miércoles, 30 de septiembre del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Breve historia del Universo II

Autor por Emilio Silvera    ~    Archivo Clasificado en Algo de lo que pasó desde el Big Bang    ~    Comentarios Comments (14)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Comienza la segunda parte.

- 325 d. C.: Eusebio, que presidió el Concilio de Nicea convocado por el Emperador Constantino, calcula que el mundo fue creado 3.184 años antes del nacimiento de Abraham.

- 400: Comienza la Edad Media; en Occidente, la Ciencia queda aletargada.

- 455: Los vándalos saquean Roma.

- 963: Al-Sufi, en su Libro de las estrellas fijas, menciona las nebulosas.

- 1001: Levi Eriksson llega a Nueva Inglaterra.

- 1276-1292: Marco Polo vive en Hangzhou.

- 1400: El Renacimiento comienza en Europa.

-1492: Colón (re) descubre América.

- 1521: Cortés conquista Tenochtitlan.

- 1522: Los supervivientes de la expedición final de Magallanes completan la circunnavegación del Globo Terrestre.

- 1531: Pizarro llega a Perú.

- 1543: Se publica sobre Las revoluciones de Copérnico.

- 1572: Tycho Brahe ve una nova (o “estrella nueva”) en el cielo, prueba en contra de la teoría de Aristóteles de que el ámbito de las estrellas es inmutable y, por lo tanto, diferente del de la Tierra.

- 1576: Thomas Digges publica en Inglaterra una defensa de la cosmología copernicana, en la que describe las estrellas como distribuidas a través del espacio infinito.

- 1604: Galileo conjetura que los cuerpos caen con un movimiento uniformemente acelerado, anunciando de este modo la primera de las leyes de la dinámica clásica. Kepler y Galileo observan una supernova.

- 1609: Galileo observa, por primera vez, el cielo nocturno a través de un telescopio.

- 1611: Se publica la edición de la Biblia del rey Jaime, que contiene un cálculo de james Ussher, obispo de Armagh, según el cual “el comienzo del tiempo…cae a principios de la noche que precedió al día 23 de octubre del año 4004 a.C”.

- 1616: La Iglesia católica romana prohíbe todos los libros que sostengan que la Tierra se mueve.

Leer más

Breve historia del Universo I

Autor por Emilio Silvera    ~    Archivo Clasificado en Algo de lo que pasó desde el Big Bang    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

He creido que no estaría mal hacer un viaje al pasado para asomarnos a los acontecimientos que tuvieron lugar para que, ahora, estemos nosotros aquí. Al buscar cómo lo podría hacer para que fuese reducido y didáctico, caí en la cuenta de que, en el Libro de Timothy Ferris, La Aventura del Universo, al final, viene una recopilación de los hechos del pasado a partir del Comienzo del Tiempo, es decir, cuando tuvo lugar el Big Bang.

Así que, creyendolo de interés aquí lo dejo, sin imágenes que haría eterno el repaso, y, como de lo que se trata es de dejar una serie de datos en la memoria que, servirá de base,  para todo lo que vendrá después, a lo largo de los próximos doce meses.

Tiempo y los acontecimientos notables que en cada período de produjeron

- En el momemnto cero: Origen del Tiempo, el espacio y la energía del universo que conocemos.

- 10-43 de segundo GCT (Después del Comienzo del Tiempo): Fin de la época de Planck; la radiación gravitatoria sale del equilibrio térmico con el resto del Universo.

- 10-34 de segundo: El universo, en un estado de vacío, empieza a “inflarse”, esto es, expandirse a una tasa exponencial de unas 1050 veces la tasa actual de expansión.

- 10-30 de segundo: Termina la época inflacionaria; las partículas se arrojan fuera del vacío.

- 10-11 de segundo: La transición de fase de la ruptura de la simetría escinde la fuerza electrodébil en la fuerza electromagnética y la fuerza nuclear débil.

- 10-6 - 10-5 de segundo: Los Quarks y antiquarks cesan su aniquilación mutua. Los supervivientes se unen en tríos para formar protones y neutrones, los componentes de todos los futuros núcleos atómicos.

- 10-4 de segundo: El Universo tiene 1/10.000 de segundo de antigüedad. La constante captura de electrones y positrones convierte los neutrones en protones y a la inversa. Como se requiere un poco más de energía para hacer neutrones que protones, el proceso deja el universo con cincuenta veces más protones que neutrones.

-10-2 de segundo: Partículas de materia y de energía interaccionan en equilibrio térmico.

Leer más

¡Alejandría! La Cultura y el Saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La construcción del Faro de Alejandría consistía en una amplia base cuadrada y una torre octogonal de unos 100 metros de altura. En la parte superior ardía leña y resina; ésa luz servía de aviso y señal a los navegantes. Para los marineros, significó un guía seguro para sus retornos al gran puerto. Para los arquitectos, significó aún más; era el edificio más alto sobre la tierra y para los científicos era lo misterioso; poseía un espejo que los fascinó. El espejo daba un reflejo que podría ser visto a más de 50 Km., fuera de la costa. Su ubicación se sitúa sobre la antigua Isla de Faros, ahora un promontorio dentro de la ciudad de Alejandría.

La ciudad de Alejandría, en Egipto, una ciudad situada entre Oriente y Occidente, que fue durante varios siglos el centro del saber, “un centro de cálculo”, “un lugar paradigmático”. Fundada por Alejandro Magno en 331 a.C., en parte por su deseo de acercar Egipto al mundo griego y en parte porque quería un puerto que no se viera afectado por las inundaciones del Nilo.

Alejandría fue pensada desde el principio como una “megalópolis”, construida en forma de chlamys, una capa militar Macedonia, y  provista de murallas que se extenderían “sin cesar” en la distancia, con las calles tan amplias como nunca se había visto, basada en el diseño aristotélico de la ciudad ideal (una cuadrícula dispuesta de tal manera que se beneficiara de las brisas marinas, pero proporcionara refugio frente al viento).

Un tercio de la ciudad era “territorio real”, y ésta constituía un centro de comercio convenientemente situado en el extremo oriental del Mediterráneo, cerca del lugar en el que el Nilo y el mar Rojo conforman un cruce de caminos internacional, y donde muchas caravanas procedentes del interior de África y de Asia convergían en la costa.

Disponía de dos puertos, uno de los cuales ostentaba el famoso faro de casi cuarenta y cinco metro de alto (otros historiadores dicen que cien), una de las maravillas del mundo antiguo, que podía ser visto desde una distancia de más de cincuenta kilómetros.

Tras la muerte de Alejandro, sus generales se pelearon entre sí, lo que finalizó con una división del imperio en la que Selenco se hizo con el control de la parte septentrional, incluidos Israel y Siria, mientras que los territorios egipcios quedaron bajo el control de Ptolomeo I, al menos desde el año 306 a.C.

Con todo, Alejandría era principalmente famosa como centro de conocimiento.   Según la tradición, el mismo Alejandro, cuando hubo decidido cuál era el lugar ideal para su nueva ciudad, ordenó también la construcción en ella de una gran Biblioteca dedicada a las musas.

La idea no era nueva: en Babilonia se habían reunido diversas bibliotecas y otras habían surgido en diversos lugares del Mediterráneo, en particular en Pérgamo y Efeso.  No obstante, desde el principio la ambición era mayor en Alejandría que en cualquier otro lugar y, en palabras de un estudioso, lo que se organizó allí fue una verdadera “fuente del conocimiento”.  Ya en 283 a.C. había un sínodo, una comunidad de entre treinta y cincuenta hombres instruidos (sólo hombres), vinculado a la biblioteca y dotado de especiales privilegios: los estudiosos estaban exentos del pago de impuestos y podían abastecerse y hospedarse gratis en el sector real de la ciudad.

La biblioteca estaba dirigida por un erudito-bibliotecario, nombrado por el rey y quien además ocupaba el cargo de tutor real.  Esta biblioteca tenía varias alas, con filas de anaqueles, o thaike, dispuestos a lo largo de paseos cubiertos y provistos de nichos, en los que se guardaban las distintas categorías del saber.  Había salas de conferencias y un jardín botánico.

El primer bibliotecario fue Demetrio y para la época del poeta Calímaco, uno de sus sucesores más famosos, en el siglo III a. de C., la biblioteca poseía más de 400.000 rollos múltiples y noventa mil rollos únicos.  Posteriormente, el Serapeo, la biblioteca hija de la de Alejandría, alojada en el templo de Serapis, un nuevo culto greco-egipcio, acaso basado en el de Hades, el dios griego de los muertos, llegó a reunir otros 40.000 rollos.

Calímaco creó el primer catálogo temático del mundo, el Pinakes, uno de cuyos efectos fue que para el siglo IV d.C., hasta cien estudiosos acudían a la vez a la biblioteca para consultar sus libros y discutir los textos unos con otros.  Esta distinguida comunidad existió durante unos setecientos años.  Los estudiosos escribían sobre papiro, material sobre el que Alejandría mantuvo un monopolio durante cierto tiempo, y luego sobre pergamino, cuando el rey dejó de exportar papiro en un intento de impedir la construcción de bibliotecas rivales en otros lugares, en especial en Pérgamo.

Biblioteca de Alejandría

Los libros de pergamino y papiro se escribían en rollos (su longitud era más o menos equivalentes a la de uno de nuestros capítulos) y se almacenaban en fundas de cuero o lino y se colocaban en estantes.  Para la época de los romanos, no todos los libros eran ya rollos: se habían introducido los códices que se almacenaban en cajas de madera.

La biblioteca también contaba con muchos charakitai, “amanuenses” como se los denominaba, y que eran de hecho traductores.

A los reyes de Alejandría, los Ptolomeos, les encantaba adquirir copias de todos los libros que aún no poseían, en un esfuerzo por reunir toda la sabiduría de Grecia, Babilonia, la India y demás lugares.  En particular, Ptolomeo III Evergetes encargó a agentes que registraran todo el Mediterráneo en busca de textos y él mismo escribió a todos los soberanos del mundo conocido pidiéndoles que le prestaran sus libros para copiarlos.

Cuando le fueron prestadas las obras de Eurípides, Esquilo y Sófocles, conservó los originales y devolvió las copias que habían hecho, renunciando a la fianza  que había pagado.  De igual forma, todas las embarcaciones que pasaban por Alejandría estaban obligadas a depositar todos sus libros (los que transportaran) en la biblioteca, donde se los copiaba y catalogaba como “de las naves”.  En su mayoría, lo que se devolvía a las naves eran las copias de los libros confiscados.

               Una parte de aquella biblioteca de la antigüedad

                                                   LA Biblioteca de Alenadría hoy

Así, la riqueza de saber y cultura que acumuló aquella biblioteca del pasado fue incalculable e hizo que desempeñara un papel primordial en el mundo civilizado de la antigüedad.

Entre los famosos estudiosos que se hicieron en Alejandría se encuentran Euclídes, quien pudo haber escrito sus Elementos durante el reinado de Ptolomeo I (323-285 a.C.), Aristarco, que propuso una descripción heliocéntrica del sistema planetario, y Apolunio de Perga, “el gran geómetra”, que escribió su influyente libro sobre las secciones cósmicas en la ciudad.  Apolunio de Rodas fue el autor de la epopeya El viaje de los argonautas (c. 270 a.C.) y quien presento a Arquímedes de Siracusa, que durante un tiempo se dedico a estudiar las crecidas del Nilo e inventó el tornillo que lo haría famoso.  Arquímedes también inició la hidrostática y esbozó su método para calcular el área y el volumen que, mil ochocientos años después, conformaría las bases del cálculo.

Un bibliotecario posterior, Eratóstenes (276-196 a.C.), fue geógrafo y  matemático.  Gran amigo de Arquímedes, creía que todos los océanos de la Tierra estaban conectados entre sí, que algún día sería posible circunnavegar África y que podría llegarse a la India “navegando en dirección oeste desde España”.

En el solsticio de verano los rayos solares inciden perpendicularmente sobre Siena. En Alejandría, más al norte, midiendo la altura de un edificio y la longitud de la sombra que proyecta, se puede determinar el ángulo formado con el plano de la eclíptica, en el que se encuentran el Sol y la ciudad de Siena, ángulo que es precisamente la diferencia de latitud entre ambas ciudades. Conocida ésta, basta medir el arco de circunferencia y extrapolar el resultado a la circunferencia completa (360º).

Fue Eratóstenes quien calculó la duración correcta del año, quien propuso la idea de que la Tierra es redonda y quien calculó su diámetro con un error de solo 80 km.

Eratóstenes también dio origen a la ciencia de la cronología al establecer con mucho cuidado las fechas de la caída de Troya (1.184 a.C.), la primera olimpiada (776 a.C.) y el estallido de la guerra de peloponeso (432 a.C.).  Asimismo, ideó el calendario que finalmente establecería Julio Cesar y diseño un método para identificar los números primos.

Entre los estudiosos se le conocía como “Beta” (Platón era “Alfa”).

Los Elementos de Euclides es un texto reconocido por lo general como el más influyente de todos los tiempos.  Escrito hacia el año 300 a. C., de él se han hecho muchísimas copias de ediciones que, seguramente lo convierta en el libro más reeditado en el mundo después de la Biblia (sus contenidos, más de 2.000 años después, aún se enseñan en las escuelas de secundarias).

Es posible que Euclides (ev significa “bueno” y kleis significa “llave”) estudiara en la Academia de Platón, incluso con el gran maestro en persona (nació en Atenas hacia el año 330 a.C.); aunque no produjo ninguna nueva idea en sí, sus Elementos (Stoichia) se consideran una historia completa de la matemática griega hasta ese momento.

El libro comienza con una serie de definiciones, como la del punto (“lo que no tiene parte”) o la línea (“una longitud sin amplitud”), describe diversos ángulos y planos, sigue después con cinco postulados (como el de que “puede trazarse una línea de un punto cualquiera a otro punto cualquiera”) y cinco axiomas, como el de que” todas las cosas iguales a la  misma cosa son iguales entre sí”.  Los trece libros, o capítulos, que siguen exploran la geometría del plano, la geometría de los sólidos, la teoría de los números, las proporciones y su famoso método de “agotamiento”.  En este Euclides muestra cómo “agotar” el área de un círculo inscribiendo polígonos en él.

      Dadme una palanca y moveré el mundo

Los famosos espejos de Armímedes que quemaban las velas de las embarcaciones enemigas.


                                                        El tornillo de Arquímedes

También es digno de mención aquí un personaje singular como Arquímedes de Siracusa (287-219 a.C.), el más versátil de los matemáticos helénicos.  Al parecer estudió en Alejandría durante un tiempo, con discípulos de Euclides, y aunque vivió principalmente en Siracusa, donde murió, estuvo en contacto constante con los investigadores de esta ciudad.

Durante la segunda guerra púnica, Siracusa fue arrastrada por el conflicto entre Roma y Cartago y, unida a este último bando, fue sitiada por los romanos entre 214 y 212 a.C. Durante esta guerra, nos dice Plutarco en su vida del general romano Marcelo, Arquímedes inventó un gran número de ingeniosas armas para defenderse del enemigo, incluidas catapultas y espejos capaces de prender fuego a las embarcaciones romanas.  Pese a todo, sus esfuerzos resultaron inútiles y la ciudad cayó.   Pese a que Marcelo había ordenado que respetaran la vida de Arquímedes, un soldado romano le mató con su espada mientras dibujaba una figura geométrica en la arena.

Arquímedes fue un innovador con sus ideas de extraordinario valor sobre las palancas, en su obra sobre el equilibrio de los planos, y sobre hidrostática, en sobre los cuerpos flotantes.  En este último encontramos su famosa idea de que “cualquier sólido menos pesado que un fluido se hundirá, al ser colocado en él, hasta el punto en el que el peso del fluído desplazado sea igual al peso del sólido”.

También exploró los números grandes, una preocupación que siglos después conduciría a la invención de los logaritmos, y consiguió el cálculo más acertado de p hasta la fecha.

                                     Mapa mundi de Cladio Ptolomeo

El último de los grandes matemáticos helénicos de Alejandría fue Claudio Ptolomeo, activo de 127 d.C.a 151 d.C. Su gran obra denominada inicialmente como Sintaxis matemática, compuesta por trece libros o capítulos, terminó conociéndose como Megiste, “la más grande”.  Posteriormente, en el mundo musulmán, surgió la costumbre de llamar a este libro por su equivalente árabe: Almagesto

Así es conocido desde entonces.  Es fundamentalmente una obra de trigonometría, la rama de las matemáticas referente a los triángulos que estudia las relaciones entre sus ángulos y las longitudes de sus lados y cómo todo ello está relacionada con los círculos que los abarcan.  A su vez, estos están relacionados con las órbitas de los cuerpos celestes y los ángulos de los planetas respecto de quien los observa desde la Tierra.  Los libros siete y ocho de Almagesto ofrecen un catálogo de más de un millar de estrellas, dispuestas en cuarenta y ocho constelaciones.

Hacia mediados del siglo III a. C. Aristarco de Samos había propuesto que la Tierra giraba alrededor del Sol.  La mayoría de los astrónomos, Ptolomeo incluido, rechazaban tal idea.

Hipatia, alejandria, acertijos matematicos, Astronomia

Quiero significar aquí que Alejandría fue por mucho tiempo el centro de las matemáticas griegas:  Menéalo, Hezón, Diofanto, Pappo y Proclo de Alejandría contribuyeron todos a ampliar y desarrollar las ideas de Euclides, Arquímedes, Apolunio y Ptolomeo.  No debemos olvidar que la gran era de la ciencia y la matemática griegas se prolongó desde el siglo VI a.C. hasta los comienzos del siglo VI d.c., más de un milenio de gran productividad.  Ninguna otra civilización ha aportado tanto durante un periodo de tiempo tan largo. En aquel movimiento cultural también estuvo presente alguna mujer que todos tenemos en la mente.

Sin embargo, en Alejandría, las matemáticas o, al menos, los números tuvieron otro aspecto muy importante, y también muy diferente.  Se trata de los denominados “misterios órficos” y su énfasis místico.

Según Marsilio Ficino, autor del siglo XV d.C., hay seis grandes teólogos de la antigüedad que forman una linea sucesoria.  Zoroastro fue “el principal referente de los Magos”; el segundo era Hermes Trismegisto, el líder de los sacerdotes egipcios; Orfeo fue el sucesor de Trismegisto y a él le siguió Aglaofemo, que fue el encargado de iniciar a Pitágoras en los secretos, quien a su vez los confió a Platón. En Alejandría, Platón fue desarrollado culturalmente por Clemente y Filón, para crear lo que se conocería como neoplatonismo.

Tres ideas conforman los cimientos de los misterios órficos.  Una  es el poder místico de los números.  La existencia de los números, su cualidad abstracta y su comportamiento, tan vinculado como el del Universo, ejercieron una permanente fascinación sobre los antiguos, que veían en ellos la explicación de lo que percibían como armonía celestial.

La naturaleza abstracta de los números contribuyó a reforzar la idea de un alma abstracta, en la que estaba implícita la idea (trascendental en este contexto) de la salvación: la creencia de que habrá un futuro estado de éxtasis, al que es posible llegar a través de la trasmigración o reencarnación.

Por último, estaba el principio de emanación, esto es, que existe un bien eterno, una unidad o “monada”, de la que brotaba toda la creación.  Como el número, esta era considerada una entidad básicamente abstracta.  El alma ocupada una posición intermedia entre la monada y el mundo material, entre la mente, abstracta en su totalidad, y los sentidos.

Según los órficos, la monada enviaba (“emanaba”) proyecciones de sí misma al mundo material y la tarea del alma era aprender usando los sentidos.  De esta forma, a través de sucesivas reencarnaciones, el alma evolucionaba hasta el punto en el que ya no eran necesarias más reencarnaciones y se alcanzaba el momento de profunda iluminación que daba lugar a una forma conocida como gnosis, allí la mente esta fundida con lo que percibe.  Es posible reconocer que esta idea, original de Zoroastro, subyace en muchas de las regiones principales del mundo, con distintas variantes o matices que, en esencia, viene a ser los mismos.

Pitágoras, en particular, creía que el estudio de los números y la armonía conducían a la gnosis.   Para los pitagóricos, el número uno no era un número en realidad,  sino la “esencia” del número,  de la cual surge todo el sistema numérico.  Su división en dos creaba un triángulo, una trinidad, la forma armónica más básica, idea de la que encontramos ecos en santísimas religiones.

Platón, en su versión más mítica, estaba convencido de que existía un “alma mundial”, también fundada en la armonía y el número, y de la cual brotaba toda la creación.  Pero añadió un importante refinamiento al considerar que la dialéctica, el examen crítico de las opiniones era el método para acceder a la gnosis.

La tradición sostiene que el cristianismo llegó a Alejandría a mediados del siglo I d.C., cuando Marcos el evangelista llegó a la ciudad para predicar la nueva religión.

Las similitudes espirituales entre el platonismo y el cristianismo fueron advertidas de forma muy clara por Clemente de Alejandría (150-215 d.C.), pero fue Filón el indio quien primero desarrolló esta nueva fusión. En Alejandría habían existido escuelas pitagóricas y platónicas desde hacía un largo tiempo, y los judíos cultos conocían los paralelos entre las ideas judías y las tradiciones Geténicas, hasta el punto de que para muchos de ellos el orfismo no era otra cosa que “una emanación de la Torá de la que no había quedado constancia”.

                                                    El filósofo judio Filón de Alejandría

Filón era el típico alejandrino que “nunca confiaba en el sentido literal de las cosas y siempre estaba a la búsqueda de interpretaciones músticas y alegóricas”.  Pensaba que podía “conectar” con Dios a través de ideas divinas, que las ideas eran “los pensamientos de Dios” porque ponían orden a la “materia informe”.  Al igual que Platón, tenía una noción dualista de la Humanidad:

“De las almas puras que habitan el espacio etéreo, aquellas más cercanas a la tierra resultan atraídas por los seres sensibles y descienden a sus cuerpos”.

Las almas son el lado divino del hombre.

Es interesante reparar los hechos pasados y la evolución del pensamiento humano que, en distintos lugares del mundo y bajo distintas formas, todos iban en realidad a desembocar en el mismo mar del pensamiento.

La naturaleza humana y el orden universal, el primero unido a un alto concepto cuasi divino, el Alma, el segundo regido por la energía cósmica de las fuerzas naturales creadoras de la materia y, todo esto, desarrollado de una u otra manera por los grandes pensadores de todos los tiempos  que hicieron posible la evolución del saber para tomar posesión de profundos conocimiento que, en un futuro, nos podrán permitir alcanzar metas, que aún hoy, serían negadas por muchos.

Para mí, el mirar los hechos pasados y estudiar los logros alcanzados en todos los campos del saber, es una auténtica aventura que profundiza  y lleva al conocimiento del ser humano que, según la historia, es capaz de lo mejor y de lo pero, sin embargo, nadie podrá negarle grandeza ni imaginación.

emilio silvera

El Efecto Casimir y algunos misterios por desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

{short description of image}

Hendrik Casimir *1909 Director of Philips’ research laboratories, Eindhoven, Netherlands Assistant to Wolfgang Pauli: Winter semester 1932-1933 – Summer semester 1933 © Pauli Archive, CERN, Geneva.

Este era el físico teórico holandés Hendrik Casimir que fue el primero en observar que cuando dos espejos se enfrentaban en el vacío, las fluctuaciones en el vacío ejercen “presión de radiación” sobre ellos. En media, la presión externa (flechas rojas) es mayor que la presión interna (flechas verdes). Ambos espejos se atraen mutuamente hacia el otro por la llamada Fuerza de Casimir. La fuerza F ~ A / d4 , donde A es el área de los espejos y d es la distancia entre los mismos.

La Fuerza de Casimir es el efecto mecánico más famoso de las fluctuaciones del vacío. Considera la separación entre dos espejos planos como una cavidad . Todos los campos electromagnéticos tienen un “espectro” característico que contienen muchas frecuencias distintas. En un vacío libre todas las frecuencias tienen la misma importancia. Pero dentro de la cavidad, donde el campo es reflejado sucesivamente entre los espejos, la situación es distinta. El campo se amplifica si múltiplos enteros de la mitad de la longitud de onda encajan exactamente en la cavidad. Esta longitud de onda corresponde a la “resonancia de cavidad”. A otras longitudes de onda, por contra, se suprime el campo. Las fluctuaciones del vacío se suprimen o aumentan dependiendo de si la frecuencia corresponde a la resonancia de cavidad o no.

Una cantidad física importante cuando se discute la Fuerza de Casimir es la “presión de radiación de campo”. Cada campo – incluso en campo de vacío – lleva energía. Como todos los campos electromagnéticos puede propagarse en el espacio también ejercen presión en las superficies, como un río que fluye y empuja una compuerta. Esta presión de radiación aumenta con la energía – y por tanto la frecuencia – del campo electromagnético. En la frecuencia de resonancia de cavidad la presión de radiación dentro de la cavidad es más fuerte que la del exterior y los espejos por lo tanto son alejados. Fuera de la resonancia, por contra, la presión de radiación dentro de la cavidad es menor que la del exterior y los espejos se unen.

Ilustración del Efecto Casimir: Este fenómeno se debe a que los fotones situados entre dos placas conductoras no pueden oscilar con cualquier frecuencia, sino solo con las que resultan compatibles con las condiciones de contorno que las placas imponen sobre el campo electromagnético en uno y otro extremo

Esto supone que, en equilibrio, los componentes atractivos tienen un impacto ligeramente mayor que los repulsivos. Para dos espejos planos perfectos paralelos la Fuerza de Casimir es, por lo tanto, atractiva y los espejos son empujados uno contra otro. La fuerza, F, es proporcional al área de la sección, A, de los espejos y se incrementa 16 veces cada vez que la distancia, d, entre los espejos se reduce a la mitad: F ~ A / d 4. Aparte de estas cantidades geométricas la fuerza depende solo de valores fundamentales – la constante de Planck y la velocidad de la luz.

Mientras que la Fuerza de Casimir es demasiado pequeña para ser observada para espejos que están separados varios metros, puede ser medida si los espejos están a unas micras uno de otro. Por ejemplo, dos espejos con un área de 1 cm2 separados por una distancia de 1 µm tienen una Fuerza de Casimir atractiva de unos 10-7 N – aproximadamente el peso de una gotita de agua de medio milímetro de diámetro. Aunque esta fuerza podría parecer pequeña, a distancias por debajo de un micrómetro la Fuerza de Casimir se convierte en la mayor fuerza entre dos objetos neutros. De hecho a separaciones de 10 nm – unas cien veces el tamaño normal de un átomo – el efecto Casimir produce el equivalente a 1 atmósfera de presión.

Aunque no tratamos directamente con estas distancias tan pequeñas en la vida diaria, son importantes en las estructuras nanoescalares y los sistemas microelectromecánicos (MEMS). Estos son dispositivos “inteligentes” del tamaño de una micra en lo que los elementos mecánicos y partes móviles, tales como diminutos sensores y actuadores son tallados en un sustrato de silicio. Los componentes electrónicos están conectados a los dispositivos para procesar información sensible o para guiar el movimiento de las partes mecánicas. Los MEMS tienen muchas aplicaciones posibles en la ciencia y la ingeniería, y ya se usan como sensores de presión en los air-bags de los vehículos.

Leer más

Año Internacional de la Astronomía-AIA-IYA2009

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

AGUJEROS NEGROS GIGANTES

La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Leer más