viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Astronomía del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las culturas antiguas eran a menudo más realistas en su relación con los cielos. Durante las últimas décadas hemos llegado a reconocer la sofisticación astronómica de las culturas antiguas no occidentales. El libro de Otto Neugebauer, titulado The Exact Sciences in Antiquity y publicado en 1957, se convirtió en un texto fundamental y estimuló el nacimiento de un nuevo campo multidisciplinario: la astronomía arqueológica.

Anthony Aveni, profesor de astronomía y antropología de la Colgate University, define la astronomía arqueológica como el estudio de la práctica y la utilización de la astronomía en las culturas antiguas de todo el mundo, tomando en consideración todo tipo de evidencias, tanto escritas como no escritas. Aunque la astronomía arqueológica sólo existe desde principios de la década de 1970, ha tenido ya un éxito considerable como instrumento para interpretar los avances astronómicos de las culturas prerrenacentistas. Esta disciplina se ha expandido finalmente hasta abarcar culturas de todos los lugares del planeta, después de la revitalización que le aportaron las interpretaciones del astrónomo de la Smithsonian Institution Gerald Hawskins relativas a los alineamientos de Stonehenge, basándose en trabajos anteriores de sir Norman Lockyer realizados entre finales del siglo XIX y principios del XX.

En la mayoría de las culturas antiguas en las que tuvo importancia observar el cielo los astrónomos actuaban como sacerdotes. Aunque los templos y juegos de pelota de los mayas y los aztecas, cuidadosamente orientados, tenían una doble función como observatorios astronómicos, fueron también templos y construcciones dedicados a la práctica de rituales civiles y religiosos. Con el uso de los templos-observatorios, los pueblos antiguos de México y de los Andes establecían un vínculo entre los astros y sus propias vidas a través de augurios y profecías. Aunque este maridaje entre la astrología y la astronomía, que era común a todas las culturas más antiguas no occidentales, ha desacreditado sus esfuerzos a los ojos de algunos expertos, los logros alcanzados han perdurado hasta nuestro días.

La astrología fue tenida en gran estima durante muchos años en Occidente. Johannes Kepler, el fundador de la astronomía planetaria, al mismo tiempo se ganaba el sustento en parte haciendo horóscopos, igual que su mentor, el aristócrata danés Tycho Brahe, que a veces ha sido considerado como el primer gran observador astronómico europeo.

Leer más

¡Volcanes!

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las erupciones volcánicas

Últimamente, en las noticias, nos comunican sucesos de erupciones volcánicas en distintos lugares de la Tierra con la consiguiente evacuación de personas para evitar muertes innecesarias. El Caos y la destrucción que nos puede dar la variedad de colores, olores y sabores que, junto con la belleza destruida o construida cambia el paisaje del lugar donde puedan ocurrir acontecimientos como este. Así ha venido ocurriendo desde que el mundo es mundo.

Los volcanes han existido desde los inicios de la Tierra hace 4.500 millones de años. Si bien las erupciones volcánicas pueden destruir la flora y la fauna en su entorno, la lava enriquece el suelo  con variados minerales. La mayor parte de los volcanes están situados a lo largo de los límites activos de las placas continentales. Los volcanes submarinos se hallan en regiones donde tienen lugar nueva formación de corteza terrestre, como en la dorsal oceánica. Estos volcanes pueden formar islas.

Los volcanes terrestres se encuentran, por lo general, en zonas de subducción, que se hallan especialmente en el Océano Pacifico. Los volcanes situados en las regiones costeras están distribuidos como una “sarta de perlas” y constituyen el anillo de fuego del Pacífico., en el que se encuentran más del 80% de los volcanes actuales. Además, los “puntos calientes” donde la fusión interna de la corteza crea magma, producen volcanes que son independientes de las placas continentales y sus limites. Un ejemplo de de este grupo lo constituyen los volcanes de Hawai.

Los volcanes se alimentan de las cámaras magmáticas, una especie de bolsas de rocas fundidas, a más de 1 km bajo la corteza terrestre. Si la presión en la cámara sobrepasa un determinado nivel (que es que parece que ha ocurrido en el de la imagen), el magma asciende por fisuras y grietas y forma una chimenea volcánica.

Leer más

Estamos obligados a saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cómo sabemos las cosas que pensamos que sabemos?

¿A qué se refieren los científicos cuando dicen que ellos “conocen” lo que hay dentro del un átomo, por ejemplo, o lo que pasó en los tres primeros minutos de vida del Universo?

Se refieren a que tienen lo que ellos denominan un modelo del átomo, o del universo temprano, o lo que sea en que ellos estén interesados, y que este modelo encaja con el resultado de sus experimentos, o sus observaciones del mundo. Este tipo de modelo científico no es una representación física de la cosa real, del mismo modo que un modelo de avión representa un avión de tamaño natural, sino que es una imagen mental que se describe mediante un grupo de ecuaciones matemáticas.

Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica (una diminuta bola de billar), con todas las pequeñas esferas rebotando unas contra las otras y contra las paredes del recipiente.

Ésa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace un modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, estas son esencialmente las leyes del movimiento descubiertas por Isaac Newton hacen más de 300 años.

Utilizando estas leyes matemáticas es posible predecir, por ejemplo, qué le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, el resultado que se obtiene encaja con la predicción del Modelo (en este caso la presión se doblará), lo que lo convierte en un buen modelo.

Leer más

Las estrellas cuando dejan de brillar

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sobre la Implosión de una estrella

Especialmente intrigante es la apariencia de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría. Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas de Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica.

Por mucho tiempo que uno espere, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Este era el mensaje inequívoco de Oppenheimer y Snyder.

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurre sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si el movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pueda parecer, aún había otra predicción más extrañas de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

Leer más