viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuevas teorías y conceptos: Nuevas dimensiones.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Según una nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible. Sin embargo, ese mundo decadimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.

El universo en el que vivimos nació de ese cataclismo cósmico. Nuestro universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexadimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.

Eso podría explicar el origen del Big Bang y, si la teoría es correcta, demuestra que la rápida expansión del universo fue simple consecuencia de un cataclismo cósmico mucho mayor; la ruptura de los propios espacio y tiempo. La energía que impulsa la expansión observada del universo se halla entonces en el colapso del espacio y el tiempo de diez dimensiones. Según la teoría, las estrellas y las galaxias distantes están alejándose de nosotros a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.

Esta teoría predice que nuestro universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en un pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada. Ese universo hexadimensional, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia nuestra salvación.

Para el cosmólogo, la única certeza es que el universo morirá un día. Algunos creen que la muerte final del universo llegará en la forma del Big Crunch. La gravitación invertirá la expansión cósmica generada por el Big Bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentarán espectacularmente hasta que toda la materia y la energía del universo estén concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del universo tal y como lo conocemos.

Todas las formas de vida serán borradas de la faz de los mundos que las pudieran contener: evaporados por las enormes temperaturas o aplastados… no habrá escape. Bueno, si para entonces hemos sido capaces de viajar a universos paralelos…

Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del universo.

Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una, esperanza de evitar la calamidad final.

Él especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaban con un poderoso aliado, el tiempo de miles de millones de años), sabría utilizar las otras dimensiones para escapar de la catástrofe del Big Crunch. En los momentos finales del colapso de nuestro universo, el universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el hiperespacio hay un universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.

Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad podría ser testigo de la muerte del universo que la vio nacer y florecer.

Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y del tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes: ¿cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría del hiperespacio?, y ¿qué sucede con otras formas de vida inteligentes en el universo que puedan haber alcanzado ya este punto?

Lo que hace interesante esta discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina y los sistemas estelares o incluso las galaxias vecinas hayan sido colonizados. Aunque la escala de energía necesaria para manipular el hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentará, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).

Cada 10 ó 15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que el avance superará todas las previsiones. Tecnologías que hoy sólo son un sueño (la energía de fusión, o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro. Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del hiperespacio.

Viaje en el tiempo, universos paralelos, ventana dimensional… ¡sueños!

Mucho nos queda por recorrer antes de que seamos capaces de aprovechar energías gravitacionales de agujeros negros.

Georg Bernhard Riemann lo empezó todo. Es el responsable del descubrimiento del espacio multidimensional. Anticipando el siglo siguiente de progreso científico, Riemann fue el primero en afirmar que la naturaleza encuentra su ámbito natural en la geometría del espacio multidimensional, y gracias a su visión inicial, pudieron plasmarse en realidad teorías como las de la relatividad general de Einstein, en cuatro dimensiones, la de Kaluza-Klein, en cinco dimensiones, o la más reciente teoría de cuerdas de diez dimensiones.

El nombrarlo aquí es sólo cuestión de justicia. No podemos hablar de espacios multidimensionales sin nombrar a Riemann que, nacido el 17 de septiembre de 1.826, con su golpe maestro al dar aquella conferencia en la facultad de la universidad de Gotinga en Alemania, dejó pasar un rayo de luz a todas las mentes científicas, no ya de su propio tiempo, sino a las del siglo siguiente.

Bien es verdad que, de momento, nuestras mentes sólo son capaces de percibir el universo de cuatro dimensiones, tres espaciales y una temporal, con las que cotidianamente nos desenvolvemos. Esto quiere decir que sólo hemos sido capaces de reproducir las dimensiones más altas en la teoría de los números, y nuestras mentes (al menos la mía) por mucho que lo intente, no son capaces de ver un mundo de más dimensiones; no podemos. Tenemos que evolucionar para poder captar ese nuevo universo de más dimensiones que acogería, sin crear problemas, todas las cuestiones científicas hoy antagónicas, como la relatividad general y la mecánica cuántica.

Habitualmente ocurre que podemos tener un genio delante nuestra y no sabemos verlo. Jacob Bronowski escribió:

“El genio de hombres como Newton y Einstein reside en que saben hacer preguntas inocentes y transparentes que resultan tener respuestas revolucionarias.”

Einstein era un hombre que podía plantear cuestiones tremendamente simples, como por ejemplo, ¿qué aspecto tendría un rayo de luz si uno pudiera alcanzarlo? Así de sencillas o de complicadas pueden ser las cosas, sólo se trata de quién responda a la pregunta. ¿Cuántos con mejor o peor fortuna han tratado de explicar lo que es el tiempo? Lo vemos o sentimos pasar ante nuestros ojos, transcurre incesante, nos trae en día y la noche una y otra vez, pasan los años con el transcurso del tiempo, ¿pero qué es? ¡Hay tantas cosas que no sabemos explicar que, si lo pensamos, terminamos profundamente frustrados!

Ya se ha contado muchas veces que, en 1.905, disponiendo de mucho tiempo libre en la oficina de patentes, Einstein analizó cuidadosamente las ecuaciones de campo de Maxwell, le añadió algunos ingredientes de Lorente y Poincaré y fue llevado a postular el principio de la relatividad especial: la velocidad de la luz es la misma en todos los sistemas de referencia en movimiento uniforme. El principio de apariencia inocente es uno de los mayores logros de la mente humana. Algunos han dicho que, junto con la ley de gravitación de Newton, se sitúa como una de las más grandes creaciones científicas de todos los tiempos.

Muchos han sido los aspectos interesantes deducidos a partir de la teoría relativista especial, y el que más ha llamado siempre mi atención es aquel que nos dice que el tiempo es la cuarta dimensión y que las leyes de la naturaleza se simplifican y unifican en dimensiones más altas.

Fue Minkowski, un antiguo profesor de Einstein, el que, al leer la teoría de éste, introdujo el concepto de cuarta dimensión referida al tiempo y superó así el concepto de tiempo que se remontaba hasta Aristóteles. El espacio y el tiempo quedaron así irremediablemente unidos como espaciotiempo. Así pasamos de un mundo de tres dimensiones a un universo de cuatro. La mente humana pasó entonces a tener una visión más amplia del universo. También cambiaron conceptos como los de la masa y la energía, que resultaron ser la misma cosa. ¿Y qué decir de la posibilidad real de frenar el paso del tiempo al viajar a velocidades relativistas? ¡Son tantas maravillas!

Para ver cómo dimensiones más altas simplifican las leyes de la naturaleza, recordemos que un objeto tiene longitud, anchura y altura. Puesto que tenemos libertad para girar un objeto 90º, podemos transformar su longitud en anchura y su anchura el altura. Mediante una simple rotación, podemos intercambiar cualquiera de las tres dimensiones espaciales. Ahora bien, si el tiempo es la cuarta dimensión, entonces es posible hacer “rotaciones” que convierten el espacio en tiempo y el tiempo en espacio. Estas rotaciones tetradimensionales son precisamente las distorsiones del espacio y del tiempo exigidas por la relatividad especial. En otras palabras, espacio y tiempo se mezclan de una forma esencial, gobernada por la relatividad. El significado del tiempo como la cuarta dimensión es que pueden hacerse rotaciones entre el tiempo y el espacio de una forma matemáticamente precisa. A partir de entonces, deben ser tratados como dos aspectos de la misma magnitud: el espacio-tiempo. Así han quedado unificadas las leyes de la naturaleza al pasar de tres a cuatro dimensiones.

La discusión de la unificación de las leyes de la naturaleza fue más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo. Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica. Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar.

Sin embargo, casi todo en el laboratorio de un físico se mide con regla y relojes. Esto significa que los físicos tendrían que recalibrar todas las magnitudes del laboratorio que una vez dieron por hecho que eran constantes.

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo. Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía. No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades de distorsionan. Se contrae como un acordeón y los relojes en su interior se frenan. Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando se acelera. Pero, ¿de dónde procede este exceso de masa?, y él concluyó que procedía de la energía.

Esto tuvo consecuencias perturbadoras. Dos de los grandes descubrimientos de la física del siglo XIX fueron la conservación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomados por separado, no cambian. Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente. La energía total (y la masa total) antes y después del choque es la misma.

Sin embargo, Einstein decía ahora que la energía del automóvil podría convertirse en masa (un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante). La materia no desaparece repentinamente, ni la energía brota de la nada. En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E = mc2. Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía. Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química. La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad energía condensada.

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la naturaleza. Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo, que gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

Desde entonces, estos conceptos los tenemos que clasificar no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por otra. El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX, claro que en contra del criterio de Einstein, que era pacifista y nunca quiso participar en proyectos de esta índole.

Einstein completó su teoría de la relatividad con un segundo trabajo, que al menos en parte, estaba inspirado por lo que se conoce como principio de Mach; la guía que usó Einstein para crear esta secuela final y completar su teoría de la relatividad general.

Einstein enunció que la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor. Ésta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio. Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que se denota:

einstein-tensor

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana. De ella emergen los principios que hay tras los movimientos de las estrellas y galaxias, los agujeros negros, el Big Bang, y seguramente, el propio destino del universo.

emilio silvera

 

  1. 1
    JAIME
    el 4 de junio del 2009 a las 2:27

    bastante ilustrativo este articulo,
    si alguien me podria indicar otras paginas q traten mas a fondo del bigban y los agugeros negros

    Responder
  2. 2
    Antonio Gil
    el 29 de julio del 2009 a las 20:49

    Es un poco complicado de entender pero empezaremos:
    El universo conocido Procede de la conexión con otros universos, antes de estos supongamos la nada. La nada era un equilibrio entre dos corrientes, la alterna y la continnua. Para su reaccion necesito de un segundo elemento
    este procedia de un lugar fuera del universo. El elemento
    hace referencia al descifraje de los 64 hexagramas I-Ching.
    Personalmente lo conozco.Despues de esta reacción se genero el plasma, QuarK, Anti-quark, Neutrinos y gravitones.
    Esto fue debido y es a la reacción Ching. La aparición de los fotones fue instantanea y con ella la luz. Si tomamos la luz como una cadena de transporte electromagnetica, formada por dos fotones de carga opuesta y que discurriendo
    en el plano de una recta, transportando un minimo de 4 gravitones y un maximo de X, obtenemos que el universo se
    expande y que el tiempo es función de la velocidad de la luz y de la masa X de gravitones transportados. En algunos blogs he realizado la descomposición completa de la materia,incluso he aportado pruevas de ciclos ,experimentos
    y masas atomicas de mi denominación particular de particulas.La extensión del universo es la extensión propia del alcance de la luz=materia, todo lo que nos rodea y nosotros mismos somos una mezcla de corriente alterna y continua y como la luz entrelazados en forma de espiral girando en sentido opuesto.Disculpenme pero no soy fisico.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting