jueves, 28 de enero del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Pero ¿Sabemos hacia dónde vamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia futura    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si las supercuerdas nos conducen a las respuestas últimas, entonces ¿en qué dirección debemnos continuar nuestras investigaciones?, ¿es que nos hemos introducido tanto en el mundo de lo desconocido y lo ininteligible que estamos a punto de ahogarnos en un océano del absurdo?, ¿nos hemos enterrado tánto bajo una montaña de tantas preguntas imposibles que deberíamos considerarnos perdidos para la ciencia? y, como decía el otro día, ¿tiene algún sentido seguir especulando acerca de la teoría de todo en este mundo extraño de los números de Planck? que, por otra parte, quedan tan lejos de nuestras posiblidades que difícilmente podremos alcanzar ni en varias generaciones. La Humanidad no dispone de la energía de Planck para llegar hasta las cuerdas vibrantes que, de existir, necesitan de esa energía para que las podamos visitar.

Ahí, situados en ese puntito diminuto señalado con el circulo rojo que enmarca nuestro Sistema solar, unos seres también diminutos, conscientes y pensantes, pretenden desde su pequeño reino galáctico, dilucidar todos los mistrios de la Naturaleza, del Universo inmenso.

Acordaos de los muchos enigmas que a lo largo del tiempo hemos tenido que ir resolviendo. Recuerso la pasión de John Archival Wheeler cuando en sus magistrales clases, explicaba a sus alumnos la Implosión de una estrella masiva y cuyos resultados no eran otros que el nacimiento de un agujero negro. El agujero negro se produce cuando la materia durante la implosión alcanza en un cierto punto  la velocidad de la luz. Entonces se pasa un borde matemático, un punto de no retorno. Un viajero espacial (desafortunado) que entre en el agujero negro junto con la materia durante la implosión no podría escapar ni siquiera  si pudiése darse la vuelta a la velocidad de la luz. Con él, todas las señales que intentara emitir serian también atrapadas y, junto a él, desaparecerían para siempre en eso que llamamos singularidad. Un lugar misterioso de energías y densidades infinitas del que nada puede escapar.

Otras de nuestras firmes creencias que se llama Modelo Estándar, tan poco es tan perfecto y tiene goteras por muchas partes de su frágil techo. Todos hemos sabido de los nuevos datos del experimento BaBar que, nos hablan de las inexactitudes del Modelo en el que se han hallado diferencias que demandan uno nuevo que, sea más acorde a lo que la Naturaleza es, ya que, no encajan algunos parámetros y eso nos lleva a tener que exigir nuevas formas, nuevos caminos que nos lleven hacia el reflejo real de una Naturaleza que no acabamos de entender y que, en nuestros modelos actuales se resquebraja cuando tratamos, por medio de complejos experimentos, de comprobar la exactitud de las teorías.

Fergus Wilson, uno de los analistas, y científico del Laboratorio Rutherford Appleton (del STFC) en Oxfordshire, Reino Unido, lo explica de manera bastante contundente: “Nuestra teoría actual acerca de las fuerzas fundamentales del universo, formulada hace cerca de 40 años, está empezando a mostrar señales de fracaso. Pero resulta igual de impactante el hecho de que las nuevas mediciones sugieren que cualquier teoría que vaya a reemplazarla tendrá que ser más exótica y compleja de lo que podíamos esperar o imaginar. Aunque no debemos saltar precipitadamente a conclusiones basadas en un solo experimento, este nuevo resultado es uno de lo más convincentes que hemos visto. Y está en la línea de indicios previos que ya hicimos públicos recientemente, todo lo cual apunta en la misma dirección”.

Así pues, parece que fantan algunos detalles técnicos, la física teo´rica necesita de un buen empujón y, como diría nuestro amigo Tom Wood, es preciso acudir a nuevos paradigmas que nos indiquen otros caminos que, alejados de los clásicos y enquilosados modelos actuales, nos lleven hacia el futuro. Así que tenemnos que convenir en que, el Modelo estándar actual, ha sido una magnifica herramienta que nos ha servido bien pero, no es perfecto. En promer lugar, podríamos enpezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fueese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de esos números y se han propuesto varias teorías para “predecir sus valores”. El problema de esas teorías es que los argumentos que dan nunca son convincentes.

¿Por qué se iba a preocupar a la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es un principio fundamental nuevo, tal como el principio de la relatividad, pero claro, no queremos abandonar los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar!

Así las cosas,  creo que el mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, una de las cuestiones viejas a debatir es: ¿Por qué el Modelo estándar no admite la cuarta fuerza?

Una regla universal en la Física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más prqueñas en el espacio y en el tiempo. Supongamos que tenemos un acelerador de partículas tan potente que pudiera actuar con la potencia mil veces superior a la del LHC. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas particulas que que ahora sí, nos hablarían de otro “universo” más pequeño y exótico que el que ahora conocemos y…¡quién sabe qué podríamos hallar ahí? ¿Quizá cuerdas?

Por otra parte, sin rubor alguno, hablamos del “vacío superconductor” cuando, en realidad, no conocemos bien ese “vacío” ni lo que realmente pueda contener, sólo tenemos algunas ideas e indicios que, nuestra imaginación aumenta hasta el infinito haciéndolo más grande que una galaxia.

De todas las maneras,  estaría bien saber, a ciencia cierta, cómo es el campo de Higgs (si es que existe) del que toman la masa todas las partículas (si es que la toman), y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e interracionan con él, y es el efecto frenado el que les otorga la masa en lugar del famoso Bosón.

Claro que esa, como otras conjeturas sobre los Océanos de Higgs y su dichosa Partícula “repartidora de masa”, no son más que conjeturas que, más adelante, debemos ir comprobando para poder escribirlas con letras de oro en el Libro de la Física, o, por el contrario, desecharlas como se ha hecho con tántas otras ideas y teorías frustradas que nunca llegaron a ninguna parte.

¡Los fotones de Yang-Mills adquieren su masa y el proncipio gauge se sigue cimpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente penso que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs había sido puesto ahí “a propósito” y la “partícula de Higgs, en sí misma, no era una “partícula gauge”. Si se admitía esto, ¿por qué no introducir más partículas y campos arbitrarios? Estas ideas se consideraron como simples modelos con los que jugar, sin mucho significado fundamental al que ahora se quiere llegar con el LHC pretendiendo hacer bueno todo aquello y, al menos los físicos, insisten en que, el campo y la partícula están ahí…¡ya veremos en qué queda todo esto! Son muchos los cabos sueltos y las cosas sin explicar.

En segundo lugar estaba lo que se llamó “teorema de Goldstone”. Ya se habían priducido antes modelos de partículas con “rotura espontánea de simetría”, pero para la mayoría de esos modelos, Jeoffrey Goldstone habia probado que siempre contenían partículas sin masa y sin espín. Muchos investigadores, por lo tanto, pensaron que la teoría de Higgs también debía contener esa partícula de Goldstone, sin masa y que esto era un inconveniente porque entre las partículas conocidas no había ninguna partícula de Goldstone. Incluso el propio Goldstone había advertido que el Modelo de Higgs no satisfaccía las condiciones para su demostración, así que no tenía que ser válido para este caso, pero todo el mundo estaba tan impresionado con las matemáticas del teorema que el Modelo de Higgs-Kibble no tuvo éxito durante mucho tiempo.

AccComplex0700829

El bosón de Higgs pretende ser una parte integral de nuestra comprensión de la Naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa (al interaccionar con el Campo dónde, probablemente, ve frenada su marcha y su desplazamiento es más lento debido al medio por el que discurre su viaje). La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas particulas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.

Y así, el teorema de Goldstone se utilizó como un “teorema de imposibilidad”: si el espacio vacío no es simétrico, entonces no se puede evitar la presencia de partículas sin masa y sin espín. Ahora sabemos que, en nuestro caso, la letra pequeña invalida el teorema; las partículas de Goldstone se hacen invisibles debido a la invariancia gauge y no son más que las “partículas fantasmas” que encontró Feynman en sus cáculos. Además, debemos recordar que el Mecanismo Higgs no es una auténtica rotura de simetría.

Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.

Claro que, algunos, me piden más profundidad en las explicaciones y, no se conforman con pasar por encima de las cuestiones, hay que entrar más en materia y dejar sentados algunos de los parámetros maemáticos que en todo esto están presente, y, para ellos…

“Los físicos han buscado al bosón de Higgs por cerca de 50 años porque su descubrimiento completaría el Modelo Estándar de la física de partículas. El bosón de Higgs y su campo asociado explican cómo la simetría electrodébil se rompió justo después del Big Bang, lo que le dio a ciertas partículas elementales la propiedad de la masa. Sin embargo del Modelo Estándar no predice la masa de Higgs, y varios programas experimentales en el LEP del CERN, en el Tevatron de Fermilab y ahora el LHC del CERN habían intentado medir la masa de la partícula.”

 

En el seminario llevado a cabo en el CERN como preludio a la mayor conferencia de física de partículas de este año, el ICHEP2012 en Melbourne, los experimentos ATLAS y CMS presentaron sus resultados preliminares en la búsqueda del Bosón de Higgs. Ambos experimentos observaron una nueva partícula en la región de masa entre 125-126 GeV.

“Observamos en nuestros datos claras señales de una nueva partícula, al nivel de 5 sigma, en la región de masa alrededor de 126 GeV. El impresionante rendimiento del LHC y ATLAS y el gran esfuerzo de mucha gente nos trajo a esta excitante etapa”, dijo la presentadora del experimento ATLAS Fabiola Gianotti, “pero se necesita más tiempo para preparar estos resultados para su publicación”

“Los resultados son preliminares pero la señal 5 sigma alrededor de 125 Gev que estamos viendo es dramática. Ésta es de hecho una nueva partícula. Sabemos que tiene que ser un bosón y es el bosón más pesado que hemos encontrado hasta ahora,” dijo el presentador del experimento CMS Joe Incandela. “Las implicaciones son muy significantes y es precisamente por esta razón que debemos ser extremadamente diligentes en todos nuestros estudios.”

Dos prestigiosos investigadores habían sugerido de forma independiente que se podían construir modelos realistas de partículas en los cuales, el sistema de Yang-Mills fuera responsable de la interacción débil y el mecanismo de Higgs-Kibble la causa de su corto alcance. Uno de ellos era el paquistaní Abdus Salam que estaba buscando modelos estéticos de partículas y pensó que la belleza de la idea de Yan-Mills era razón suficiente para intentar construir con ella un modelo de interacción débil. La partícula mediadora de la interacción débil tenía que ser un fotón de Yang-Mills y el mecanismo de Higgs-Kibble la única explicación aceptable para que esta partícula tuviera una cierta cantidad de masa en reposo..y, de esa manera anda y recorre sus caminos la física.

Nos dice Ton Wood:

“Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.

El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por años. Por la normal aparición de un animal más en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.”

¡Cuánta razón lleva!

Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.
El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por anos. Por la normal aparición de un animal mas en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.

Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.
El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por anos. Por la normal aparición de un animal mas en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.

Incluso se ha llegado a hablar de crear en el LHC Monopolos magnéticos. Acordaos: “¿Desaparecerá la Tierra, engullida por un agujero negro fabricado por la mano del hombre? ¿Se desintegrarán sus protones a causa de monopolos magnéticos imprudentemente creados en el LHC (Gran Colisionador de Hadrones? ¿Los haces de protones del CERN harán que el vacío entre en ebullición y destruirán el Universo tal como lo conocemos? A estas preguntas legítimas del gran público, un grupo de expertos del CERN responde de nuevo: NO.

Ese es el copmplot cintífico-mediatico al que antes se refiería Tom. Y la prensa seguía: “La creación de mini agujeros negros, y eventualmente de mini agujeros de gusano en el LHC, es muy especulativa. Normalmente, las propias leyes físicas que permiten la creación de tales objetos imponen que un mini agujero negro debe evaporarse con rapidez antes de poder absorber materia. Se trata de una predicción basada en los trabajos de Stephen Hawking. No obstante, nada parece demostrarnos con seguridad que los cálculos realizados no contengan errores y que, una vez fabricado, tal mini agujero negro no resulte ser capaz de engullir toda la Tierra.”

Claro que, no debemos sorprendernos de nada, todo lo que podamos imaginar es susceptible de convertirse en realidad. Encima de la Imagen de arriba, en una prestigiosa página científica, hemos podido leer: Monopolos magnéticos nanométricos observados en cristales de hielo de espines.

Imagen de Santiago Grigera recibiendo la distinción en la UNLP. Crédito: UNLP

Sí, sabemos que no dejamos de avanzar (no como podríamos, estamos atados a los viejos conceptos de los que no queremos soltar amarras). Sin embargo, deberíamos tener la mente abierta a nuevos postulados, buscar como nos dice Tom nuevos paradigmas y tratar, en fin, de hacer una nueva física que nos lleve por caminos diferentes en los que, ahora sí, encontraremos nuevos conceptos que sobrepasarán a esos otros, ya viejos que, aunque sirvieron en su momento, creo llegada la hora de dejar atrás y caminar con esa nueva física que estará más en consonancia con el futuro.

No tengamos miedo de lo nuevo, conservemos lo viejo, y aprovechándonos de algunas partes de aquellas teorías, construyamos otras más modernas que sobrepasen las actuales ideas y, sobre todo, dejémonos de “ficciones” que no nos dejan andar, paralizan nuestro caminar y no adelantamos nada.

¡Soltemos amarras! ¡Hagámonos mayores!

emilio silvera

El Universo evoluciona, y, ¡nosotros también!

Autor por Emilio Silvera    ~    Archivo Clasificado en La Ciencia    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Mucho antes de que llegara las revoluciones científicas que todos tenemos en la mente, la Naturaleza parecía estar regida por el Caos: Terremotos, volcanes que oscurecían el cielo lanzando el negro humo acompañado de cenizas, lluvias torrenciales y el rayo, tifones, enfermedades incurables de la que morían millones de personas, las hanbrunas que azotaban a tantas criaturas y, nadie podía explicar el comportamiento del viento, aquellas tempestades marinas, o, temblores de la Tierra inesperados que traían la destrucción y la muerte.

Todo aquello, tenía que ser el resultado de que, enfurecidos dioses castigaban las impurezas del mundo y de sus criaturas. En absoluto sugería nadie que pudieran existir leyes “sencillas” y ordenadas con las que se pudieran explicar tal confusión en el comportamiento de una Naturaleza que, lo mismo se presentaba esplendorosa que rugía sembrando el miedo y el dolor de mil maneras distintas.

El sistema solar

Allí donde se percibía orden en el universo, este orden se atribuía a la respuesta que daban los objetos físicos a una necesidad de que se preservaran la armonía y el orden siempre que fuera posible -se suponía las órbitas de los planetas y del Sol alrededor de la Tierra y que eran círculos, porque los círculos eran perfectos-, los objetos caían hacia el suelo porque el centro de la Tierra marcaba el centro de todo y todo tendía a confluir hacia aquel lugar, el centro de simetría de todo el universo. Acordaos que, el filósofo Aristarco de Samos, se atrevió a expresar sus ideas y dijo que, la Tierra y todos los planetas se movían alrededor del Sol. ¡Claro, nadie le prestó la menor atención! y, muchísimos años más tarde, tuvo que venir Copérnico, allá por el año 1543,  diciendo lo mismo para pasar a la historia. Su libro De Revolutionibus Orbium Coelestrum quedó terminado en lo esencialen 1530 y, a cuando se publicó, hizo exclamar, en 1539, a Martín Lutero: “Este loco desea volver de revés toda la astronomía; pero las Sagradas Escrituras nos dicen que Josué ordenó al Sol que se detuviera, no a la Tierra”. Galileo replicó más tarde, respondiendo a críticas similares: “La Biblia nos muestra la manera de llegar al cielo, no la manera en que se mueven los cielos”. Tuvo que llegar Kepler, quien, utilizando las observaciones munuciosamente recopiladas por Tycho Brahe, señaló, para aqueloos que tuvieran los ojos bien abiertos que, el planeta Marte no sólo se movía alrededor del Sol sino que, su órbita, era elíptica, echando así por tierra la antigua perfección circular, preferida por los clásicos griegos .

Ahora, pasado el tiempo y mirando hacia atrás, podemos ver con diáfana claridad, muchos ejemplos que podrían ilustrar la diferencia tan brutal que existe entre la ciencia de los antiguos y la de tiempos posteriores a partir de Galileo. Es cierto que los antiguos griegos fueron unos matemáticos excelentes, en particular, unos  geómetras de primera. También es cierto que aquella geometría que imperó durante más de dos mil años entre nosotros (aún hoy,  alguna perdura), tenía sus raíces en culturas más antiguas.

[FNT 2]

Galileo y el péndulo. La imagen nos habla del primer experimentador serio de la historia. Experimentó para demostrar el tiempo que invertía el péndulo en realizar una oscilación completa que resultó ser siempre la misma, tanto si recorría un amplio arco como si describía uno pequeño. Experimentos posteriores demostraron que ese tiempo dependía de la longitud del péndulo. Este es el fundamento del reloj de péndulo (diseñó uno que llegó a construir su hijo). Posteriormente utilizó el péndulo como cronómetro preciso cuando realizó experimentos para estudiar el comportamientode unas bolas que rodaban hacia abajo por una rampa. Estos experimentos le servían para estudiar la caída de objetos para investigar los efectos que producía la Gravedad sobre los cuerpos en movimiento. Él desarrolló el concepto de aceleración: Una velocidad constante de 9,8 metros por segundo significa que cada segundo el objeto en movimiento cubre una distancia de 9,8 metrtos. Él descubrió que los objetos que caen se mueven cada vez más rápidos, con una velocidad que aumenta cada segundo y que el aumento, era uniforme, siempre el mismo. También observó como aquellas bolas que caen por la rampa, se frenan a causa del rozamiento. Aquello era física pura dándo sus primeros pasos y camino de la relatividad, la termodinámica y la mecánica cuántica.

Fue un grande entre los gigantes. Se le suele recordar como el fundador del método experimental de la física; su imagen va asociada con la del telescopio y el plano inclinado, con los instrumentos que diseñó y armó para observar y medir. También es famosa su polémica con los aristotélicos de su tiempo que se limitaban a citar a los clásicos y pensar cómo debían ser los movimientos de los cuerpos, en vez de observarlos. Por último, ¿quién no conoce la anécdota del atrevido maestro arrojando dos cuerpos de diferente peso desde la Torre de Pisa? (Anécdota probablemente apócrifa pero, como dicen los italianos, Se non è vero… è ben trovatto! ).

Fue una combinación del descubrimiento de las órbitas elípticas por parte de Kepler, y de la teoría de Galileo sobre la aceleración y el método científico, lo que preparó el camino para el mayor descubrimiento científico del siglo XVII, y quizá de todos los siglos: la Ley de la Gravitación universal de Newton que cerró con el broche de oro que conocemos por su gran obra: Philosophiae Naturalis Principia Mathemática, más conocida coloquialmente como los Principia, publicada en 1687.

Newton adoptó y perfeccionó la idea de Galileo, valorando de manera positiva los modelos deliberadamente simplificados (como los planos sin rozamiento) para utilizarlos en la descripción de aspectos concretos del mundo real. Por ejemplo, una característica fundamental de los trabajos de Newton sobre la Gravedad y las órbitas  es el hecho de que, en sus cálculos realtivos a los efectos de la Gravedad, él consideró objetos tales como Marte, la Luna o una manzana, como si toda su masa estuviera concentrada en un solo punto, y de esta manera, siempre que nos encontremos en el exterior del objeto en cuestión, su influencia gravitatoria se mide en función de nuestra distancia a dicho a dicho punto, que es el centro de masa del objeto /y asimismo el centro geométrico, si el objeto es una esfera).

Allí quedaron para las generaciones venideras las Leyes del movimiento de Newton, que copnstituyen la base de trescientos años de ciencia, pero que puede resumirse de una forma muy sencilla y que marcan el desarrollo del modo científico de observar el mundo.

Para resolver un problema en mecánica, lo único que necesito es aplicar las tres leyes de Newton

- Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.

- El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

- Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

Esta última y tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.

El problema de los tres cuerpos fue, totalmente inabordable por Newton que, en aquellos casos en los que se veía imposibilitado, siempre recurría a Dios para que le solucionara el asunto. Claro que, ante tal sugerencia, siempre se encontraba de frente con Leibniz que, comparó el universo ordenado y determinista de Newton con un reloj, afirmando con sarcasmo que el Dios de Newton debía ser un relojero bastante torpe si era incapaz de hacer un reloj que marcara siempre la hora correcta, pues para que funcionara bien tenía que intervenir cada vez que se estropera.

Aquel problema de los tres cuerpos (del que hablaremos en otra ocasión), continuó sin solución hasta finales del siglo XVII, cuando el matemático francés Pierre Laplace, aparentemente puso orden en el sistema solar (claro que, también tendríamos que ver lo que dijo Poincaré, otro francés, al respecto).

Así, poco a poco, se pudo ir poniendop orden y buscando explicación para todos aquellos fenómenos de la Naturaleza que no tenían explicación y que, sólo la Ciencia, nos la podía dar.

Mas tarde llegarían Faraday y Maxwell que investigaron la naturaleza de la luz el primero y, supo expresarla en ecuaciones el segundo. Aquello, fue un paso de gigante para comprender el mundo que nos rodea y cómo funciona, en algunos aspectos, la Naturaleza. Podemos decir que aquello fue uno de los mayores triunfos de la Ciencia del siglo XIX. La explicación dada por Maxwell sobre la radiación electromagnética se basó en la obra de Faraday y, entre ambos, dijeron al mundo que electricidad y magnetismo eran dos aspectos distintos de la misma cosa.

Las ecuaciones de Maxwell llevaban consigo dos características muy curiosas: una de ellas pronto tendería un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera de aquellas características innovadoras era que daban a la velocidad de la luz un valor constante, independientemente de cómo se mueva la fuente de luz con respecto a la persona (o aparato) que mida su velocidad. Ya sabeis que fue esto, lo que lelvó a Einstein a desarrollar la teoría de la relatividad especial en 1905.

La nebulosa Cabeza de Caballo

Antes que Eisntein Planck y después muchos otros, vinieron a poner los conocimientos de la Ciencias Físicas y Astronómicas en un  lugar privilegiado en el que, podíamos mirar las galaxias y también a los átomos. El mundo de lo muy grande y el de lo muy pequeño, quedó al alcance del entendimiento humano. Claro que, Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descorrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

¡Cuánto hay ahí, en esa bella Nebulosa de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los matriales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el povo del lugar, mientras ellas, presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

http://univerpuebla.files.wordpress.com/2010/12/espacio.jpg

¿Qué sería de la cosmología actual sin ? Es la ecuación de Einstein donde es el tensor energía-momento que mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio.

 

 

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general general: la curvatura del espacio-tiempo se hace infinita en un Agujero Negro.

La cosmología estaría 100 años atrás sin esta ecuación. Einstein  con sus dos versiones de la realtividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, conseguir que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía. Claro que, al mérito de Einstein (que lo tiene), tendríamos que sumar el de Faraday, Maxwell, Mach, Lorentz, Planck y algunos otros de cuyas ideas él supo aunar un todo que clarificó el mundo y que, por separado, no decían tanto.

No puedo evitarlo, siento debilidad por las estrellas, esos objetos brillantes del cielo en los que, se “fabrican” los elementos complejos que son la materia primaria para la vida. Nosotros, como he comentado muchas veces, estamos hechos de polvo de estrellas.

En ellas, en las estrellas, se producen cambios y transformaciones de cuyos procesos, debemos conocer para saber lo que allí ocurre y el pro qué de esas mutaciones de la materia. Siempre llamó mi atención las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (como la nebulosa cabeza de caballo en la imagen de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

La Tierra desde el espacio

 

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparada con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, quizás (sólo quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer.

http://1.bp.blogspot.com/_xyYFMwz4t6g/S7-euKLPDFI/AAAAAAAACkY/ur2Aaiw1zHg/s1600/conciencia+03.jpg

          ¡Sí, la Galaxia está en nuestra Mente y, nuestra Mente, en la Galaxia!

La evolución del Universo que está prescrita por el paso del Tiempo (con la ayuda de la Entropía), es inexorable, y, nosotros, nuestras mentes que son el producto evolucionado en su más alto grado de la materia, también evolucionamos al mismo ritmo que el universo nos marca. De esa manera, el transcurrir de los siglos posibilitan la apertura mental de nuevas ideas y, el conocimiento del mundo, de la Naturaleza, se hace cada vez más patente para nosotros que, al final de toda esta historia, volveremosa fundirnos con todo, en el mismo lugar del que partimos: ¡Las estrellas! allí está nuestro origen y, algo me dice que volveremos a él.

¿Será cuando llegue Andrómeda y le de el beso de amor a la Vía Láctea?

emilio silvera