jueves, 18 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Se ha encontrado ya el Bosón de Higgs?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Se ha descubierto “el” Bosón de Higgs?

Con ese título, D.Francisco Matorras Weinig, Catedrático de física atómica, molecular y nuclear, Instituto de Física de Cantabria (Universidad de Cantabria – CSIC) Web de la Real Sociedad Española de Física, el trabajo siguiente.

La cruz marca el resultado obtenido. Cada una de las zonas coloreadas representa el área permitida dentro de un intervalo de confianza al 68% por una de las desintegraciones observadas. La zona gris representa este intervalo para la combinación de todas ellas e incluye el punto (1,1) de la predicción del SM.

 

Recientemente ha llegado a los medios de comunicación una noticia en la que se aseguraba el descubrimiento del bosón de Higgs (al que llamaré aquí BEH, bosón de Brout-Englert-Higgs, de acuerdo con la tendencia actual de reconocer la contribución de estos tres físicos en el desarrollo de esta idea o simplemente Higgs, de acuerdo con la jerga habitual). Puede que ante ella muchos se hayan sentido perplejos planteándose muchas preguntas. Desde el ¿es esto cierto? al ¿pero no se había descubierto ya? o incluso ¿qué es el bosón de Higgs? Mediante estas líneas intentaré aclarar la situación y explicar en qué resultados se basa esta noticia.

Respecto de la última pregunta se ha escrito bastante y no es mi intención dar aquí una descripción detallada de lo que es el BEH y de su importancia en la Física de Partículas. Simplemente intentaré resumir en dos líneas las ideas principales. El BEH es una partícula elemental predicha en el contexto del llamado Modelo Estándar (en adelante referido como SM por sus siglas en inglés) hace cerca de 50 años, pero que no había sido observada pese a la realización de multitud de experimentos con este objetivo. El SM ha demostrado un poder predictivo impresionante y ha explicado con precisión todos los experimentos y observaciones del mundo de las partículas elementales. Sin embargo, por argumentos que no voy a entrar a discutir aquí, el modelo necesita la existencia de un campo que llena el Universo (el campo de Higgs). Si el campo existe, también debería existir un nuevo tipo de partículas, precisamente los bosones de Higgs, con unas propiedades peculiares. Encontrar esta partícula se convirtió en uno de los problemas clave de la física de partículas en las últimas décadas, para confirmar la consistencia del modelo en el que se basa nuestro actual entendimiento del universo a esta escala o para desecharlo, obligando a replantear toda la Física de Partículas.

Respecto a la perplejidad de quienes daban por hecho que ya se había descubierto, es cierto que ya circularon noticias parecidas hace unos meses. A finales de 2011 se presentó a los medios (y más adelante se publicó en revistas especializadas) la “evidencia” de una señal compatible con el BEH y posteriormente en Julio de 2012, con más datos, la “observación” de esta señal.  El acelerador LHC había sido capaz de realizar colisiones a unas energías jamás alcanzadas y dos complejos detectores ATLAS y CMS, habían sido capaces de identificar entre ellas algunas compatibles con la producción de BEH. Quiero recordar que cada uno de estos experimentos se lleva a cabo por grupos de dos o tres mil científicos, entre los que se encuentran investigadores de universidades.

Distribuciones esperadas para el test estadístico de la hipótesis de que la partícula observada sea escalar (0+) o pseudoescalar (0-), la flecha señala el resultado obtenido con los datos, en perfecto acuerdo con la hipótesis de 0+.

y centros de investigación españoles1. Aclarar a quien pueda haber llamado la atención, que la diferencia entre evidencia y observación, consiste en la significación estadística de la señal observada. En este tipo de búsqueda, como en muchos casos en Física de Partículas, se trata de discriminar una tenue señal producida por colisiones “interesantes” por encima de un fondo producido por colisiones “normales”, que nada tienen que ver con el Higgs, pero dejan una señal similar en los detectores. La diferencia entre no decir nada, indicar una evidencia o una observación estriba en cuán improbable es que la señal observada sea una fluctuación del fondo. Pues bien, los resultados indicaban la existencia de cierto tipo de colisiones que encajaban con las predichas por la existencia del BEH y con una probabilidad despreciable de provenir de fluctuaciones de fondo. En concreto, se hablaba de un exceso “compatible” con lo esperado en producción y desintegración de un BEH de acuerdo con el SM. La partícula tenía que ser un bosón (dado que se desintegra a pares de fotones, dos objetos de spin 1),  no era compatible con ningún otro proceso o partícula conocidos hasta ahora y encajaba razonablemente con lo predicho para un BEH. Sin embargo, no existe la seguridad de que sea exactamente “el” bosón de Higgs, exactamente lo predicho por el modelo. El mensaje de los experimentos fue cauto: “se ha descubierto una nueva partícula elemental, esta partícula es un bosón y se parece a lo que esperaríamos para un BEH, sin embargo no podemos confirmar que sus todas sus propiedades coincidan con las esperadas para un Higgs”. Por lo tanto, en ese momento no se afirmó que se había descubierto “el” bosón de Higgs.

¿Cuál ha sido el cambio de estas últimas semanas? El CERN, basándose en los últimos resultados presentados por las colaboraciones ATLAS y CMS en las series de conferencias “Rencontres de Moriond”  emitió una nota de prensa en la que se anunciaba: “Nuevos resultados indican que la partícula encontrada en el CERN es el bosón de Higgs”. Ambas colaboraciones presentaron numerosos resultados, que completaban el análisis de las colisiones del LHC registradas en 2011 y 2012, incluían nuevas formas de producción y desintegración y, sobre todo, las primeras medidas de las propiedades de esta partícula. De todos los nuevos resultados presentados destacar cuatro, más allá del hecho fundamental del que nadie duda ya, de que se confirma la existencia de esta nueva partícula.

  1. Estudio de la producción de Higgs. Ambos experimentos comienzan a proporcionar medidas razonablemente precisas de la sección eficaz de producción, que están de acuerdo con las predichas por el SM (aunque ATLAS obtiene un valor ligeramente más alto y CMS uno ligeramente más bajo). Además se comienzan a observar procesos de producción menos probables, también de acuerdo con las predicciones, los llamados VBH (producción por fusión de bosones vectoriales) y VH (producción de un bosón de Higgs acompañado de un bosón Z o W).
  2. Estudio de la desintegración del Higgs.  Se aportan ya un conjunto bastante completo de observaciones para muchos de los posibles canales de desintegración. El descubrimiento se realizó fundamentalmente en base a los llamados canales ZZ y gg, en que el Higgs se detecta por su desintegración a pares de bosones Z o de fotones. Además de refinar las medidas en estos canales, se han complementado con las de otros como el WW (dos bosones W), bb (pares de quarks beauty) o tt (pares de leptones tau). Contrariamente a algunos indicios iniciales, en ninguno de los casos se observan desviaciones significativas de lo esperado para el SM. De todos estos resultados se ha derivado información sobre la intensidad de los acoplamientos a bosones y fermiones y, una vez más, no hay desviaciones del SM (Figura 1).
  3. Masa de la partícula. Se ha medido la masa de esta partícula con bastante precisión, situándola entre 125 y 126 GeV/c2. Aunque el SM no proporciona una predicción sobre la masa del Higgs (éste es uno de los motivos de la dificultad de su búsqueda), ésta interviene de forma indirecta en los cálculos de todas las predicciones del SM. El valor obtenido está dentro del (amplio) rango permitido.
  4. Spin y paridad. Finalmente, más novedoso y probablemente más importante, se han comenzado a realizar medidas del spin y la paridad de la partícula encontrada. Dentro del SM, el Higgs debe ser un escalar, esto es, debe ser una partícula de spin cero y paridad positiva. Del estudio de correlaciones angulares en las desintegraciones de canales bosónicos se ha excluido la mayoría de las combinaciones spin/paridad posibles, y de los casos restantes el más favorable es precisamente el deseado (un ejemplo se muestra en la figura 2). Aún no se puede confirmar al 100%, pero todo indica que efectivamente el estado observado corresponde con un bosón escalar.

En este punto uno está tentado de parafrasear el dicho anglosajón del pato, “si se produce como un Higgs, se desintegra como un Higgs y tiene el spin de un Higgs entonces…” Sin embargo los experimentos ATLAS y CMS siguen siendo cautos y se limitan a trasmitir los resultados, que es cierto parecen confirmar que la partícula observada se comporta de una forma muy parecida a lo que esperamos de un BEH en el SM. Primero hay que esperar a que estos resultados preliminares sigan el proceso habitual en estos casos tras su presentación en una conferencia: revisión interna adicional dentro del experimento y publicación en una revista tras revisión externa. Incluso si todos estos resultados se confirman tras estos filtros adicionales, quedaría al menos una pregunta importante que resolver para poder decir con completa confianza que se ha detectado “el” bosón de Higgs. He hablado antes de los acoplamientos, que ajustaban a lo esperado por el SM. Sin embargo, los datos registrados son insuficientes para garantizar con precisión la propiedad fundamental de que el acoplamiento es proporcional a la masa de las partículas al cuadrado. Habrá que esperar algunos años para tener más luz en estos aspectos.

Y si somos atrevidos y aceptamos sin reservas estos resultados, olvidamos la cautela e ignoramos los aspectos pendientes que acabo de citar, entonces ¿podríamos decir que es “el” Higgs? Para muchos físicos de partículas, ni siquiera así podríamos decirlo propiamente. A pesar del gran éxito del SM en reproducir las observaciones, existen distintos argumentos teóricos que hacen sospechar que no es la teoría última a escala de las partículas elementales, sino que es un subconjunto o una adaptación de otro modelo más general (de forma parecida a como la mecánica newtoniana es un caso particular de la relatividad especial). La extensión preferida del SM se basa en la llamada supersimetría. Dentro de este conjunto de modelos, no habría uno, sino varios tipos de bosones de Higgs. Podríamos estar observando el más ligero de todos ellos, con unas propiedades muy similares a las del BEH del SM. De la simple medida de estas propiedades, el LHC no será capaz de distinguir entre ambos. La búsqueda actual se centra en encontrar los higgses adicionales u otras nuevas partículas que también son predichas por estos modelos. En ese sentido, para todos aquellos que confían en este tipo de modelos, no es “el”  sino “un” Higgs,.

Por lo tanto, en respuesta a las preguntas planteadas y desde mi punto de vista como físico experimental, creo que aún no podemos decir con certeza científica que se ha descubierto el bosón de Higgs, pero sí podemos afirmar que se ha observado una nueva partícula elemental, que es un bosón, que con gran seguridad es un escalar (tiene spin 0 y paridad positiva) y que sus acoplamientos a las partículas elementales hasta el momento son compatibles con lo predicho para el Higgs. En resumen, si no es el bosón de Higgs se le parece mucho. Próximas medidas nos irán reduciendo aún más las ambigüedades restantes, indicándonos si es exactamente lo que se predijo como bosón de Higgs (lo que sería la demostración de un gran éxito del SM) o no (en cuyo caso se abriría nuevos y muy interesantes interrogantes en la física de partículas).

Referencias: Los resultados aquí mencionados aún no han sido publicados en revistas científicas convencionales o lo han sido sólo de forma parcial, se basan en los artículos enviados a la citada conferencia de Rencontres de Moriond que pueden encontrarse en las respectivas páginas de las colaboraciones ATLAS y CMS


1En ATLAS participan el Instituto de Física Corpuscular (IFIC, centro mixto CSIC y la Universitat de València), el Instituto de Microelectrónica de Barcelona (CNM-IMB-CSIC), Institut de Fisica d’Altes Energies (IFAE, consorcio Generalitat de Catalunya y Universitat Autònoma de Barcelona) y la Universidad Autónoma de Madrid (UAM). En CMS participan el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), el Instituto de Física de Cantabria (IFCA, centro mixto del CSIC y la Universidad de Cantabria), la Universidad de Oviedo (UO) y la UAM

¡Queremos saber!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Como cada día desde hace ya algún tiempo, aquí dejamos un retazo sobre el saber del mundo, del Universo y del estudio de los cuerpos celestes y sus movimientos, los fenómenos ligados a ellos y, sin duda, es la ciencia más antigua que nuestra especie conoce. Por otra parte, también hablamos maravillados de la capacidad de nuestra mente, la máquina más compleja que se conoce y que, para nuestro propio asombro, es capaz de generar pensamientos e imaginar el futuro que llegará. La vida, también ha ocupado una buena parte de nuestro tiempo en este lugar y hemos hablado de ella, de la que está presente en nuestro planeta y, de la posible “vida extraterrestre”, posibilidad enorme en este universo nuestro, y, con esas y otras cuestiones de interés, hemos hecho camino juntos, en armonía y siempre tratando de conseguir ese saber que es el sustento de nuestra enorme curiosidad. Claro que, la Física, esa disciplina que nos dice como funciona la Naturaleza, ocupó una gran parte del recorrido.

Estamos empeñado en acercar el Universo a todos, y, aquí recuerdo una de las frases utilizadas en la conmemoración del Año Internacional de la Astronomía: “El Universo para que lo conozcas”. Hemos logrado (al menos así lo creo) que muchos han adquirido nuevos conocimientos a través de este lugar (también nosotros lo hemos adquirido de ellos), y, siendo así (que lo es), el esfuerzo ha valido la pena. Veamos ahora, otro pasaje del saber del mundo.

Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descirrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

 La nebulosa Cabeza de Caballo

¡Cuánto hay ahí, en esa bella Imagen de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los matriales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el povo del lugar, mientras ellas, presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

¿Qué sería de la cosmología actual sin ? Es la ecuación de Einstein donde es el tensor energía-momento que mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio.

 

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general: la curvatura del espacio-tiempo se hace infinita en un agujero negro.

La cosmología estaría 100 años atrás sin esta ecuación.

Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, conseguir que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía.

No siempre hemos sabido utilizar de manera adecuada los conocimientos que las inteligencias nos han cedido, y, como en el caso que se refleja en la Imagen de arriba, hemos utilizado la ecuación E = mc2 para hacernos daño a nosotros mismos. ¿Aprenderemos alguna vez?

 http://univerpuebla.files.wordpress.com/2010/12/espacio.jpg

Desde épocas ancestrales, nuestra especie siempre miró hacía el cielo con temor, ¿qué eran aquellos puntitos brillantes? ¿qué mantenía al Sol durante el día y a la Luna por las noches allá arriba? ¿dónde se sujetaban para no caer? La fascinación por los astros del cielo ha sido una constante en nuestras vidas que nos llevó, llegado el momento, a estudiar sus movimientos y secretos: La Astronomía.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (la 2ª imagen de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

 

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

La Tierra desde el espacio

 

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparada con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, quizás (sólo quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer.

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

 

Un agujero negro destruyó y engulló un sol al completo en una de las mayores y brillantes explosiones cósmicas observadas hasta el momento, informó un grupo de investigadores dirigidos por Andrew Levan, de la universidad británica Warwick en la revista estadounidense “Science”.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que alcanza en el vacío y que es de 299.793’458 km/s. Muchas veces se ha intentado contradecir este postulado de Einstein en su relatividad especial (hace poco con los neutrinos), sin embargo, nunca se consiguió, la teoría del maestre sigue firme e inamovible en sus dos versiones.

Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

 

Las singularidades ocurren en el Big Bang, en los agujeros negros y, si finalmente se produjera, en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin que sería el nuevo comienzo).

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Jhon Wheeler. Así, el conocimiento de la singularidad está dado por la ecuación de Einstein que al principio reseñamos, y más tarde, por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

 

Esta serie de ilustraciones muestra una estrella amarilla que se acerca demasiado a un agujero negro gigante en el centro de la galaxia RX J1242-11. Al acercarse al agujero negro, es estirada y destrozada por la marea gravitacional. Aunque una pequeña parte del material es atrapada por el agujero negro y forma un disco en torno suyo, la mayor parte de los desechos gaseosos escapan del agujero negro. En el disco, el gas se calienta a millones de grados antes de caer en el agujero negro, por lo que produce rayos X. [ESA]

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1. Después de todo, la velocidad de la luz, la máxima que podemos alcanzar en nuestro universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre. En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?

 [ngc7331_peris.jpg]

No todas las cosas del Universo (aunque hablemos de ellas), son totalmente comprendidas por nosotros, los humanos que, tenemos conformadas nuestras mentes en un mundo de tres dimensiones y, en realidad, en comparación con la inmensidad del Cosmos, no dejamos de ser una pequeña conformación compuesta por una sola estrella corriente, nada especial, de las que existen miles de millones en nuestra propia Galaxia. Nunca podremos hacernos una idea exacta de esas inmensas distancias, de esos inmensos objetos y, de esas inconmensurables maravillas que en el Universo están presentes.

Para mí, la cosa está clara: el tiempo inexorable en su transcurrir es imparable, el tic tac del reloj cósmico sigue y sigue andando al ritmo que el universo le ha marcado, sin que nada lo pueda parar, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros, y, nosotros, testigos por un “corto espacio de tiempo” de tales maravillas, sufrimos porque sabemos que, posiblemente, nuestros conocimientos adquiridos irán a parar a otros que, aunque construidos por nuestra especie, ya no serán humanos.

 

¡No! Ninguna mano mueve los hilos. Simplemente se trata de la dinámica que nos impone el Universo. Todo marcha a su ritmo, nada permanece y todo se destruye para que todo siga igual. Los ciclos de destrucción y construcción son continuos, de ellos surgen las galaxias y sus miríadas de estrellas, los mundos y en ellos la vida.

Llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad. Claro que también, en función de la Densidad Crítica que realmente tenga el Universo (el Omega Negro, o, la cantidad de materia que contenga), se podría expandir para siempre, las galaxias se alejarán las unas de las otras y el frío, se hará dueño de todo, la muerte térmica llegará con el cero absoluto, es decir, -273 ºC, allí, ni los átomos se podrían mover y, menos la vida.

Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.

 Las máquinas del tiempo I: La teoría de los viajes temporales

El tejido espacio-temporal se distorsiona

La otra posibilidad es reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego.

Antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.

Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.

 Carl Sagan, 1934-1996

Carl Sagan pintó el cuadro siguiente:

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“. Pero esa, es otra historia.

emilio silvera

¡Partículas subatómicas! Esos misteriosos objetos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            Están por todas partes y todo está conformado, de una u otra manera por ellas

Partículas, espín, familias, materia…

Conforme a lo que aceptamos hoy en día, toda la materia estaría constituida a partir de estados ligados de Quarks y Leptones, es decir de los quarks u “up” y d “down”, electrones e y neutrinos ѵ, y sus antipartículas. De todos estos objetos, pueden existir hasta un total de otras dos familias más en las que los quarks reciben otras denominaciones y los leptones, en vez de electrones podrían ser muones μ y partícula tau τ. Señalamos que estos objetos poseen distintas masas. Sin embargo, todas tienen en común que son partículas de espín ½. Si a estos objetos le añadimos los Bosones de espín 1, que son los responsables de las interacciones entre ellos, resulta que el poseer esa propiedad mecánica llamada espín es una de las características más importantes de los objetos elementales que constituyen la materia y de los vehículos que utilizan estas partículas elementales para su comunicación. Toda la materia que nos rodea se mueve y rota.

El espín del muón es ½. Cuando el espín de una partícula es semi-entero, se la clasifica como perteneciente al grupo denominado fermiones. La carga eléctrica de un muón es igual que la del electrón, pero su existencia es de sólo 2,2 microsegundos. En cambio el electrón es un elemento estable en la Naturaleza.

En el modelo físico de la mecánica cuántica, el muón es una partícula puntual y no tiene volumen. Pero no hay ningún problema para que se le asigne un momento angular (una rotación).

Podemos pensar en que el muón es como una bolita que gira sobre sí misma. Este momento angular se denomina espín y está cuantizado; es decir, que no puede tener cualquier valor, sino múltiplos de una cantidad mínima, que es 1/2. Este valor 1/2 se refiere a la constante reducida de Planck

El muón, al igual que todas las partículas elementales (cuatro en cada una de la tres familias), tiene espín de valor 1/2. A las partículas que tienen espín 1/2, se las denomina fermiones, en honor del físico italiano Enrico Fermi (1901-1954).

Como decía al principio, toda la materia que nos rodea se mueve y rota. Las partículas constituyentes no podían ser menos, de ahí que no es de extrañar que las partículas elementales tengan momento angular, que es la expresión mecánica de la medida de su estado interno de rotación. La sorpresa es, quizá, que todas estas partículas tengan exclusivamente el valor no nulo, más bajo posible, que predice la mecánica cuántica.

Claro que, a todo esto, también tenemos que decir que todas estas partículas tienen su contraria, es decir, su antipartícula y, precisamente una nueva evidencia surgida de estudios realizados nos dicen que Materia y Antimateria pueden ser más distintas de lo que hasta ahora se había creído.

Los neutrinos, partículas elementales generadas por las reacciones nucleares en el Sol, padecen una “crisis de identidad” cuando cruzan el universo, metamorfoseándose entre tres “sabores” diferentes. Sus homólogos de antimateria (que son idénticos en masa pero opuestos en la carga y el espín) experimentan también una crisis de identidad. Sin embargo un equipo de físicos ha descubierto ahora diferencias sorprendentes entre neutrinos y antineutrinos en lo que se refiere a su conducta de cambio de “sabor”. Si se confirma, el hallazgo podría ayudar a explicar por qué es la materia y no la antimateria la que domina en nuestro universo.Cada partícula de materia tiene una antipartícula correspondiente de antimateria. Los electrones son partículas negativamente cargadas que rodean el núcleo de cada átomo. El positrón es una antipartícula con la misma masa y magnitud de carga del electrón pero exhibiendo una carga positiva. Cuando la materia ordinaria, como por ejemplo un electrón, se combina con una cantidad igual de antimateria, como por ejemplo un positrón, ambas se aniquilan mutuamente.

Si por el telescopio descubriéramos una galaxia lejana de antimateria…, no lo sabríamos, su comportamiento en todos los órdenes, sería el mismo que tendría una galaxia de materia como la Vía Láctea o Andrómeda. Seríamos conscientes de su naturaleza si alguna galaxia cercana se acercara y la gravedad tratara de unirlas, en el momento de la fusión… ¡Todo estallaría!

El aparentemente ineludible hecho de que las partículas de materia y antimateria se destruyen entre sí al contacto, ha desconcertado a los físicos desde hace tiempo, preguntándose cómo la vida, el Universo, o cualquier cosa puede existir. Pero unos nuevos resultados de un experimento de acelerador de partículas sugieren que la materia parece ganar finalmente.

Teniendo en cuenta esto último, así como que ambas fueron creadas en la formación del universo, y que el universo actual alberga materia pero virtualmente nada de antimateria, debe haber alguna razón por la cual la materia se acabó imponiendo a la antimateria. La única explicación es que, las partículas de materia excedían en número a las de antimateria y, una ves destruidas todas las antagonistas, quedarían sólo las de materia que eran más y, esas son las que podemos ver ahora formando estrellas y planetas entre otras cosas.

La región de formación estelar S106

Todo está hecho de esas pequeñas partículas que conocemos por Quarks y Leptones y, si miramos la imagen de arriba, podemos contemplar esa maravillosa imagen en la que la estrella masiva IRS 4 comienza a desplegar sus alas. Nacida hace sólo unos 100.000 años, el material expulsado de esta estrella “recién” nacida ha formado la nebulosa llamada Sharpless 2-106 (S106). El gran disco de polvo y de gas que orbita la fuente infrarroja IRS 4, visible en rojo oscuro cerca del centro de la imagen, da a la nebulosa la forma de un reloj de arena o de una mariposa.

El gas de S106 cerca de 4 IRS actúa como una nebulosa de emisión ya que emite luz después de haber sido ionizado, mientras que el polvo lejano procedente de IRS4 refleja la luz de la estrella central y, por tanto, actúa como una nenulosa de reflexión. El examen detallado de imágenes como esta, ha revelado la existencia de cientos de estrellas marrones de masa baja que rondan por el gas de la nebulosa. S106 se extiende unos 2 años luz y se encuentra a unos 2.000 años-luz de distancia en la constelación del Cisne ( Cygnus ). Todo ese bello conjunto que podemos admirar, en realidad sólo son átomos formados por partículas subatómicas y la energía que está presente emitida por los objetos que forman en el Universo.

      Demócrito

Aquella idea del átomo que nos dejó Demócrito, de que la materia se puede dividir en porciones cada vez más pequeñas hasta que este proceso tenga un final, puede ser o no cierta. No sabemos si lo que hoy consideramos como una partícula elemental, por ejemplo el electrón, se descubre en un futuro que está a su vez compuesto de otros objetos todavía por descubrir (aunque para mí, no parece que tal cosa sea posible en el electrón que, por sus características, no parece prestarse a ello). Pero, si finalmente existen esos objetos últimos, indivisibles, que hoy en vez de átomos les denominaríamos partículas elementales, es legítimo tratar de clarificar desde un punto de vista teórico qué es lo que distingue a un objeto elemental de otro que no lo es, es decir, encontrar una definición plausible de partícula elemental.

       Modelo Estándar de Partículas Elementales.

Una definición por exclusión podría ser que una partícula elemental es un sistema mecánico que no posee estados escitados, es decir, que no es posible modificar su estructura. Podremos aniquilarla, destruirla, pero nunca modificarla. En sentido positivo diríamos que se trata de un sistema mecánico cuyos únicos estados permitidos son solamente modificaciones cinemáticas de uno cualquiera de ellos. Conocido un estado cualquiera de la partícula, el resto de los estados posibles en los que la podamos encontrar son solamente las diferentes descripciones que de ese estado hacen el resto de los observadores inerciales, Esto también quiere decir que, un cierto observador inercial hace una descripción del estado en que se e4ncuentra una partícula elemental y debido a alguna influencia externa este estado cambia, siempre es posible encontrar otro observador inercial que, en el nuevo instante, describa la partícula exactamente en el mismo estado que en el instante anterior lo describía el otro observador.

Cualquier cambio en el valor de alguna de las variables que caracterizan el estado de una partícula elemental puede ser siempre compensado, mediante un cambio de sistema de referencia inercial, para lograr describir el sistema en el mismo estado, es decir, con exactamente los mismos valores de todas las variables que definen de forma única el estado del sistema.

Existen sofisticadas máquinas que nos permiten observar partículas y hacer exámenes granulométricos de las mismas, Cada día podemos acercarnos más y más a ese infinitesimal “universo de lo muy pequeño”, claro que, el mismo aparato que utilizamos que es un sistema electrónico, al emitir la luz que trata enfocar esas partículas, lanza miríadas de fotones sobre ellas y, en ese momento, se producen sucesos que impiden saber, de manera exacta donde está la partícula o, hacia donde se dirige. Es el Principicio de Incertidumbre de Heisenberg.

Esta forma de definir un objeto elemental puede parecer una trivialidad, pero supone sin embargo una enorme restricción con respecto al tipo de variables clásicas que podemos utilizar para describir sus estados. Para empezar, tenemos que conocer cómo estas variables cambian cuando cambiamos de sistema de referencia. Más aún, dados dos valores posibles de una cualquiera de estas variables, debe existir un cambio de sistema de referencia que nos relacione un valor con el otro, y así para todas las variables básicas que configuren el estado del sistema. Vemos por lo tanto la importancia que juega el Principio de Realtividad no solo a la hora de definir el conjunto de observadores inerciales equivalentes, sino también en la propia definición de partícula elemental, ya que condiciona el tipo de variables clásicas que podemos utilizar. Es ésta la definiciónn de partícula elmental que vamos a adoptar y vamos a intentar hacer una descripción Lagrangiana de aquellos sistemas mecánicos sujetos a esta definición.

De todas las maneras, en esto de las partículas nos tenemos que andar con pies de plomo, nada se puede dar por hecho, y, es bien sabido que lo que nos dice la mecánica cuántica no siempre coincide con lo que nos dicta el sentido común. Y, sí, en la relatividad están inmersas transformaciones que no debemos dejar de lado cuando tratamos con partículas elementales, veamos por ejempo:

Que el grupo de Lorentz realiza una foliación del espacio en hipérbolas diferenciadas. Ahora bien… ¿qué ocurre si tenemos una partícula en la región para v>c? Al ser la hipérbola vertical, ¡¡una transformación desplaza punto en el tiempo!!. Por tanto, podría ocurrir que lo que para alguien es pasado, para otro sea futuro… Para entenderlo mejor supongamos la situación siguiente en la que una partícula, vista por un observador, va del punto A al punto B a una velocidad mayor que la de la luz. (¿Serán los neutrinos de aquellos italianos del Proyecto Opera?



Consideremos el movimiento de una partícula superlumínica del punto A al punto B. Si aplicamos una transformación de Lorentz, al desplazar el punto B sobre la hipérbola, podría darse el caso de que este quedase por debajo de A, como en la figura siguiente:

 

Al aplicar la transformación, el punto B pasa del futuro al pasado. Por lo que, para este observador, ¡la partícula ha viajado en el tiempo! Claro que, nos topoamos de nuevo con el límite de la velocidad de la luz. Ni aquellos neutrinos de hace unos días, han podido quitarle el Record de velocidad a los fotones.

Una característica importante del principio de raltividad es que lleva asociado un grupo de transformaciones espaciotemporales. Este grupo es el que nos indica la forma en que los diferentes observadores inerciales relacionan sus medidas respectivas de las tres coordenadas espaciales y una temporal de un mismo acontecimiento espacio-temporal. En la física Newtoniana o no relativista, este grupo es el grupo de Galileo, mientras que la física relativista toma como grupo cinemático de base el Grupo de Poincaré, que además de rotaciones y traslaciones, como en el caso del grupo de Galileo, contiene transformaciones de Lorentz puras entre observadores, con velocidad relativa constante. El arranque del formalismo comienza con aceptar uno de estos grupos G como el grupo que deja invariante las ecuaciones dinámicas.

Desde el punto de vista académico, el estudio general de la geometría de la cuarta dimensión en gran parte resultado de los trabajos de Bernhard Riemann.

Los trabajos matemáticos sobre geometrías multidimensionales y geometrías no euclídeas habían sido considerado por los físicos como simples abstracciones matemáticas hasta que Henri Poincaré probó que el grupo de transformaciones de Lorentz que dejaban invariantes las ecuaciones del electromagnetismo podían ser interpretadas como “rotaciones” en un espacio de cuatro dimensiones. Más tarde, los trabajos de Einstein y la interpretación geométrica de estos por parte de Hermann Minkowski llevaron a la aceptación de la cuarta dimensión como una descripción necesaria para explicar los hechos observados relacionados con el electromagnetismo. Sin embargo, aquí la “cuarta dimensión” no era un lugar separado del espacio tridimensional (como en varias de las obras de ficción de la época) ni tampoco una dimensión espacial análoga a las otras tres dimensiones espaciales, sino una dimensión temporal que sólo puede recorrerse hacia el futuro. En la teoría general de la relatividad el campo gravitatorio es explicado como un efecto geométrico de la curvatura de un espacio-tiempo de cuatro dimensiones.

 Cono de luz

Más tarde, la teoría de Kaluza-Klein propuso que no sólo el campo gravitatorio podía ser interpretado de forma más sencilla como curvatura de un “espacio” de más de tres dimensiones, sino que si se introducía una nueva dimensión espacial enrollada o «compactificada», también el campo electromagnético podía ser interpretado como un efecto geométrico de la curvatura de dimensiones superiores. Así, la Kaluza proponía una teoría de campo unificado del electromagnetismo y la gravedad en un espacio-tiempo de cinco dimensiones, con una dimensión temporal, tres dimensiones espaciales extendidas y una dimensión espacial «compactificada» adicional, que, debido a su condición de compactificada, no era directamente visible pero su efecto era perceptible en forma de campo electromagnético.

Bueno, como de costumbre (eo pasar una mosca y me distrae), me paso de las partículas a los grupos de Poincaré y Lorentz o, a la cuarta dimensión de Minkowski, son cosas de la mente que, no siempre actúa como nos propusimos al comenzar un trabajo que, la mayoría de las veces finaliza, de manera misteriosa, de manera direfente a la que nos propusimos al comenzar.

El Físico Martin del Riva del Departamento de Física Teórica del pais Vasco, tiene mucho que ver con todo lo que aquí contamos. Desde aquí le agradecemos sus conocimientos.

emilio silvera

¡¡Ese Bosón!! ¿Será el origen de la masa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tendremos que convenir en el hecho cierto de que, no hemos dejado de hacer inmensos esfuerzos económicos, estructurales y tecnológicos que, unidos a la capacidad humana para idear la manera de profundizar en los secretos de la Naturaleza, nos llevará hasta el… (así escribía la esperanza de que el dichoso Bosón aparecuera) y, ahora que parece que está aquí, con nosotros, nos queda una sensación: El hallazgo no está completo y, muchas son las explicaciones que esperamos y las demostraciones que necesitamos.

El Bosón de Higgs

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.

Una voz potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

En el Universo inmenso, son tantas las cosas que existen y que no conocemos que, en los próximos años nos quedan muchas sorpresas que recibir, muchos asombros y maravillas y, desde luego, no podemos negar que estén pululando por ahí fuera estrellas de Quarks y Gluones, es decir, de materia extraña que aún no ha sido detectada pero que, nadie puede negar que exista. Serían estrellas situadas entre las de Neutrones y los Agujeros Negros si las clasificamos por su densidad. Pero, antes de eso, debemos constatar la existencia del Océano de Higgs para en él, hallar la dichosa partícula clasificada Bosón y de nombre Higgs.

Leer más

Titán: ¿Una promesa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://www.beugungsbild.de/huygens/povray/huygens_30km.jpg

Aquellas primeras imágenes de Titán y las primeras noticias que llegaron decían: “¡Huygens en Titán!”  Después de un viaje de siete años a través del sistema solar abordo de la nave Cassini, la sonda Huygens de la ESA logró descender con éxito a través de la atmósfera de Titán, la mayor luna de Saturno,  para una vez a salvo en su superficie, comenzar el estudio de aquel pequeño mundo.

Los primeros datos científicos llegaron a el Centro de Operaciones Espaciales Europeo (ESOC) en Darmstadt, Alemania, muy pronto, por la tarde a las 17:19 CET. La sonda Huygens constituyó un gran éxito de la humanidad en el intento de aterrizar una sonda en un mundo del Sistema Solar exterior.

Imagen de la superficie de Titán captada por la sonda al aterrizar.

Con los primeros datos se pudo saber que la temperatura en el interior de la sonda rondaba los 25ºC cuando se encontraba a unos 50 km de altura. Por otra parte, la sonda contaba con dos canales (A y B) independientes para retransmitir los datos de manera redundante. Según parece el canal A no funcionó y tan sólo se lograron los datos del B aunque, finalmente, parece que llegaron todos. El experimento de Doppler con Cassini si necesitaba del canal A por lo que habrá que esperar a la recepción de todos los datos. El paracaidas principal se abrió tan sólo 15 segundos despues de lo planeado y los acelerómetros han funcionado correctamente.”

Leer más