jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Scarbourogh Fair (Una historia de desamor)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Perejil, salvia, romero y tomillo (Parsley, Sage, Rosemary and Thyme), una pócima de amor muy popular en la Edad Media, son las palabras que se repiten en la popular Scarborough Fair, una canción tradicional inglesa del siglo XII de autor desconocido que tiene multitud de versiones y letras diferentes aunque la más conocida es laSarah Brightman que la canta con una delicadeza y hechizo incomparables.

Scarborough Fair hace referencia a la Feria de Scarborough, localidad situada en la costa del Mar del Norte en el condado de Yorkshire, que en tiempos medievales representaba uno de los mayores puntos comerciales de toda Inglaterra, con un enorme mercado junto al mar que se prolongaba durante 45 días a partir del 15 de agosto.


La canción Scarborough Fair es una historia de desamor y trata de un joven abandonado por su novia que pide a quien vaya a la feria que reclame a su antigua amada cosas imposibles para recuperar su amor. Cuando la canta una nujer, ella es, la abandonada.


Tristeza y una profunda emoción es lo que expresa este tema cuya clave son cuatro de las hierbas más importantes de la cocina europea: perejil, salvia, romero y tomillo que se repiten en el segundo verso de cada estrofa como símbolos de las virtudes que representan:


* el perejil atenúa el amargor


* la salvia simboliza la salud y longevidad


* el romero representa la lealtad, fortaleza y amor


* el tomillo significa valentía y coraje


Scarborough Fair es una canción atemporal y universal que, sin importar su procedencia, llega por igual a los corazones de todos los que la oyen cantar si tienen algo de sensibilidad.Cuando la oí cantar por primera vez a Sarah Brightman, me quedé hechizado por la calidad voz y embelezado por la historia contada.

Fantástico “universo” cuántico

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las leyes que gobiernan el mundo físico tienen dos características importantes: muchas leyes de la naturaleza permanecen inalterables, no se alteran cuando cambia la escala, pero hay otros fenómenos, tales como una vela encendida o las gotas de agua, que no cambian del mismo modo. La implicación final es que el mundo de los objetos muy pequeños será completamente diferente del mundo ordinario.

Ahora tendríamos que hablar algo de la mecánica cuántica y, en ese ámbito, las reglas de la mecánica cuántica funcionan tan bien que resultaría realmente difícil refutarlas. Acordaos de los trucos ingeniosos descubiertos por Werner Hesinberg, Paul Dirac, o, Schrödinger que vinieron a mejorar y completar  las reglas generales. Sin embargo, algunos de aquellos pioneros (Einstein y el mismo Schrödinger), sin embargo, presentaron serias objeciones a dicha interpretación de la naturaleza de lo muy pequeño.

Esta cosita tan pequeñita, el electrón,  es inversamente proporcional en importancia para que el mundo, la Naturaleza, y,  nuestro Universo sea como es. Se ha conseguido fotografíar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash). La imagen de la izquierda es el resultado.

El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades en la ecuación conocida como de Lorentz–Dirac.

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero, el del hidrógeno que está formado por un solo protón. La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

                                                          Onda y partícula

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

silicon

La notable capacidad de un electrón de existir en dos lugares al mismo tiempo ha sido controlada en el material electrónico más comun el – silicio – por primera vez, siendo este un gran avance para la electrónica moderna y tiene un potencial enorme para el futuro y para la creación de la computadora cuantica.

Imagen: El movimiento de los electrones en el silicio. El electrón gira alrededor de una átomo de fósforo embebido en la estructura cristalina del silicio, que se muestra en plata. La distribución de densidad electrónica no perturbado, a partir de la ecuaciones de la mecánica cuántica del movimiento se muestra en amarillo. Un pulso de láser de electrones puede modificar el estado de manera que tiene la distribución de la densidad se muestra en verde. Nuestro pulso láser en primer lugar, que llegan desde la izquierda, pone el electrón en una superposición de ambos estados, que podemos controlar con un segundo impulso, también desde la izquierda, para dar un pulso que se detecte que, saliendo a la derecha. Las características de este “eco” del pulso nos hablan de la superposición que hemos hecho.

Cuando podamos dominar el “universo” de lo muy pequeño… ¡Nuestro Universo será otro para nosotros!

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

              Sí, la música influye en el cerebro

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de ésto último es la increíble precisión de diesciciete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones,  que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón  (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

                                            Sí, las reglas de la mecánica cuántica son extrañas y misteriosas, pero…

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

emilio silvera

Fuente: En su mayor parte, Gerard ´t Hofft

¡La Astronomía! La Ciencia más antigua de la Humanidad

Autor por Emilio Silvera    ~    Archivo Clasificado en La Astronomía y la Humanidad    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Incisiones en huesos de animales para representar las fases de la Luna. Aquellos antepasados nuestros vivían de la caza y la recolección, por lo que seguían las estrellas y predecían los cambios de estación gracias al cielo. Quizá observaban el Sol y la Luna y los dibujos que formaban las estrellas para conocer las estaciones.

Incisiones en huesos

Probablemente así era cuando se desarrolló la agricultura y se domesticaron animales, 10.000 años antes de Cristo en Mesopotamia, la tierra fértil entre los ríos Tigris y Éufrates que ahora ocupa Irak. El cielo adquirió aún más importancia como medio para determinar la época apropiada para la siembra y la cosecha. Esas primeras civilizaciones mesopotámicas, especialmente los sumerios hacia 4.000 a. C., fueron las que dieron nombre a las más antiguas constelaciones: son las figuras que hoy conocemos como Leo, Tauro y Escorpio. Estas constelaciones señalaban puntos importantes en el recorrido anual del Sol por el cielo y constituían momentos cruciales en el año agrícola. Y, como los cielos condicionaban su forma de vida, los deificaron.

Acordáos de Hypatia de Alejandría, considerada por muchos como la primera mujer científica de la historia, dedicó muchos de sus estudios a la astronomía. Pero, ¿cómo era su cielo?, ¿cómo veían nuestros ancestros los cuerpos celestes?

Se pierde en la noche de los tiempos el hecho de que los seres humanos se han maravillado desde siempre con el espectáciulo que podían contemplar en los cielos de las noches oscuras y estrelladas, sin la contaminación lumínica de nuestras grandes ciudades. Todos aquellos pueblos y culturas antiguas elevaron sus mitos y leyendas hasta la estrellas lejanas, inalcanzables. En ellas veían (o creyeron ver), las figuras majestuosas que su imaginación les dictaba y obtenían figuras de animales mitológicas que dibujaban conjuntos de estrellas que también, les mostraba las imponentes figuras de sus héroes.

La astronomía es el estudio de los cuerpos celestes , sus movimientos, los fenómenos ligados a ellos, y es, sin duda, la ciencia más antigua . Puede decirse que nació con el hombre y que está íntimamente ligada a su naturaleza de ser pensante, a su deseo de medir el tiempo, de poner orden en las cosas conocidas ( o que cree conocer ), a su necesidad de hallar una dirección, de orientarse en sus viajes, de organizar las labores agrícolas o de dominar la naturaleza y las estaciones y planificar el futuro.

File:Stonehenge2007 07 30.jpg

                                                                                                                              Stonehenge

Los hallazgos arqueológicos más antiguos muestran sorprendentes contenidos astronómicos. Stonehenge se construyó sobre conocimientos astronómicos muy precisos. También se desprende una función astronómica de la disposición de los crómlech y monolitos bretones, los trilitos ingleses, las piedras  y túmulos irlandeses, la medicine Wheel de los indios norteamericanos, o la Casa Rinconada de los indios anasazi. Es evidente la importancia astronómico-religiosa de los yacimientos mayas  de Uaxactun, Copán y Caracol, de las construcciones incas de Cuzco o de Machu Picchu, así como la función exquisitamente científica de antiguos observatorios astronómicos indios, árabes o chinos.

                                                                                                               Uaxactun

Cuanto más avanzan los estudios arqueoastronómicos más numerosas son las pruebas de los conocimientos astronómicos  de nuestros antepasados y más retrocede la fecha en que estos comenzaron. El último indicio relaciona el estudio del cielo con las pinturas rupestres de Lascaux. Tanto si este descubrimiento es válido como si no, es indudable que la contemplación del cielo nocturno ha suscitado admiración, temor e interrogantes desde la noche de los tiempos ¿ Cuál es la naturaleza de los cuerpos celestes?¿ Por qué se mueven ? ¿ Cómo se mueven ? ¿ Interaccionan entre sí ? Pero,sobre todo, ¿influyen en la Tierra y en el destino de sus habitantes? ¿ Podemos prever dichos efectos y leer el futuro en el movimiento de los planetas? Todas las civilizaciones de todas las épocas han hallado sus propias respuestas a estas preguntas y a otras similares, y a menudo se ha tratado de respuestas relacionadas con complejos mitos cosmológicos.

                                                        Ruinas de Chichén ltzá

Muchos monumentos relacionados con la Astronomía se instalaron en Mesoamérica, alrededor del 3000 a. C., en las tierras altas de Guatemala, luego en las tierras bajas de Guatemala y Chiapas en México. Las ciudades más importantes del período clásico fueron Uaxactún y Tikal (aproximadamente en el 1800 a.C.). En la etapa posclásica, se destacaron las ciudades de Chichén ltzá, Mayapan o Uxamal, en la península de Yucatán.

La cultura Maya se desarrolló en una extensa área, desde el centro – sur de México hasta Guatemala y Honduras. Esta área se compone de tres diferentes regiones: las montañas o Tierras Altas, la selva tropical o Tierras Bajas y las tierras bajas del Golfo de México y península de Yucatán, cada una con recursos propios y diferenciados. La actividad de los mayas durante el Período Clásico se centró en las Tierras Altas y Bajas, cuyos centros más importantes fueron Tikal y Kaminaljuyú, respectivamente.

 

 

 

La astronomia sumeria y los extraterrestres

 

 

Anotaciones de astrónomos sumerios que han dado mucho que hablar, son famosos por los grandes avances culturales que legaron, entre ellos, sus avanzados conocimientos astronómicos.  A su alrededor hay un polémica: ¿desarrollo propio o intervención extraterrestre? Algunas de las figuras encontradas y que parecen representar astronáutas han dado lugar a esas leyendas.

Pero, vayamos por parte. Es cierto que, según parece, los primeros astrónomos fueron los sumerios, quienes dejaron constancia escrita de su historia en tablillas de arcilla. Pero no fueron los primeros que apreciaron que ciertos puntos luminosos de la bóveda celestese desplazaban con el paso del tiempo, mientras que otros permanecían fijos.

En la actualidad la distinción que hicieron entre ” estrellas fijas ” y ” estrellas errantes ” ( en griego se llamarían ” planetas ” ) puede parecer banal, pero hace 6.000 o 8.000 años este descubrimiento fue un acontecimiento muy significativo.

Pero otros pueblos y culturas también tienen mucho que decir sobre la antigua Astronomía. En 1900 el pastor taoísta Wang Yuanlu encontró un tesoro en la cueva Mogao de la montaña Mingsha, cerca de una ciudad abandonada en la provincia china de Gansu, en la antigua ruta de la seda. El tesoro consistía en una biblioteca oculta con 40.000 manuscritos sobre religión, historia, matemáticas, economía, medicina y literatura. Los monjes budistas que rezaban y vivían allí para la buena suerte de los viajeros sellaron la cueva en el siglo XI.

Una de las joyas de la colección es un atlas del cielo visible en China entre los años 649 y 684 de la era cristiana, lo que le convierte en el mapa de las estrellas más antiguo del mundo. El mapa está dibujado sobre un rollo de papel de cuatro metros de largo, dibujado exquisitamente a mano en negro y rojo. En total, el atlas muestra 1.339 estrellas agrupadas en 257 constelaciones, dos de las cuales recuerdan los grupos de la Osa Mayor y Orion. También incluye astros difícilmente visibles a simple vista, incluyendo algunos en el hemisferio sur. Los estilos de los puntos diferencias las tres escuelas de tradición astronómica establecidas durante el período entre 476 y 221 a.C., cada uno de los cuales adoptó un nombre particular para cada grupo de estrellas.

Distinguir a simple vista, sin la ayuda de instrumentos, un planeta de una estrella y reconocerlo cada vez que, transcurrida ciertas horas, vuelve a aparecer en el cielo no es ninguna nimiedad. Los incrédulos pueden comprobarlo: sin sabe nada de astronomía , sin ningún instrumento, bajo un cielo repleto de estrellas como esos que ya sólo se ven en lugares aislados o en mitad del mar, no es fácil distinguir Marte de Júpiter o de Saturno.

Admitamos que se consigue. Ahora, noche tras noche, hay que encontrar esa misma lucecita en movimiento, seguir su recorrido y volver a identificarla cada vez que reaparezca tras una larga ausencia. En el mejor de los casos, se necesitará mucho tiempo y paciencia antes de empezar a tomar conciencia de la orientación, y es muy probable que la mayoría no lo consiga.

 

A pesar de esas dificultades evidentes, todos los pueblos, por antiguos que fueran conocían muy bien los movimientos de los astros, tan regulares que espontáneamente hablaron de ” mecánica celeste ”  cuando empezaron a usar las matemáticas para describirlos. Si los sumerios fueron los primeros en medir con exactitud los movimientos planetarios y en prever los eclipses de Luna organizando un calendario perfecto, los que mejor usaron la imaginación para llegar a las explicaciones teóricas que no dependieran sólo de la tecnología fueron los griegos.

En el siglo VI a.C., tras milenios en los que la obra de un dios bastaba para explicarlo todo, se empezó a buscar una lógica en el orden natural que relacionara los fenómenos. Los filósofos naturalistas fueron los pioneros en afirmar la posibilidad del hombre de comprender y describir la naturaleza usando la mente. Era, en verdad, una idea innovadora.

Tales de Mileto

                           Tales deMileto

Los primeros ” científicos ” se reunieron en Mileto. Tales, Anaximandro y Anaxímenes hicieron observaciones astronómicas con el gnomon, siseñaron cartas naúticas, plantearon hipótesis más o menos relacionadas con los hechos observados referidas a la estructura de la Tierra, la naturaleza de los planetas y las estrellas, las leyes seguidas por los astros en sus movimientos. En Mileto, la ciencia, entendida como interpretación racional de las observaciones, dio lso primeros pasos.

Por supuesto, la mayor parte de la humanidad continuaba creyendo en dioses y espíritus ..como ahora. A pesar de que esta nueva actitud filosófica frente al mundo sólo fuera entendida durante siglos por una élite de pensadores, la investigación racional de la naturaleza ya no se detendría jamás.

En el siglo VI se constituyó la escuela pitagórica. En un ambiente de secta, Pitágoras y otros filósofos creyeron que el mundo estaba ordenado por dos principios antagónicos: lo finito ( el bien, el cosmos y el orden ) y lo infinito ( el mal, el caos y el desorden). Sus estudios matemáticos tenían un valor mágico y simbólico: Pitágoras descubrió relaciones numéricas enteras tras cada armonía formal y musical y, dado que la música es armonía de los números, la astronomía era armonía de las formas geométricas.

El cinturón de Orión

                                                                                        El Cinturon de Orión

Incluso Aristóteles ( 384-322 a.C.), considerado en la Edad Media el máximo referente del saber, no sólo se apropió de esta idea de perfección celeste, sino que encontró una ” explicación ” de por qué ” las cosas debían ser así. La Tierra, lugar ” de lo bajo ” donde convergen tierra y agua ( dos de los cinco elementos que formaban el universo), sólo podía hallarse en el centro del Universo. El aire y el fuego quedaban ” arriba “, sus lugares naturales. El éter, el quinto elemento desconocido para los hombres , formaba los cuerpos celestes, que por naturaleza se movían en círculo, transportados por un sistema de 55 esferas concéntricas constituidas de un cristal especial, incorruptible y eterno. En torno a la Tierra inmóvil giraban la Luna, Mercurio, Venus, el Sol, Marte, Júpiter, Saturno y la última esfera de las estrellas fijas, mantenida en movimiento por el amor del ” divino motor inmóvil “. Esta última esfera es la que establecía el ritmo del sía y la noche y transmitía un movimiento uniforme y circular a todo el sistema de esferas. Según la teoría, a medida que nos aproximamos a la Tierra el movimiento se degrada y, por debajo de la esfera de la Luna, los movimientos son rectilíneos. Aquí la mezcla continua de los cuatro elementos fundamentales daba origen a todas sustancias conocidas. Era una explicación que convenció durante mucho tiempo y que armonizaba misticismo y física, mecánica celeste y fantasía.

El prestigio y la fama que Aristóteles conquistó en otros campos ( filosofía, política, economía, física, metafísica y ciencias naturales ) contribuyó al éxito de esta idea geocéntrica del universo. No cabe duda de que en el siglo IV a.C. ya se sabía que para explicar los movimientos de los astros había que utilizar al menos dos tipos de sistemas geocéntricos y un sistema heliocéntrico. Para obtener la información necesaria para gobernantes , agricultores o navegantes bastaba con poder ” prever ” los fenómenos celestes e identificar las configuraciones astrales hallando los planetas en su órbita. Las hipótesis sobre las causas de todo lo que se observaba eran investigaciones filosóficas, carentes de pruebas concretas. Así, muchos expertos lanzaron hipótesis sobre el universo, su estructura y sus mecanismos…A veces eran fantasías, pero otras fueron intuiciones correctas.

File:Aristarco.png

Tal y como se ve en el diagrama adjunto, Aristarco calculó el ángulo entre el Sol y la Luna cuando ésta se encontraba en el primero o último cuarto, es decir, cuando el ángulo α es de 90º. Entonces midiendo β podía resolver el triángulo. Observó que la distancia Tierra-Sol era mucho mayor que la Tierra-Luna y que, por consiguiente, el Sol tenía que ser mucho más grande (pues tanto el disco solar como el lunar tienen un diámetro aparente de unos 32 minutos de arco).

Aristarco de Samos ( 310-230 a.C. ) fue el primer astrónomo genuino de la historia. No sólo sus convicciones eran lógicas y correctas , como se demostró más tarde , sino que fue el primero en usar instrumentos matemáticos para investigar el cosmos. Estaba convencido de que la Tierra giraba alrededor del Sol permanecía inmóvil en el centro de la esfera estelar y que esta también era inmóvil. Dado que no conseguía observar efectos de paralajes estelares, dedujo que las estrellas se encontraban a una distancia enorme de la Tierra. Entonces intentó medir la enormidad de dicho espacio estableciendo la distancia Tierra-Sol en función de la Tierra-Luna y, para ello, se basó en la medida de los ángulos y en simples cálculos geométricos. Descubrió que la Luna se halla a 30 diámetros terrestres de nuestro planeta y que el Sol está 19 veces más lejos ( 1.140 diámetros terrestres ). Ahora sabemos que son datos erróneos a causa de leves inexactitudes de las medidas ” a ojo “, pero esta diferencia no respeta un ápice a la importancia conceptual y filosófica del enfoque. Era la primera vez en la historia que alguien intentaba aumentar sus conocimientos sobre el Universo de forma experimental, es decir, usando la lógica, las leyes matemáticas y geométricas conocidas, observando y midiendo. Es un enfoque moderno de un complejo problema astronómico.

     Aristarco de Samos (Óleo de Domenico Fetti)

Erastóstenes de Cirene ( 276-194 a.C. ) procedió de forma semejante. Con un sencillo y genial cálculo matemático halló las dimensiones de nuestro planeta: el meridiano terrestre equivale a, unos 39.400 km ( un valor sorprendentemente cercano al valor medio, establecido en 40.009 km).

Hiparlo ( 188-125 a.C.) también fue un atento e inteligente observador. Compiló un catálogo de 1.080 posiciones estelares y comparó sus observaciones con las realizadas 154 años antes por Timocaris. Así descubrió la precisión de los de equinoccios y cuantificó este lentísimo desfase de la eclíptica respecto al ecuador en unos 47 minutos al año ( un valor muy parecido al calculado hoy: 50,1 minutos).

Y si la Tierra era inmensa, el Sol debía de serlo aún más. Así, el espacio asumió dimensiones incalculables. Pocos escogidos eran capaces de asimilar y aceptar estas afirmaciones revolucionarias. Quizá por ello, después de Hiparlo no sucedió nada más durante 300 años. Resultaba más sencillo dar por válidas las teorías del gran Aristóteles.

                                 Arquitas.
Arquitas de Tarento c. 430 a.C..-360 a.C. fue un filósofo,matemático, astrónomo, estadísta y general contemporáneo de Platón. Arquitas de Tarento perteneció a los Pitagóricos,  alumno de la escuela de Filolao de Crotona. Fue amigo de Platón, al que conoció durante el primer viaje que éste realizó al sur de Italia y a Sicilia en 388/7 a. C., tras la muerte de Sócrates. En su Carta Séptima,  Platón asegura que Arquitas trató de rescatarlo en sus dificultades con Dionisio II de Siracusa,  mediante una carta de recomenación y enviando un barco a Sicilia en 361 a.C.  Para algunos autores fue el maestro pitagórico de Platón y para otros su discípulo.
Enseñó matemáticas a Euxodo de Cnidos, siendo a su vez maestro de Menecmo.  Fue la primera persona en lograr una buena aproximación al problema de laDuplicación del Cubo,   y uno de los primeros que, tras Pitágoras, trabajó en el conocimiento conjunto de la Aritmética, Geometría, Astronomía y Músuca,el Quadrivium, así como de la Acústica, acotando las matemáticas a disciplinas técnicas, con la cuales se cree haya inventado la polea, el tornillo (aunque no se lo que diría Arquímedes de eso)  y una especie de mecanismo articulado con alas con el que, aunque sin éxito, intentó volar. Influenció a Euclides.

Bueno, podríamos finalizar diciendo que, en el siglo VI a. C. se desarrolló al este del mediterráneo el futuro germen de la investigación científica moderna, gracias al impulso que los antiguos griegos dieron al desarrollo del pensamiento abstracto que ellos supieron recopilar, ampliar  y conservar a partir de culturas y civilizaciones anteriores que ya, en aquellos tiempos remotos, sentían la necesidad de saber.

emilio silvera

 

Desde la materia “unerte” a los pensamintos

Autor por Emilio Silvera    ~    Archivo Clasificado en La Mente - Filosofía    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.

http://www.astronomiamoderna.com.ar/wp-content/uploads/astronomiamoderna/2011/06/cosmos.jpg

La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias.  La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica.  La cosmología teórica construye modelos que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.

La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas. De hecho, después de unos miles de millones de años de evolución, el Universo se ha valido de las estrellas para elaborar los materiales que han posibilitado la aparición de la vida.

La cosmología teórica se basa en la teoría de la relatividad general, la teoría de Einstein de la gravitación.  De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos más intensos a grandes escalas y domina el comportamiento del Universo en su conjunto. El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que genera y, nuestras mentes que tienen conocimientos de que todo esto sucede.

De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de nuestra personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior. Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea. Claro que, no todos podemos percibir la realidad de la misma manera, las posibilidades existentes de que el conocimiento de esa realidad responda  exactamente a lo que ésta es en sí, no parece fácil.

Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los datos que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos.  Hay en nosotros dos fuentes o potencias distintas que nos capacitan para conocer, y son la sensibilidad (los sentidos) y el entendimiento (inteligencia).  Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.

A todo esto, para mí, el conocimiento está inducido por el interés.  La falta y ausencia de interés aleja el conocimiento.  El interés puede ser de distinta índole: científico, social, artístico, filosófico, etc.  (La gama es tan amplia que existen conocimientos de todas las posibles vertientes o direcciones, hasta tal punto es así que, nunca nadie lo podrá saber todo sobre todo). Cada uno de nosotros puede elegir sobre los conocimientos que prefiere adquirir y la elección está adecuada a la conformación individual de la sensibilidad e inteligencia de cada cual. Állí, en alguna parte, está el germen del interés-curiosidad de cada cual.

También se da el caso de personas que prácticamente, por cuestiones genéticas o de otra índole, carecen de cualquier interés por el conocimiento del mundo que les rodea, sus atributos sensoriales y de inteligencia funcionan a tan bajo rendimiento que, sus comportamientos son cuasi-animales (en el sentido de la falta de racionalidad), son guiados por la costumbre y las necesidades primarias: comer, dormir…

El polo opuesto lo encontramos en múltiples ejemplos de la historia de la ciencia, donde personajes como Newton, Einstein, Riemann, Ramanujan y tantos otros (cada uno en su ámbito del conocimiento), dejaron la muestra al mundo de su genio superior.

Pero toda la realidad está encerrada en una enorme burbuja a la que llamamos Universo y que encierra todos los misterios y secretos que nosotros, seres racionales y conscientes, perseguimos. Todo el mundo sabe lo que es la conciencia; es lo que nos abandona cada noche cuando nos dormimos y reaparece a la mañana siguiente cuando nos despertamos.  Esta engañosa simplicidad me recuerda lo que William James escribió a finales del siglo XIX sobre la atención:”Todo el mundo sabe lo que es la atención; es la toma de posesión por la mente, de una forma clara e intensa, de un hilo de pensamiento de entre varios simultáneamente posibles”.  Más de cien años más tarde somos muchos los que creemos que seguimos sin tener una comprensión de fondo ni de la atención, ni de la conciencia que, desde luego, no creo que se marche cuando dormimos, ella no nos deja nunca.

La falta de comprensión ciertamente no se debe a una falta de atención en los círculos filosóficos o científicos.  Desde que René Descartes se ocupara del problema, pocos han sido los temas que hayan preocupado a los filósofos tan persistentemente como el enigma de la conciencia.

Para Descartes, como para James más de dos siglos después, ser consciente era sinónimo de “pensar”: el hilo de pensamiento de James no era otra cosa que una corriente de pensamiento. El cogito ergo sum, “pienso, luego existo”, que formuló Descartes como fundamento de su filosofía en Meditaciones de prima philosophía, era un reconocimiento explícito del papel central que representaba la conciencia con respecto a la ontología (qué es) y la epistemología (qué conocemos y cómo le conocemos).

Claro que tomado a pie juntillas, “soy consciente, luego existo”, nos conduce a la creencia de que nada existe más allá o fuera de la propia conciencia y, por mi parte, no estoy de acuerdo.   Existen muchísimas cosas y hechos que no están al alcance de mi conciencia.  Unas veces por imposibilidad física y otras por imposibilidad intelectual, lo cierto es que son muchas las cuestiones y las cosas que están ahí y, sin embargo, se escapan a mi limitada conciencia.

Todo el entramado existente alrededor de la conciencia es de una complejidad enorme, de hecho, conocemos mejor el funcionamiento del Universo que el de nuestros propios cerebros, una máquina compleja que algunos dicen que hizo el Universo para poder observarse así mismo.

¿Cómo surge la conciencia como resultado de procesos neuronales particulares y de las interacciones entre el cerebro, el cuerpo y el mundo? ¿Cómo pueden explicar estos procesos neuronales las propiedades esenciales de la experiencia consciente?

Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un número ingente de estados conscientes distintos.

Muchos han sido los que han querido explicar lo que es la conciencia.  En 1.940, el gran neurofisiólogo charles Sherrington lo intento y puso un ejemplo de lo que él pensaba sobre el problema de la conciencia.  Unos pocos años más tarde también lo intentaron otros y, antes, el mismo Bertrand Russell hizo lo propio, y, en todos los casos, con más o menos acierto, el resultado no fue satisfactorio, por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la conciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una respuesta:

“Suponemos que un proceso físico da comienzo en un objeto visible, viaja hasta el ojo, donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan.  Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.

Está claro que en lo más profundo de ésta consciencia que no conocemos, se encuentran todas las respuestas planteadas o requeridas mediante preguntas que nadie ha contestado.

No creo que mirando en el fondo de la bolita encontreemos las respuestas que todos buscamos. Más bien estarán dentro de nosotros mismos y, lo que tendremos que hacer es, comenzar la búsqueda de nuestro propio yo. Lo cierto es que, no nos conocemos ni a nosotros mismos.

Al comienzo mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, de lo que estaba tratando era de hacer ver que todo ello, es la misma cosa.  Universo-Galaxia-Mente.  Nada es independiente en un sentido global, sino que son partes de un todo y están estrechamente relacionados.

Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes.  Sin embargo, todo forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras (efecto mariposa).

Pocas dudas pueden caber a estas alturas del  hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo.

Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras.  Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados.  Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas.  Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia.  En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes.  Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica.  Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo.  Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

En el caso de la conciencia, sin embargo, nos encontramos con una simetría.  Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca.  No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada.  Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes.  Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago.  Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales.

En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía. Y, todo esto, amigos míos, es posible gracias a que, en el Universo que nos acoge está presente la Física, la Química y la Biología que surgieron de la evolución de las estrellas y de la radiación cósmica para que ahora, nosotros estemos aquí para comentar sobre un “todo” conformado por la materia y la mente.

emilio silvera


Las Galaxias y…¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…”

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

Esas palabras de arriba reflejaban los pensamientos de Darwin

Que, dicho sea de paso, en lo que a la vida se refiere, ésta se abre paso en los lugares más estremos e inesperados por muy malas condiciones que allí puedan estar presentes. Así ocurre con los llamaodos extremófilos que, pueden estar, casi en cualquier sitio.

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

Leer más