comprender. Otra paradoja adicional de la vida concierne a la extraña conjunción de permanencia y cambio (¿o, es adaptación?). A este antiguo rompecabezas se suelen referir los filósofos como el problema del ser frente al devenir. El trabajo de los genes consiste en replicarse, en conservar el mensaje genético. Pero sin variación, la adaptación sería imposible y los genes finalmente se agotarán: adaptarse o morir es el imperativo que nos impone la Naturaleza.

Pero, ¿Cómo coexisten conservación y cambio en el sistema? Esta contradicción yace en el corazón de la biología. La vida florece en la Tierra debido a una serie de tensiones creativas que existen y son creadas por la propia Naturaleza y que, finalmente, se acoplan y compensan para que todo transcurra en armonía dentro de una rica variedad de cuyas reglas del juego, en realidad, no tenemos ni idea.

Muchos son los puntos en los que nos podríamos fijar para tratar de indagar lo que realmente pasó para que, en la Tierra, surgiera la vida.

File:Acraman.jpg

                                       Imagen de satélite del Lago Acraman; Captura de pantalla de NASA World Wind

Por ejemplo, el lago Acraman (un gran lago seco, de forma aproximadamente circular y de unos treinta kilómetros de diámetro) situado en Australia del Sur, a doscientos kilómetros de Port Augusta, en el límite de la llanura de Nullarbaor, aunque nos pueda parecer como otro lago seco cualquiera, resulta que el Acraman no es un lecho lacustre ordinario.

Hace aproximadamente unos seiscientos millones de años, un meteoro gigante cayó del cielo y abrió un enorme agujero en lo que ahora es la península de Eyre. El agujero original media al menos noventa kilómetros de diámetro y varios de profundidad. El lago Acraman de hoy es todo lo que queda de aquella enorme cicatriz, un testigo mudo de un antiguo cataclismo de proporciones impresionantes. El daño físico causado por el impacto supera todo lo imaginable. ¡La caída de un pedrusco de cien mil millones de toneladas y varios kilómetros de diámetro!

Claro que, tal suceso, no fue un hecho aislado. Cada pocos millones de años un cometa o un gran asteroide golpea la Tierra y, cada vez hay más evidencia de que los impactos cósmicos han tenido una influencia capital en la evolución de la vida en el planeta al provocar extinciones en masa. Los impactos cósmicos no sólo han alterado el rumbo de la evolución, sino que también desempeñaron un papel crucial en el origen de la vida.

Hasta hace poco tiempo, los científicos apelaban fundamentalmente a la química y a la geología en sus intentos de explicar la biogénesis. Se trataba a la Tierra como un sistema aislado. Pero en las últimas décadas se ha asumido que, la realidad, es que la Tierra es simplemente una parte de un todo y, siendo así (que lo es), hay que tener en cuenta la dimensión astronómica de la Vida. Para entender cómo empezó la vida, parece que tenemos que buscar respuestas en las estrellas.

Hasta Lucrecio, el poeta-filósofo romano, con algún poema, trató de convencernos de que no estamos solos en el Universo. Él argumentaba que si el Universo estaba hecho de átomos idénticos y sujeto a leyes universales de la Naturaleza, entonces los mismos procesos que dieron lugar a la vida en la Tierra deberían también dar lugar a la vida en otros mundos. El argumento se remonta al atomista griego Epicuro y es, muy convincente pero, de momento, no sabemos si es correcto.

Yo, hace tiempo que aposté por él, la vida debe estar presente ¡en tantos lugares!

Claro que todo esto, no responde a la pregunta: ¿Qué es la vida?

emilio silvera

Las cosas de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Galaxia

    Todo comienza siendo una cosa y con el tiempo, se transforma en otra diferente: Evilción por la energía. En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

  La singularidad con su inmensa fuerza gravitatoria atrae a la estrella vecina

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s.  Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.793’458 km/s.

Sí, se pudo confirmar que los neutrinos respetan la supremacía el fotón, y la luz, sigue siendo la más rápida del Universo. Y sin embargo, no puede escapar de la atracción de un A.N.

Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin  que será el nuevo comienzo).

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.

                     Señalamos la singularidad del Big Bang pero…fue así.

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre.

En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?

Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros.

Llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad.

Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.

Esa reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás.  Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch.

Antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.

Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.

Carl Sagan pinta el cuadro siguiente:

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

File:Andromeda Galaxy (with h-alpha).jpg
                                                                                                La Galaxia Andrómeda

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“.

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil.  Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

Por todas estas catástrofes anunciadas por la ciencia, científicos como Kip S. Thorne y Stephen Hawking sugieren viajar a otros universos paralelos a través de agujeros de gusano en el hiperespacio. Sería la única puerta de salida para que la Humanidad no se destruyera.

Si lo alcanzaremos o no, es imposible de contestar, no tenemos los datos necesarios para ello. Incluso se podría decir que aparte de estas catástrofes futuras que sabemos a ciencia cierta que ocurrirán, seguramente existan otras que están ahí latentes en la incertidumbre de si finalmente ocurren o no, sólo pendiente de decidir lo uno o lo otro por parámetros ocultos que no sabemos ni que puedan existir.

En esta situación de impotencia, de incapacidad física e intelectual, nos tenemos que dar cuenta y admitir que, verdaderamente, comparados con el universo y las fuerzas que lo rigen, somos insignificantes, menos que una mota de polvo flotando en el haz de luz que entra, imparable, por la ventana entre-abierta de la habitación.

Sin embargo, tampoco es así. Que se sepa, no existe ningún otro grupo inteligente que esté capacitado para tratar de todas estas cuestiones. Que la especie humana sea consciente de dónde vino y hacia dónde va, en verdad tiene bastante mérito, y más, si consideramos que nuestro origen está a partir de materia inerte evolucionada y compleja que, un día, hace probablemente miles de millones de años, se fraguó en estrellas muy lejanas.

Ya he comentado que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y Suzuki, y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”.  Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto como las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría“.

La Gravedad cuántica está en algunas mentes pero, ¿Estará en la Naturaleza?

La característica más notable de la teoría de cuerdas (como ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.

Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas“.

No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de forma diferente.

Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su nombre al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.

En conclusión, las simetrías que vemos a nuestro alrededor, desde el arcoiris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original.  Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.

La teoría de cuerdas, a partir del descubrimiento Veneziano-Suzuki, estaba evolucionando hacia atrás buscando las huellas de Faraday, Riemann, Maxwell y Einstein para poder construir una teoría de campos de cuerdas.  De hecho, toda la física de partículas estaba basada en teoría de campos. La única teoría no basada en teoría de campos era la teoría de cuerdas.

De la teoría de cuerdas combinada con la supersimetría dio lugar a la teoría de supercuerdas. La cuerda es un objeto unidimensional que en esta nueva teoría se utiliza remplazando la idea de la partícula puntual de la teoría cuántica de campos. La cuerda se utiliza en la teoría de partículas elementales y en cosmología y se representa por una línea o lazo (una cuerda cerrada). Los estados de una partícula pueden ser producidos por ondas estacionarias a lo largo de esta cuerda.

En esta teoría se trata de unificar a todas las fuerzas fundamentales incorporando simetría y en la que los objetos básicos son objetos unidimensionales que tienen una escala de 10-35 metros y, como distancias muy cortas están asociadas a energías muy altas, para este caso la escala de energía requerida es del orden de 1019 GeV, que está muy por encima de la que hoy en día pueda alcanzar cualquier acelerador de partículas.

Como antes expliqué, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado antes que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De momento, inalcanzables.

Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías (entre ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.

Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad,  lo que en efecto ocurre en las interacciones débiles.

Extrañas configuraciones a las que, algunos físicos le quieren sacar lo que seguramente no se encuentra en ellas

Estoy convencido de que la teoría de supercuerdas será finalmente corroborada por los hechos y, para ello, se necesitará algún tiempo; no se puede aún comprobar ciertos parámetros teóricos que esas complejas matemáticas a las que llaman topología nos dicen que son así.

Habrá que tener siempre a mano las ecuaciones de Einstein, las funciones modulares de Ramanujan y el Supertensor métrico de ese genio matemático que, al igual que Ramanujan, fue un visionario llamado Riemann.

Las historias de estos dos personajes, en cierto modo, son muy parecidas.  Tanto Riemann como Ramanujan murieron antes de cumplir los 40 años y, también en ambos casos, en condiciones difíciles. Estos personajes desarrollaron una actividad matemática sólo comparable al trabajo de toda la vida de muchos buenos matemáticos.

¿Cómo es posible que, para proteger la simetría conforme original por su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas, que precisamente son las identidades de la función modular de Ramanujan?

En este trabajo he expresado que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debo corregir algo esta afirmación, y para decirlo correctamente debería decir: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. Al añadir la palabra coherentemente hemos señalado un punto crucial. Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez de dimensiones del espacio-tiempo. Esto a su vez, puede facilitarnos la clave decisiva para explicar el origen del universo.

emilio silvera



Preguntamos pero, ¿sabemnos responder? II

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hallan la galaxia más lejana -   Internet Agencia

 

 

Los astrónomos han confirmado mediante observaciones espectroscópicas que los átomos son realmente los mismos en cualquier lugar del Cosmos, Un átomo de Carbono en la galaxia Andrómeda es exactamente igual que un átomo de Carbono de la Galaxia Vía Láctea, son idénticos y también, idénticos, a los átomos de Carbono de la Tierra. Cinco elementos químicos desempeñan un papel estelar en la Biología terrestre:

Carbono

Oxígeno

Hidrógeno

Nitrógeno, y

Fósforo

Estos elementos están entre los más abundantes del Universo. Sin embargo, no siempre fue así. Hubo un tiempo, antes de que nacieran las primeras estrellas, que en el Universo todo era Hidrógeno y Helio, los materiales primordiales a partir de los cuales, pudieron surgir todos los demás en los hornos nucleares de las estrellas y en las explosiones supernovas.

                               ¿la Vida? Sí es un delicado equilibrio que hace la Naturaleza para que pueda existir

Todas las leyes de la física nos muestran que la existencia y sostenimiento de la vida se asientan en equilibrios y medidas o cantidades específicas. La estructura general del universo, el lugar de la Tierra en el mismo, las características materiales de ésta –aire, luz, agua, etc.–, se basan en propiedades esenciales para nuestra supervivencia y, sobre todo eso… ¡El Carbono!

El Carbono es el elemento auténticamente vital. Merece un lugar de honor debido a una propiedad química única: los átomos de Carbono (como tantas veces expliqué aquí) pueden unirse para formar moléculas de cadena extendida, o polímeros, de variedad y complejidad ilimitadas. Las Proteínas y el ADN son dos ejemplos de dichas moléculas de cadena larga.

Si no fuera por el Carbono, la vida como la conocemos sería imposible. Probablemente sería imposible cualquier tipo de vida. Soy muy remiso (aunque no descarto nada), a que existan formas de vida que no estén basadas en el Carbono. De hecho, todos los seres vivos que conocemos que existen en la Tierra están, como nosotros, basados en el Carbono.

Cuando el Universo “empezó” con el “Big Bang”, el Carbono estaba completamente ausente. El intenso calor del nacimiento cósmico impedía cualquier núcleo atómico compuesto. En lugar de ello, el material cósmico consistía en una sopa de partículas elementales tales como protones y neutrones que pudieron conformar los núcleos de átomos de hidrógeno. Sin embargo, a medida que el universo se expandía y enfriaba durante los primeros mimutos, las reacciones nucleares transmutaron parte del hidrógeno en helio.

Muchos millones de años más tarde, en las estrellas, por algo que se llama “proceso triple Alfa”, surgió el Carbono en el Universo. No siendo el tema aquí el de explicar como se llega en las estrellas  hasta el Carbono a partir del helio, seguiremos hablando de la química cósmica.

La Química es algo más que unos tubos de ensayo, y, está presente de manera natural por todo el espacio interestelar. Allá por los 70 me llamó poderosamente la atención el descubrimiento de moléculas de amoníaco y de agua en el espacio exterior. ¿Cómo llegaron a llí? Bueno, todos conocemos esas inmensas nubes estelares que llamamos Nebulosas y, en ellas, se producen, a partir de materiales sencillos, esos cambios que tan poderosamente llaman nuestra atención.

El timo de átomo más común en el universo, después del hidrógeno y el helio, es el oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos grupos oxhidrilos (HO) y moléculas de agua (H2O), que tiene una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren por el camino, de forma que poco a poco se van constituyendo pequenísimasm partículas compuestas por millones y millones de tales moléculas. Los grupos oxhidrilo y las moléculas de agua pueden llegar a constitur una parte importante del polvo cósmico. Allá por el año 1965 se detectó por primera vez grupos oxhidrilo en el espacio y se comenzó a estudiar su distribución. desde entonces, se han encontrado allí, moléculas más, complejas que contienen átomos de carbono, de hidrógeno y de oxígeno. También átomos de calcio, sodio, potasio y hierro han sido detectados al observar la luz que dichos átomos absorben.

Alrededor de las nebulosas planetarias Tc-1 y M1-20, entre 600 y 2.500 años luz de la Tierra, un equipo de investigadores del Instituto e Astrofísica de Canarias(IAC) ha hallado por primera vez evidencias de fullerenos complejos, denominados «cebollas de carbono», las moléculas más complejas observadas hasta el momento en el espacio exterior. Un hallazgo que tiene importantes implicaciones a la hora de entender la física y química del Universo y del origen y composición de las bandas difusas interestelares (DIBs), uno de los fenómenos más enigmáticos de la astrofísica.

Actualmente, la lista de las moléculas descubiertas en el espacio es larga y más de cien sustancias químicas la adornan, siendo muchas de esas moléculas interestelares orgánicas. La más abundante es el monóxido de carbono, pero también hay abundancia de acetileno, formaldehido y alcohol. También se han detectado moléculas orgánicas más complejas, tales como aminoácidos y HAP (hidrocarburos aromáticos policíclicos). Ahora está claro que no sólo abunda en todo el Universo elementos que favorecen la Vida, sino que también lo hacen muchas de las miléculas orgánicas realmente utilizadas por la vida. Con miles de millones de años disponibles para que la química cósmica pudiera generar dichas sustancias, ha habido tiempo más que suficiente para que estas se formen en las nubes moleculares gigantes de las que emergen las estrellas y los sistemas solares como el nuestro.

NGC 7822 en Cefeo

Nubes Moleculares Gigantes  en este caso (NGC 7822 en Cefeo). Colapsos gravitacionales, estrellas nuevas, vientos estelares, abundante radiación ultravioleta, todas esas fuentes de energías que dan lugar al nacimiento de estrellas nuevas, hacen también posible que, los materiales se mezclen y sufran mutaciones de simples a complejos y, a partir de ellos, nacen los nuevosm sistemas planetarios y…¡la Vida!

Que en un principio, sin temor a equivocarnos podemos decir que la génesis de la vida ha sido posible a partir de lo que en el espacio pasó, ¿qué duda nos puede caber? Incluso no se descarta que las semillas que trajeron la vida al planeta Tierra fueran transportadas por cometas que hicieron impacto en la Tierra regando de materiales biológicos el planeta que, miles de millones de años más tarde, evolucionaron y florecieron para surgir en sus formas diferentes.

Cometas: West

      El cometa West, con sus colas de plasma y polvo.

Los Cometas que a pesar de todo lo que sabemos de ellos, siguen siendo algo enigmáticos, incluso algunos que han sido minuciosamente observados durante siglos. Muchos son los que dicen que llevan la semilla de la Vida con ellos y, de vez en cuando, la siembran en algún planeta que, como la Tierra, recibe sus esporádicas visitas.

Mucho se podría hablar aquí de cómo llegaron a formarse los cometas a partir de aquella Nebulosa planetaria pero, no siendo el tema de hoy, lo dejaremos en lo que ya hemos explicado y que, de manera muy simple y general, os dará una idea de lo que en el Universo puede pasar y de cómo, todo se confabula para que la vida, sea posible.

En la parte primera hemos hablado de los supermicrobios y de otras cuestiones que nos acercan al saber, al menos, de cómo hemos tratado de conocer el origen de la Vida en nuestro mundo, uan pregunta que más o menos ha quedado contestada pero, a medias, toda vez que, contestar a la pregunta primera de… ¿qué es la vida? no he podido, me faltan conocimientos para ello.

Para documentarme, he leído sobre el misterioso origen de la vida, he tratado de saber qué es la vida, he buceado en la historia de las moléculas antiguas, he dado un largo paseo por el Edén de los microbios y sus dominios, he tratado de estudiar lo que es el principio de generación biológica y química, a todo ello, he añadido meros conocimientos del hueco de entropía y la Gravedad como fuente de Orden, He querido saber sobre el árbol de la vida y me he querido enterar de qué hallaron los expertos en las rocas antiguas, qué fósiles había allí como huella de la vida del pasado, también procuré saber si era posible la generación expontánea y sobre “la sopa primordial”. Me interesé sobre el Azar en relación con el Origen de la Vida.

También sobre las células replicantes que nos trajeron la vida, el código genético de la reproducción, el ARN y el ADN. No me olvidé del polvo de Estrellas y de la Química cósmica para hacer posible una génesis a partir del espacio exterior y, en fin, muchos espacios y muchas razones más que me han llevado a conocer, lo que creemos que la vida es. Sin embargo, a pesar de todo eso, con algunos conocimientos más de los que tenía hace veinte o treinta años sobre el tema, sigo sin saber contestar la pregunta:

¿Qué es la Vida?

emilio silvera