viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Creo que siempre, buscaremos algunas respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imaginemos una mente tan inteligente que, en todo instante, pudiera tener conocimiento de todas las fuerzas que controlan la Naturaleza y también, de las condiciones en que se encuentran en cada instante todas las entidades e consta el Cosmos “infinito”. Si esta mente tuviera una inteligencia suficiente para analizar todos esos datos, podría abarcar con una sola fórmula los movimientos de los cuerpos de mayor tamaño del universo y, los de los átomos más ligeros; para ella nada sería incierto; el futuro y el pasado estarían ambos ante sus ojos, no habría secretos ni misterios para ella y, si eso fuese posible…¿sería una mente feliz?

Elequivalente de esa mente poderosa podría ser un superordenador que conocería las posiciones y las velocidades de todaslas partículas del universo, y pudiera utilizar las leyes de Newton y las que describen las fuerzas de la Naturaleza (como la Gravedad y el electromagnetismo), no solo para predecir la trayectoria futura de cada partícula, sino para averiguar toda la historia de su procedencia -porque en las leyes de Newton no hay nada que revele la dirección del tiempo y funcionan de la misma manera si éste transcurre en sentido contrario, como podemos ver fácilmente si nos imaginamos el proceso inverso del hipotético choque entre dos mundos, o, si invertimos los mocimientos orbital de todos los planetas del Sistema solar-.

No exioste flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no existe lugar para el libre Albedrío.

Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas -aunque la valoración si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a los filósofos.

Según las leyes de Newton, las colisiones entre pares de objetos son perfectamente reversibles. La imagen resulta igualmente plausuble con independencia de cómo tracemos la “Flecha del Tiempo”.

Este mismo problema relativo al Tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell. La explicación dada por Maxwell sobre la radiación electromagnética se basaba en la obra de Michael Faraday que fue el primero en proponer la existencia de un “campo” eléctrico y magnético que surgían en torno a imanes y objetos que poseyeran carga eléctrica.

Fue Faraday el que propuso que la luz podía estar producida por algún tipo de vibración de las lineas de fuerzas asociadas con umánes y partículas cargadas, que vibrarían como lo hacen las cuerdas de un violún al ser pulsadas. Faraday, un esencial experimentador, carecía de los conocimientos necesarios para formular las ecuaciones que expresaran sus ideas.  La llegada de Maxwell solucionó aquel problema y, viendo con diáfana claridad todo lo que Faraday había hecho y lo que sus propuestas implicaban, desarrollo el trabajo que termino en 1860 y, mediante cuatro ecuciones vectoriales, demostró al mundo que, todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluído el comportamiento de la luz, podían describirse mediante su conjunto de su cuatro ecuaciones. Estas ecucianes eran para las radiaciones y para los campos electromagnéticos lo que las leyes de Newton para la materia sólida.

Entre los dos, Newton y Maxwell aportaron el conjunto de herramientas matemáticas para controlar todo lo que la Física conocía a mediados del siglo XIX. Por otra parte, lo más maravilloso de las ecuaciones de Maxwell era que, sin que se hubiera pedido, proporcionaba una descripción de la luz -las ecuciones se crearon para describir otros fenómenos electromagnéticos, pero incluían en sí misma una solución que describía las ondas electromagnéticas que se desplazaban por el espacio as cierta velocidad-. Esta velocidad es, exactamente, la velocidad de la luz, es decir 299.792,458 k/s que, ya había quedado bien determinada en la década de 1860 y pronto se podría medir con una precisión aún mayor que nos llevó a la que hoy conocemos y que arriba dejo reseñada.

¿Qué es lo que dicen en conjunto? Son la descripción del campo electromagnético: el campo eléctrico, el campo magnético, su origen, comportamiento y relación entre ellos, incluyendo las ondas electromagnéticas como la luz. Básicamente, con estas ecuaciones es posible saber cómo va ser y cómo va a comportarse el campo electromagnético en una región determinada, a partir de las cosas que hay allí. La contrapartida, es decir, qué le pasa a las cosas que hay allí a partir del campo electromagnético, está descrita por la fuerza de Lorentz, de la que no vamos a hablar hoy. El conjunto de estas ecuaciones describe cosas como la corriente eléctrica, los imanes, los rayos, la electricidad estática, la luz, las microondas, la radio… vamos, son un filón.

Hay un par de cosas más que es conveniente saber sobre estas cuatro ecuaciones. La primera es que, expresadas matemáticamente o en lenguaje común, representan leyes físicas. No tienen demostración, sino que juntas constituyen una teoría que ha sido verificada experimentalmente. Dicho de otro modo, si alguien realizase experimentos que nos demuestren que estas ecuaciones son una estupidez, las tiraríamos a la basura y a otra cosa, mariposa. Sin embargo, esto no ha sucedido así ni es probable que suceda: más bien hemos ido comprobando aspectos en los que se acercan a la realidad pero fallan ligeramente, de modo que las hemos ido modificando para tener en cuenta cosas como la cuántica o la relatividad. Eso sí, el espíritu y el significado último siguen siendo básicamente los mismos.

Sobre hombros de gigantes

                   Ampère, Coulomb, Gauss, Ørsted, Faraday (escondido, su timidez no le deja asomarse).

El segundo detalle a tener en cuenta es que, como veremos en el siguiente epígrafe, las ecuaciones originales no eran cuatro y las que usamos hoy en día no son exactamente las mismas que propuso James Clerk Maxwell. El bueno de James utilizó algunas otras magnitudes diferentes, y unas cuantas ecuaciones más, mientras que fue Oliver Heaviside quien hizo un pulido, remodelación y lavado de cara que nos proporcionó lo que ves arriba y sus otros equivalentes matemáticos.

Es más, de las cuatro ecuaciones de arriba, la única en la que Maxwell hizo una contribución concreta y novedosa es la última, de modo que cada una de las cuatro ecuaciones llevan el nombre de otro científico –quien propuso cada una–, con el propio Maxwell compartiendo honor en esa última. Puede que al leer esto hagas una mueca de desdén a este escocés genial, pero creo que sería una equivocación: a menudo, el genio está en sintetizar, no en crear. Como veremos en un momento, muchos científicos habían ido descubriendo pinceladas del comportamiento eléctrico y magnético de las cosas, pero eran eso, retazos. Hacía falta un auténtico genio para relacionar unas ideas con otras y mirar las cosas como un todo, y ese genio fue Maxwell. Pero veamos, brevemente, cómo sucedió todo.

Aunque Maxwell como Einstein, tomo “prestadas” algunas ideas de otros para su formulación, el hecho que queda es que se aquello se escribe: En 1873 ocurrió un hecho que revolucionó la historia humana para siempre. Fue un acontecimiento de la misma importancia que el descubrimiento del fuego, la rueda o los metales. Aquel año el físico, matemático y poeta escocés Jamez Clark Maxwell descubrió las ecuaciones que describen como se entretejen el campo eléctrico y magnético y como actúan sobre la materia. Como resultado, el mundo cambió de pies a cabeza en menos de 100 años. De hecho, la máquina en la que lees estas líneas existe sólo gracias a que conocemos lasEcuaciones de Maxwell.
Claro que, como nada es perfecto, estas ecuaciones también tienen sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muu pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las interacciones electromagnéticas (Maxwell), como la descripción clásica de la interacción entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Los efectos cuánticos -o, al menos, un efecto cuántico concreto- aparecerán finalmente en esta historia.
La característica extraña de las ecuciones de Maxwell es que, como las ecuciones de Newton, no contienen la flecha del tiempo. esto no tiene que ser tan preocupante si pensamos en cosas tales como las partículas dotadas de carga eléctrica que se mueven en un campo magnético e imaginamos que se invierte el sentido del Tiempo.
Foto
Claro que, para nosotros invertir la flecha del tiempo, en nuestro universo, resulta imposible y, simplemente nos podemos limitar al ejercicio de imaginación que lo pueda desarrollar. La Copa que se parte no puede voklver hacia atrás en el tiempo y recomponer sus pedazos.
La Flecha del Teimpo inexorable, desde el comienzo del Big Bang, sólo marcha en una dirección: Hacia el futuro incierto. Hemos visto cómo nuestras concepciones sobre lanaturaleza del tiempo han cambiado con los años. Hasta comienzos de este siglo la gente creía en el tiempo absoluto. Es decir, en que cada suceso podría ser etiquetado con un número llamado «tiempo» de una forma única, y todos los buenos relojes estarían de acuerdo en el intervalo de tiempo transcurrido entre dos sucesos.
Sin embargo, el descubrimiento de que la velocidad de la luz resultaba ser la misma para todo observador, sin importar cómo se estuviese moviendo éste, condujo a lateoría de la relatividad, y en ésta tenía que abandonarse la idea de que había un tiempo absoluto único. En lugar de ello, cada observador tendría su propia medida del tiempo, que sería la registrada por un reloj que él llevase consigo: relojes correspondientes a diferentes observadores no coincidirían necesariamente. De este modo, el tiempo se convirtió en un concepto más personal, relativo al observador que lo medía. Cuando se intentaba unificar la gravedad con la mecánica cuántica se tuvo que introducir la idea de tiempo «imaginario». El tiempo imaginario es indistinguible de las direcciones espaciales. Si uno puede ir hacia el norte, también puede dar la vuelta y dirigirse hacia el sur; de la misma forma, si uno puede ir hacia adelante en el tiempo imaginario, debería poder también dar la vuelta e ir hacia atrás. Esto significa que no puede haber ninguna diferencia importante entre las direcciones hacia adelante y hacia atrás del tiempo imaginario. Por el contrario, en el tiempo «real», hay una diferencia muy grande entre las direcciones hacia adelante y hacia atrás, como todos sabemos. ¿De dónde proviene esta diferencia entre el pasado y el futuro? ¿Por qué recordamos el pasado pero no el futuro?
http://francisthemulenews.files.wordpress.com/2008/10/dibujo20081016reloj.jpg
Las leyes de la ciencia no distinguen entre el pasado y el futuro. Con más precisión, como se explicó anteriormente, las leyes de la ciencia no se modifican bajo la combinación de las operaciones (o simetrías) conocidas como C, P y T. (C significa cambiar partículas por antipartículas. P significa tomar la imagen especular, de modo que izquierda y derecha se intercambian. T significa invertir la dirección de movimiento de todas las partículas: en realidad, ejecutar el movimiento hacia atrás.)
Las leyes de la ciencia que gobiernan el comportamiento de la materia en todas las situaciones normales no se modifican bajo la combinación de las dos operaciones C y P por sí solas. En otras palabras, la vida sería exactamente la misma para los habitantes de otro planeta que fuesen imágenes especularas de nosotros y que estuviesen hechos de antimateria en vez de materia.
Si las leyes de la ciencia no se pueden modificar por la combinación de las operaciones C y P, y tampoco por la combinación C, P y T, tienen también que permanecer inalteradas bajo la operación T sola. A pesar de todo, hay una gran diferencia entre las direcciones hacia adelante y hacia atrás del tiempo real en la vida ordinaria. Imagine un vaso de agua cayéndose de una mesa y rompiéndose en pedazos en el suelo. Si usted lo filma en película, puede decir fácilmente si está siendo proyectada hacia adelante o hacia atrás. Si la proyecta hacia atrás verá los pedazos repentinamente reunirse del suelo y saltar hacia atrás para formar un vaso entero sobre la mesa. Usted puede decir que la película está siendo proyectada hacia atrás porque este tipo de comportamiento nunca se observa en la vida ordinaria. Si se observase, los fabricantes de vajillas perderían el negocio.
La explicación que se da usualmente de por qué no vemos vasos rotos recomponiéndose ellos solos en el suelo y saltando hacia atrás sobre la mesa, es que lo prohibe la segunda ley de la termodinámica. Esta ley dice que en cualquier sistema cerrado el desorden, o la entropía, siempre aumenta con el tiempo. En otras palabras, se trata de una forma de la ley de Murphy: ¡las cosas siempre tienden a ir mal! Un vaso intacto encima de una mesa es un estado de orden elevado, pero un vaso roto en el suelo es un estado desordenado. Se puede ir desde el vaso que está sobre la mesa en el pasado hasta el vaso roto en el suelo en el futuro, pero no así al revés. El que con el tiempo aumente el desorden o la entropía es un ejemplo de lo que se llama una flecha del tiempo, algo que distingue el pasado del futuro dando una dirección al tiempo. Hay al menos tres flechas del tiempo diferentes. Primeramente, está la flecha termodinámica, que es la dirección del tiempo en la que el desorden o la entropía aumentan. Luego está la flecha psicológica. Esta es la dirección en la que nosotros sentimos que pasa el tiempo, la dirección en la que recordamos el pasado pero no el futuro. Finalmente, está la flecha cosmológica. Esta es la dirección del tiempo en la que el universo está expandiéndose en vez de contrayéndose.
Nuestra mente no tiene problemas en distinguir el pasado del presente o el futuro. El concepto de la Flecha del tiempo se refiere a la dirección en que éste transcurre, fluyendo sin interrupción desde el pasado hasta el futuro, pasando por el presente. Una de las características más importantes del tiempo es su irreversibilidad, que impide “avanzar” en el sentido contrario al indicado por esta flecha. Sin embargo, hay quienes creen que esta asimetría, en que el inmutable pasado se distingue claramente del incierto futuro, no es más que una ilusión, propiciada por nuestra incapacidad de percibir algunos fenómenos, y que su dirección se podría variar tanto hacia adelante como hacia atrás.

La expresión “Flecha del tiempo” fue acuñada en el año 1927 por el astrónomo británico Arthur Eddington, quien la usó para distinguir una dirección en el tiempo en un universo relativista de cuatro dimensiones. En 1928, Eddington publicó un libro llamado “The Nature of the Physical World”, en el que utilizó varias veces esa expresión. En el libro, el autor escribió:

Dibujemos una flecha del tiempo arbitrariamente. Si al seguir su curso encontramos más y más elementos aleatorios en el estado del universo, en tal caso la flecha está apuntando al futuro; si, por el contrario, el elemento aleatorio disminuye, la flecha apuntará al pasado. He aquí la única distinción admitida por la física. Esto se sigue necesariamente de nuestra argumentación principal: la introducción de aleatoriedad es la única cosa que no puede ser deshecha. Emplearé la expresión “flecha del tiempo” para describir esta propiedad unidireccional del tiempo que no tiene su par en el espacio.

A pesar de que Eddington se refiere a la dirección del tiempo desde un punto de vista netamente relacionado con la física,  nuestra experiencia diaria no puede escapar a su razonamiento. Supongamos observamos una copa de cristal que cae de una mesa, y al llegar al piso se rompe en mil pedazos que se esparcen por varios metros cuadrados del piso. Nuestra experiencia indica que la “copa entera” pertenece al pasado, y que la dirección en que fluye el tiempo es la contiene en su futuro una copa hecha añicos. Si alguien filmase ese evento  y nos proyectase la película en sentido inverso, cuando viésemos un montón de trozos de vidrio que salen disparados en la misma dirección, chocan y se funden creando una copa que salta hacia arriba de la mesa, sabríamos de inmediato que algo está mal. Ese tipo de acontecimiento -en general- no tiene lugar en nuestro universo.

Podríamos estar hablando de conceptos aparentemente inconexos y, no tendríamos tiempo, durante todo el día, para finalizar lo que nos dictan los pensamientos que acuden en tropel a nuestras mentes, así que, lo dejaremos aquí por hoy y,lo que hemos tratado quizá, con userte, haga pensar a alguno de ustedes lectores que, quisiera profundizar más sobre los conceptos tratados.

emilio silvera

 

  1. 1
    Fandila
    el 10 de octubre del 2012 a las 13:20

    El tiempo es relativo al espacio y la velocidad, con todo lo que eso implica.
     
    Qué significa el tiempo. El tiempo significa la celeridad en la evolución. El sentido del tiempo en general y en nuestro Universo que se  expande es el que sigue la expansión en todas direcciones a partir de un punto, cualquiera de ellos.
     
    Dentro de la evolución expansiva existen dos procesos:los de la progresiva acumulaión material desde lo más simple y fraccionado y el proceso inverso,  fraccionamiento con la pérdida de entropía. Pero ambos pueden asociarse.
     
    El primer proceso ocurre con cualquier interacción en que como resultas de una ley de cuantos los restos inservibles y mas pequelos o fraccionados se desechan constituyendo la perdida de entropía. Como ejemplos, una explosión estelar o la aniquilación de partículas en las reacciones.
     
    El segundo proceso, más difícil de entrever por lo “invisible”, ocurre en la generación material a partir del máximo fraccionamiento o elementos que son en parte de perdidas entrópicas anteriores. Ejemplos de éste pueden ser la formación de una estrella a través del progresivo nacimiento de partículas desde las bases primeras, hacia el polvo cósmico y su concentración como elementos ligeros(Hidrógeno, helio…), o pequéñísimos elementos que afloran directamente desde la espuma cuántica en la interacción de partículas.
     
    Si hemos definido el tiempo como la medida de la celeridad o rapidez de la acción en el proceso evolutivo, él depende de la capacidad del proceso para realizarse “más rápido” o menos. A nadie se le escapa que a mayor proximidad de los elementos las fuerzas con que interaccionan hacen que las interacciones sean más efectivas y rápidas. Puede decirse por tanto, que el tiempo como celeridad en la ocurrencia de procesos será menor o más contraído en densidades mayores y mayor o más dilatado en densidades menores.
     
    ¿Qué tiene que ver con eso la velocidad? Mucho, si consideramos que a menor densidad del medio el móvil es más rápido, por ejemplo. A menor densidad, como decimos, el tiempo es mayor. Dicho de otra forma (Y sin consideraciones de la densidad del medio), la contracción debida a la velocidad supone que el espacio del movil (Y todo lo que va en él) es menor, por lo que si t = v/e , e más pequeño y v grande, t es más grande: el tiempo se dilata.
     
    En el caso de la densidad mayor la contracción del tiempo ocurre de otra manera, el espacio e es muy pequeño, pero la velocidad ha de conservarse para que la energía relativa siga siendo equivalente para cualquier densidad. Por tanto si el espacio es menor t ha de ser tambien menor para que la relación v = e/t se mantenga: el tiempo se comprime.
    Saludos cordiales.

    Responder
    • 1.1
      Fandila
      el 10 de octubre del 2012 a las 17:05

      En el penúltimo párrafo he trastocado las variables, no es “t = v/e” sino t = e/v , por lo que si el espacio e, exterior al móvil, es mayor, el tiempo es mayor. La variación temporal en el espacio interno del móvi, se explicaría de otra forma; se supone que participa del tiempo exterior, pues viene permeado del mismo espacio pese a la contracción longitudinal. Envejecería  con arreglo a la densidad del espacio en que se desenvuelve.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting