lunes, 09 de diciembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Naturaleza y sus secretos que tratamos de desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                                                  No, el Universo no es infinito pero… ¡Nos lo parece!

Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del Universo astronómico durante el siglo xx ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera reconocida. Cuando los físicos empezaron a apreciar el papel de los constantes en el dominio cuántico y a explorar y explotar la nueva teoría de la Gravedad de Einstein para describir el Universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Entró en escena Arthur Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de revificar, en una prueba decisiva, durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1,75 segundos de arco cuando pasaba cerca de la superficie solar, y así resulto.

                    Einstein y Eddintong en el jardin de la casa de éste último

Albert Einstein y Arthur Stanley Eddington, se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco del jardín de Eddington en el año 1.939, don se fueron fotografiados por la hermana del dueño de la casa.

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la Naturaleza y predecir la existencia en el Universo de cosas como estrellas y Galaxias. ¡Se está saliendo con la suya! Entre los números de Eddington que él consideraba importante y que se denomino “numero de Eddington”, que es igual al número de protones del Universo visible. Eddington calculó (amano) este número enorme y de enorme precisión en un crucero trasatlántico (ya lo he contado otras veces), concluyendo con esta memorable afirmación:

“Creo que en el Universo hay

15.747.724.136.275.002.577.605.653.968.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

protones y el mismo número de electrones.”

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente. En el Universo existen grandes números que lo definen y la Ciencia ha sabido dar con ellos para poder comprender mejor.

Durante la década de 1.920, cuándo Eddington empezó su búsqueda para explicar las constantes de la Naturaleza, no se conocían bien las fuerzas débil y fuerte de la Naturaleza, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la Gravedad y las fuerzas electromagnéticas.

“El Número adimensional es un número que no tiene unidades físicas que lo definan y por lo tanto es un número puro. Los números adimensionales se definen como productos o cocientes de cantidades que sí tienen unidades de tal forma que todas éstas se simplifican. Dependiendo de su valor estos números tiene un significado físico que caracteriza unas determinadas propiedades para algunos sistemas.”

Eddington las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y electrón:

mpr/me 1840

la inversa de la constante de estructura fina:

2phc/e2≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón;

22/Gmpr me 1040

A estas añadió su número cosmológico:

 N Edd ≈ 1080

A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafió de la ciencia teórica: ¿Son estas cuatro constantes irreducibles, o una unificación posterior de la Física demostrará que alguna o todas ellas pueden ser prescindibles ? ¿Podrían haber sido diferentes de lo que realmente son?

De momento con certeza, nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran teoría Unificada del Todo que, por fín, nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo.

Según parece, el Tiempo que afecta a la vida de los seres vivos y de las cosas compuestas de materia -nada permanece y todo cambia-, están situadas en un plano distinto al que ocupan esas otras “cosas” que llamamos ¡constantes universales! y que son, las responsables de que nuestro mundo, nuestro universo,  sea como es. Son aquellos parámetros que no cambian a lo largo del universo: La carga del electrón, la masa del protón, la velocidad de la luz en el vacío, la constante de Planck, la constante gravitacional y también la magnética, o, la constante de estructura fina. Se piensa que son todas ellas ejemplos de constantes fundamentales de la Naturaleza.

Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y lo predecible del mundo. Pese a la concatenación de movimientos caóticos e impredecibles de átomos y moléculas, nuestra experiencia cotidiana es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las leyes de la Naturaleza que son las que gobiernan como cambian las cosas. Sin embargo, y al mismo tiempo, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la apariencia. Son las Constantes de la Naturaleza que, como las que antes hemos relacionado dan al Universo un carácter distintivo y lo singulariza de otros que podríamos imaginar. Todo esto, unifica de una vez nuestro máximo conocimiento y también, nuestra infinita ignorancia.

            La fuerza de la Gravedad es una constante que se deja notar

¡Es todo tan complejo!

 ¿Acaso es sencillo y no sabemos verlo? Seguramente, un poco de ambas cosas. Pudiera ser que, ni todo sea tan complejo y que, nuestras mentes, aún no están preparadas para ver la simple belleza que subyace en todas las cosas del Universo, de la Naturaleza que, cuando al fin las podemos comprender, a veces, incluso nos sorprendemos de la sencillez con la que el “mundo” se expresa. Una cosa es segura, la verdad está ahí, esperándonos.

Por ejemplo: Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz. Pudimos llegar a discernir eso y mucho más haciendo que la comprensión se abriera paso en nuestras mentes que, no por ello, dejaron de teorizar y de imaginar como sería el Universo y las reglas que lo rigen.

“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

El mundo que nosotros percibimos es “nuestro mundo”, el verdero es diferente, y,  como nos dice Planck en la oración entrecomillada arriba, cada vez estamos más cerca de la realidad, a la que, aunque no nos pueden llevar nuestros sentidos, si no llevarán la intuición, la imaginación y el intelecto.

Está claro que la existencia de unas constantes de la Naturaleza nos dice que sí, que existe una realidad física completamente diferente a las realidades que la Mente Humana pueda imaginar. La existencia de esas constantes inmutables dejan en mal lugar a los filósofos positivistas que nos presentan la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo será reemplazada por otra mejor, más precisa. Claro que, tales pensamientosm quedan fuera de lugar cuando sabemos por haberlo descubierto que las constantes de la naturaleza han surgido sin que nosotros las hallamos invitado y ellas se muestran como entidades naturales que no han sido escogidas por conveniencia humana.

 unsw_white_dwarf

 

 

Físicos de la University of New Wales (UNSW) tienen una teoría cuando menos controvertida, y es la de que la constante de estructura fina, α (alpha), en realidad no es constante. Y estudian los alrededores de una enana blanca lejana, con una gravedad más de 30.000 veces mayor que la de la tierra, para comprobar su hipótesis.

En 1999 un equipo de físicos anunció la detección de variaciones en el valor de α. Ahora, otro grupo de la misma universidad están usando el Telescopio Espacial Hubble para observar una enana blanca con el objeto de medir α con gran precisión. El argumento es que se cree que los exóticos campos de energía escalar podrían alterar el valor de α en lugares donde existe un intenso campo gravitatorio. Estos campos de energía escalar son campos que aparecen en teorías que combinan el Modelo Estándar de la Fisica de Partículas, con la Teoría de la Relatividad General de Einstein.

Todos los procesos de la Naturaleza, requieren su tiempo. Todo pasa cuando tiene que pasar. Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la naturaleza sean:

 

t(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈

≈ 10.000 millones de años

No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) desde el Big Bang.

Porque eso es así es por lo que tenemos que pensar que posibles civilizaciones extraterrestres presentes en otros mundos, habrán llegado aquí (al universo), casi al mismo tiempo que nosotros y, seguramente, sus recorridos serán los mismos o muy parecidos a los nuestros desde que pudieron surgir a partir de la “materia inerte” y evolucionar para generar pensamientos adquiriendo la consciencia de Ser.

En la imagen de arriba de una Nebulosa planetaria, contemplamos la escena de una estrella moribunda que fue necesaria para que, los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin ese tiempo de t(estrellas) = a 10.000 millones de años, difícilmente podríamos estar ahora aquí tratando de estos temas.

emilio silvera

¿Cómo se desarrolló la T. de la Relatividad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A ella se pudo llegar gracias al desarrollo de una serie de pensamientos que comienza por Faraday y Maxwell y asentados en el principio de que todo suceso físico debe atribuirse a acciones cercanas, o, dicho en términos más matemáticos, en ecuaciones a derivadas parciales. Maxwell consiguió expresarlo así para el caso de los fenómenos electromagnéticos en cuerpos inmóviles, desarrollando la idea del efecto magnético de la corriente de desplazamiento en el vacío y proponiendo la identidad entre los campos “electromotores” producidos por inducción y los campos electrostáticos.

Con esta reconocida imagen nos podemos hacer una idea del campo magnético

La ampliación de la electrodinámica al caso de los cuerpos en movimiento fue una tarea que quedó para los sucesores de Maxwell. H. Hertz intentó resolver el problema asignado al espacio vacío (éter) unas propiedades físicas totalmente similares a las de la materia ponderable; en particular, el éter, al igual que la materia debería poseer determinada velocidad en cada punto. La inducción electromagnética o magneto-eléctrica debía estar determinada por la velocidad de variación del flujo eléctrico, o magnético, como en los cuerpos en reposo, siempre que estas variaciones de velocidad se produjeran con respecto a elementos de la superficie que se movieran con el cuerpo. Sin embargo, la teoría de Hertz contradecía el experimento fundamental de Fizeau sobre la propagación de la luz a través de fluidos en movimiento. La ampliación más inmediata de la teoría de Maxwell a los cuerpos en movimiento era incompatible con el experimento.

En ese punto la salvación llegó de la mano de H. A. Lorentz. Siendo partidiario incondicional de la teoría atomista de la materia, Lorentz no pod´çia concebir esta última como un emplazamiento de campos electromagnéticos continuos. En consecuencia, concibió estos campos como condiciones o estados del éter, quer se consideraba continuo. Lorentz se imaginaba el çeter como algo que en esencia era independiente de la amteria, tanto mecánica como físicamente. El éter no debía participar del movimientod de la amteria y sólo deb´çia mantener una interacción con ella en tanto que la materia se concebía como conductora de cargas elécricas ligadas a ella.

Leer más

Biosfera, hidrosfera…¡La Tierra!

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La BIOSFERA en realidad no es una capa de la Tierra; es el conjunto de todos los ecosistemas existentes en la Tierra, es decir, de todos los seres vivos junto con el medio en el que viven. Por eso, la biosfera es parte de la corteza terrestre, pero también es parte de la hidrosfera y de la atmósfera.

Leer más

¡El Universo! ¿de 11 Dimensiones?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Hablamos de un Universo que tiene más de 4 dimensiones y que nosotros sólopodemos “ver” a través de de las complejas ecuaciones topológicas de las teorías de supercuerdas y supergravedad.La Teoría de la Suopergravedad funciopna bien, pero no del todo. En algunos puntos la formulación matemátioca mp funciopna perfectamente. No todos los tipos de partíoculas se ajustan al Modelo y, además, no se cancelan todos los infinitos. Con una incansable perseverancia, los investigadores han intentado aplicar las mismas teorías en espacios con muchas más dimensiones que el nuestro.

Un espacio bidimensional puede ser comparado con la superficie de un folio de papel en blanco. Supongamos que cogemos el folio y lo enrollamos para formar un cilindro. Para una pequeña araña roja que paseara sobre el papel, la diferencia sería inapreciable. La araña necesita mucho tiempo para andar a lo largo de un círculo completo sobre el cilindro, y probablemente, no notaría que vuelve al punto de partida. Decimos que este mundo es aun  bidimensional, aunque visto desde cierta distancia el tubo es como un palo que tuviese solamente una simensión. En el mismo sentido, el mundo de las partículas muy pequeñas podría tener más de tres dimensiones (del tipo espacial). Estas partículas pequeñas serían como nuestra propia araña roja y no notarían que algunas de las dimensiones se había “enrollado”. Para nosotros, estas dimensiones enrolladas se han hecho visible.

Arrugar, romper o fracturar la continuidad clásica para aumentar la capacidad de un objeto de ocupar espacio, o enrollarlo para disminuir dicha capacidad. He aquí la cuestión, aparentemente trivial, que puede llevarnos a entender mejor el propio nacimiento de nuestro Universo.

Esta idea ya había sido sugerida por Theodor Kaluza en 1919 y fue elaborada posteriormente por Oskar Klein en Estocolmo, Suiza. Pero descubrieron algo más: ¡la componente del campo gravitatorio en la dirección en la que se enrolla el espacio obedece exactamente a las mismas leyes del electromagnetismo de Maxwell!

El profesor Theodor Kaluza nos hablaba de la Quinta Dimensión que unificaba la Relatividad de Einstein con la Teoría de Maxwell. Todo en cinco dimensiones…Ahí comenzó toda la historia que después, desembocaron enm las supersimetrías, supergravedad, cuerdas y supercuerdas, cuerda heteráotica y teoría M…¿Qué vendrá después?

La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el Universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en Lp=√(Għ/c3),cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10 con exponente -15 metro.

Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza – Klein, también están compactada en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez menor que un protón.

¿Cómo pueden estar enrolladas unas dimensiones?

 

Bueno, igual que para explicar de manera sencilla la gravedad mediante el ejemplo de una sábana estirada por los 4 extremos, en la que ponemos un enorme peso en su centro y se forma una especie de hondonada que distorsiona la superficie antes lisa de la sábana, al igual que un planeta distorsiona el espacio a su alrededor, de manera tal que cualquier objeto que se acerca a la masa del objeto pesado, se ve atraído hacia él.Pues bien, en las dimensiones de espacio enrolladas, utilizamos el símil de la sábana con bandas elásticas en las esquinas.

La sábana que tenemos es pequeña y la cama es grande.Con esfuerzo logramos encajar las cuatro esquinas, pero la tensión es demasiado grande; una de las bandas elásticas salta de una esquina, y la sábana se enrolla. Este proceso se llama ruptura de simetría.La sábana uniformemente estirada posee un alto grado de simetría.La sábana se enrolla.Se puede girar la cama 180º alrededor de cualquier eje y la sábana permanece igual.Este estado altamente simétrico se denomina falso vacío.Aunque el falso vacío aparece muy simétrico, no es estable. La sábana no quiere estar en esta condición estirada. Hay demasiada tensión y la energía es demasiado alta.Pero, la sábana elástica salta y se enrolla.La simetría se rompe, y la sábana pasa a un estado de energía más baja con menor simetría. Si notamos la sábana enrollada 180º alrededor de un eje ya no volvemos a tener la misma sábana.

Reemplacemos ahora la sábana por el espacio-tiempo decadimensional, es espacio-tiempo de simetría definitiva.En el comienzo del tiempo, el universo era perfectamente simétrico.Si alguien hubiera estado allí en ese instante, podría moverse libremente y sin problemas por cualquiera de las diez dimensiones. En esa época la Gravedad y las fuerzas débiles y fuertes y electromagnéticas estaban todas ellas unificadas por la supercuerda.Sin embargo, esta simetría no podía durar.El Universo decadimensional, aunque perfectamente simétrico, era inestable, la energía existente muy alta, exactamente igual que la sábana, estaba en un falso vacío. Por lo tanto, el paso por efecto túnel hacia un estado de menor energía era inevitable. Cuando finalmente ocurrió el efecto túnel, tuvo lugar una transición de fase y se perdió la simetría.

Las transiciones de fases pueden ser también asuntos bastante explosivos.Por ejemplo, pensemos en un río que ha sido represado.Tras la presa se forma rápidamente un embalse con agua a enorme presión Puesto que es inestable, el embalse está en el falso vacío.El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía.Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente.Esto se denomina desintegración radiactiva.Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E=mc2, por supuesto, dicha liberación, es una explosión atómica ¡menuda transición de fase!

 

 

 

 

 

Una transición de fase que perseguimos, es dominar la Galaxia, poder moldearla con nuestras manos, y, si eso llega a ser posible alguna vez, seremos los señores del Hiperespacio.Para entonces, los misteriosos agujeros negros no tendrán secretos para nosotros, las energías perdidas tampoco y…los viajes en el tiempo, serán cosa cotidiana. ¿Será realidad algún día ese pensamiento?

http://4.bp.blogspot.com/_Fu_Yym_Znbg/TTx0v6fodHI/AAAAAAAAAHY/3HiSooefiN0/s1600/COSMOS.jpg

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría.Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado.Aquí existe simetría.Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría.Supongamos ahora que el primer comensal toma la copa que hay a su derecha.Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha.Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.Cada comensal ha tomado la copa izquierda.De este modo, la simetría izquierda-derecha se ha roto.

Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones.Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

La última parada antes de que tal cosa suceda se llama “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.

¿Qué pasa entonces con la supergravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser uhna coincidencia y que la teoría final de todasd las fuerzas podría estar a la vista. ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta  de las leyes de la física? ¿Se podría encontrar eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.

http://guillegg.files.wordpress.com/2010/06/strings1.jpg

 

¿Quién sabe? Como decía en alguna ocasión, también en esta ocasión, los teóricos podrían haber dado en el blanco y, con su intuición “infinita”, haber descubierto que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas.

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el nombre demasa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

 

 

 

 

Si la Gravedad llega a ser un ainteracción fuerte, será un verdadero desastre. No se puede evitar lamentando que hará de la gravedad algo tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.

Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente. parter de un principio muy fundamental, uno que practicamente tiene que ser correcto: la gravedad es una propiedad del espacio y el tiempo mismos. El Espacio y el Tiempo están “curvados” quiero decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La guerza Gravitatoria es la responsable de semente rugosidad en el espacio tiempo.

Cuando me sumerjoen los problemas de la Física, siempre acabo perdido.

emilio silvera