Abr
11
En el Universo, cualquier cosa que imaginemos, podrá ser posible
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (16)

En alguna ocasión hemos hablado aquí de la posibilidad de que puedan existir estrellas de Quarks que, como creemos saber, serían los componentes más simples de la materia que, se juntan en tripletes para formar hadrones y en pares antagónicos (quark y anti quark) para formar mesones. Por ejemplo, Para que una EN se transformara en una Estrella de Quark pura, necesitamos algún mecanismo mediante el cual su densidad aumente cada vez más. Pensemos, por ejemplo, que la Estrella de Neutrones forma parte de un sistema binario. Para considerar que dos estrellas están en un sistema binario, debe analizarse su proximidad comparando el tamaño de las mismas con el radio del lóbulo de Roche, que es la región que define el campo de la acción gravitatoria de una estrella sobre otra.

Si el radio de cada estrella es menor que el lóbulo de Roche, las estrellas están desconectadas. Por el contrario, si una de ellas llena el lóbulo de Roche, el sistema es semiconectado y la materia puede fluir a través del punto de Lagrange interno. El potencial gravitatorio de un sistema binario se consume la masa de la estrella compañera. Cuando la masa de la EN alcanza el valor de ~2 M (M corresponde a la masa solar), sufre un colapso gravitatorio, pudiéndose transformar en una EQ.
¿Podría el colapso de una supernova dar origen a la formación de una EQ? Esta pregunta nos conduce a otra hipótesis teórica acerca de la formación de la EN, hay conservación del momento angular. La proto-estrella de neutrones tiene una fracción pequeña de su radio original, que era el de la supernova, por lo que su momento de inercia se reduce bruscamente. Como resultado, la EN se forma con una altísima velocidad de rotación que disminuye gradualmente. Los períodos de rotación se hacen cada vez más largos debido a la pérdida de energía rotacional por la emisión de vientos de electrones y positrones y de la radiación bipolar electromagnética. Cuando la alta frecuencia de rotación o el campo electromagnético alcanzan un valor crítico, la EN se transforma en un pulsar que emite pulsos del orden de los milisegundos. Debido a la enorme fuerza centrífuga en estos objetos, la estructura interna se modifica, pudiendo alcanzar una densidad crítica por encima de la que corresponde a la transición de fase hadrón-quark. En estas condiciones, la fase de materia nuclear relativamente incomprensible se convertiría en la fase de ME, más comprensible, cuyo resultado final sería la aparición de una EQ.

La identificación de una EQ requiere señales observacionales consistentes. Con esto nos referimos a propiedades físicas de la estrella tales como su masa máxima, radio, período mínimo de rotación, enfriamiento por emisión de neutrinos. Todas estas propiedades dependen de una única ecuación de estado para la materia densa de quarks que aún no ha sido completamente establecida. Sin embargo, existe un rango de valores aceptados para las cantidades antes mencionadas, con base en datos observacionales recientes, que marcarían importantes diferencias entre las posibles EQs y los demás objetos compactos.

La Interacción fuerte mantiene unidos y confinados a los Quarks
Un rasgo característico de las EQs es que la materia no se mantendría unida por la atracción gravitacional, como ocurre en las ENs, sino que sería consecuencia directa de la interacción fuerte entre los quarks. En este caso, la estrella se dice autoligada. Esto implica una diferencia sustancial entre las ecuaciones de estado para las dos clases de estrellas. Las correcciones perturbativas a la ecuación de estado de la materia de quarks y los efectos de superconductividad de color complican aun más este punto. Otra característica para poder diferenciar las Eqs de las Ens es la relación entre su masa M y el radio R. Mientras que para una EQ, M ~ R³. De acuerdo con esta relación, las Eqs tendrían radios más pequeños que los que usualmente se le atribuyen a las Ens. Además, las Eqs violarían el llamado límite de Eddington. Arthur Eddington (1882-1994) observó que las fuerzas debido a la radiación y a la gravitación de las estrellas normales dependían del inverso del cuadrado de la distancia. Supuso, entonces, que ambas fuerzas podían estar relacionadas de algún modo, compensándose para que la estrella fuera más estable. Para estrellas de altísima masa, la presión de radiación es la dominante frente a la gravitatoria. Sin embargo, debería existir una presión de radiación máxima para la cual la fuerza expansiva debido a la radiación se equilibrara con la gravedad local. Para una estrella normal, el límite de Eddington está dado por una ecuación que omito para no hacer más complejo el tema.

Eta Carinae es una buena muestra de cómo el límite de Eddintong funciona
Para cualquier valor de radiación que supere este límite, no habrá equilibrio hidrostático, causando la pérdida de masa de la estrella normal. El mecanismo de emisión en una EQ produciría luminosidades por encima de dicho límite. Una posible explicación a este hecho sería que la EQ es autoligada y por lo tanto su superficie alcanzaría temperaturas altísimas con la consecuente emisión térmica.
Por otro lado, una alternativa para explicar algunas observaciones de destellos de rayos γ, sería suponer que las emisiones provienen de Eqs con radios R ~ 6 km, valores demasiados pequeños si pensáramos que los destellos provienen de ENs. En esta sección, hemos presentado algunas características de las Eqs que las diferenciarían de las Ens. Futuras evidencias experimentales y observacionales nos permitirían saber si las Eqs realmente existen en la naturaleza.

El mes de febrero de 1987 fue la primera oportunidad de poner a prueba, a través de las observaciones directas, las teorías modernas sobra la formación de las supernovas. En el observatorio de Las Campanas, en Chile, fue observada la Supernova 1987A en la Gran Nube de Magallanes. Algunas características de la emisión de neutrinos de la SN 1987A, podrían explicarse sin una hipotética fuente de energía subnuclear como la Materia Extraña contribuyera a su explosión. El remanente estelar que ha quedado como consecuencia de la explosión de la Supernova 1987A, podría ser una Estrella de Quarks, ya que el período de emisión de este pulsar es de P= 0.5 ms. Una Estrella de Neutrones canónica no podría tener una frecuencia de rotación tan alta.

Supernova SN 1987A: ue una supernova que tuvo lugar en las afueras de la Nebulosa de la Tarántula (NGC 2070), situada en la Gran Nube de Magallanes, galaxia enana cercana perteneciente al Grupo Local. Ocurrió aproximadamente a 168.000 años luz (51,4 kiloparsecs) de la Tierra,1 lo suficientemente cerca para ser visible a simple vista. Fue la supernova más cercana observada desde SN 1604, que apareció en la Vía Láctea. La luz de la supernova llegó a la Tierra el 23 de febrero de 1987. Como fue la primera supernova descubierta en 1987, fue designada “1987A”
El observatorio Chandra de rayos X de la NASA también encontró dos estrellas inusuales: la fuente RX J1856.5-3754 con una temperatura de 10 exp5. K y la fuente 3C58 con un período de 65 ms. RX J1856.5-3754 es demasiado pequeña para ser una EN convencional y 3C58 parece haberse enfriado demasiado rápido en el tiempo de vida que se le estima.

Combinando los datos del Chandra y del telescopio espacial Hubble, los astrónomos determinaron que RX J1856. 5 – 3754 radia como si fuera un cuerpo sólido con una temperatura de unos 1x 10 exp5. ºC y que tiene un diámetro de alrededor de 11 km, que es un tamaño demasiado pequeño como para conciliarlo con los modelos conocidos de las Ens.
Las observaciones realizadas por el Chandra sobre 3C58 también produjeron resultados sorprendentes. No se pudo detectar la radiación que se esperaba en la superficie de 3C58, una EN que se cree producto de la explosión de una supernova vista por astrónomos japoneses y chinos en el año 1181 de nuestra era. Se llegó a la conclusión de que la temperatura de la estrella, de menos de un millón de grados Celsius, era un valor mucho menor que el que predice el modelo. Estas observaciones incrementan la posibilidad de que los objetos estelares mencionados sean Estrellas de quarks.
D) Ecuación de estado para la materia de quarks:

Las técnicas utilizadas para resolver las ecuaciones de la Cromo Dinámica Cuántica no proveyeron aún un resultado aceptable para densidades bariónicas finitas como en el caso de la Electrodinámica Cuántica para el núcleo atómico. Como consecuencia, es necesario recurrir a modelos fenomenológicos para describir la materia de quarks dentro de las estrellas compactas cuando se consideran las propiedades de confinamiento y de libertad asintótica de la CDC. Uno de los modelos más usados es el modelo bag del MIT. En este modelo los hadrones son considerados como quarks libres confinados en una región finita del espacio: el “Bag“ o bolsa. El confinamiento no es un resultado dinámico de la teoría fundamental, sino que se coloca como parámetro libre, imponiendo condiciones de contorno apropiadas. Así, el modelo bag del MIT se basa en una realización fenomenológica del confinamiento.

Está claro que, las estrellas de Quarks, aunque con certeza no han sido aún detectadas, es casi seguro que andarán pululando por el inmenso Universo que, en relación a la materia bariónica, en muy buena parte, está conformado por Quarks y, cuando la Gravedad confina a los electrones y protones hasta fusionarlos para convertirlos en neutrones a pesar del principio de esxclusión de Pauli, si la masa de la estrella es muy grande y como consecuencia la gravedad que genera también lo es, ni ese principio que haría degenerar a los electrones, podría al fín, para esa fuerza que contraerá más y más la masa de la estrella y, entonces, antes de que se pudiera convertir en un agujero negro… ¿No lo haría en una estrella de quarks?

De existir, al ser más densa, la estrella de Quarks estaria entre la de N y el A.N.
Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.
Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs en EQs, de manera que el papel que juega el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.

Son muchos los misterios quen contiene el Universo y, nosotros, debemos recorrer los caminos para desvelarlos. En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el estado superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.
Existen trabajos que describen de manera breve la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una Estrella de Quarks. Han utilizado el modelo fenomenológico de bag del Massachussets Institute of Technology (MIT) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Y piensan presentar, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataran de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.

Ya se especula con la existencia cierta de estrellas de Quarks y, cuando el río suena…
Materia de Quarks:
Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón (interacción electromagnética), los bosones W± y Zº (interacción débil), y 8 tipos de gluones (interacción fuerte). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charme ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.
Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos (bariones formados por la combinación de tres quarks) como de los bosónicos (mesones formados por un quark y un antiquark). Es sabido que el núcleo de un átomo está compuesto por nucleones (protones y neutrones) que a su vez están compuestos por quarks (protón = udd). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye a medida que la energía entre ellos aumenta (libertad asintótica). La elaboración de esta teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada experimentalmente en el Acelerador lineal de Stanford y otros después.

Todos querían estar presentes en el evento que nos llevó a comprobar la certeza de que la libertad asintótica era una realidad física presente en la fuerza nuclear fuerte y que hace que, los quarks, estén confinados dentro de protones y neutrones y, cuando tratan de separarse, aparece la fuerza intensa que lo impide. Por el contrario, cuando permanecen juntos, está presente la libertad asintótica que los hace creer que son libres.
Sin embargo, la CDC no describe completamente el deconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal para bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “caliente” de la materia de quarks cuando T >> µ constituyendo la mencionada ME, que se formaría en el interior de las Ens. Esta transición de fase estaría ocurriendo en el Universo cada vez que una estrella masiva explotara en forma de supernova, con la consecuente aparición de una EN.
Mucho nos quewda que hablar de todos estos temas complejos con los que aún luchamos tratando de comprender y de los que, hablamos más por intuición y conjeturas que por la certeza del saber. Sin embargo, nuestros incipientes conocimientos en la materia, avalan, al menos, una gran posibilidad de que las estrellas de Quarks sean un hecho.
emilio silvera
Abr
8
¡¡Quásares!! Extraños objetos de inusitado brillo y energía
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
La Importancia del Carbono
¿Un átomo vital? ¡El Carbono
“El carbono es el elemento mayoritario en la Tierra, y esencial para la vida. Es el componente principal de la materia orgánica; también integra el producto final del metabolismo de la mayoría de los seres vivos y del proceso de combustión: el dióxido de carbono.”

![]()
Una composición artísdtica del quásar
Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negro

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negros supermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

La imagen de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

Imagen de 3C273 recogida por el telescopio espacial Chandra
Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.
Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las imágenes, aunque sean tan distintas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

Lo asombroso de los quásares está en una pregunta que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.
El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe una estrella en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negro. Según todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.
Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.
Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio, el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.
Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.
Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …
Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc (780 millones de años luz) y el más lejano a 6 Gpc (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.
Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se extinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?
emilio silvera
Abr
1
Sí, todo es Universo
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)


La Naturaleza y nosotros, una simbiosis de perfecta armonía que nuestra condición, podría llegar a romper si el proceso de humanización ae eterniza y no tomamos conciencia de lo importante que es, todo lo que nos rodea en su estado natural. No tenemos conciencia de que otros seres que, con nostros, pueblan el planeta necesitan de nosotros para poder evolucionar sin que, nuestras actividades nosivas, contaminen el mundo. Todas las formas de vida tienen la misma fuente, el mismo origen.

Los seres vivos que han poblado nuestro mundo, desde el origen de la vida que no ha dejado de evolucionar nunca. Todas las formas de vida, sin excepción, están basadas en el Carbono. Sabemos que actualmente existen sólo el 1% de todas las especies que poblaron nuestro planeta y, seguimos descubriendo especies nuevas mientras que otras desaparecen al no saberse adaptar al entorno. Estar atentos a los mensajes que la Naturaleza nos envía, ser consciente de su grandeza, cuidar nuestro mundo.

La montaña que, curiosa, se asoma por encima de las nubes mientras el Sol la contempla y la baña con su resplandor

El privilegio de poder contemplar la Naturaleza y ver como el Sol tiñe de rojo el paisaje al final del día

La Tierra nos habla, ¡De tantas maneras!














Hay quien cree que la Tierra podría ser tragada por agujero negro. Sin embargo, la posibilidad es muy escasa, diría que casi nula por completo. Treinta mil años-luz nos separan del Centro Galáctico donde reside un Agunero negro que se traga todo lo que por allí pase , pensar en que pudiera llegar aquí… Sería ir demasiado lejos. Hemos tenido la suerte de venir a caer en una zona relativamente tranquila de nuestra Galaxia. En el Interiod del Brazo de Orión, ricamente instalado, nuestro sistema solar no se relaciona con estrellas conflictivas ni con agujeros negros peligrosos.

Los rayos Gamma son los fotones más energéticos conocidos, ¿Será ese nuestro final? ¡Convertirnos en pura energía! Bueno, sabemos que aparecen en las explosiones de supernovas y en otros sucesos similares. ¿Seremos nosotros algún día fuentes de luz conscientes? A estas alturas ya nada debe extrañarnos. Hace poco unos científicos han conseguido solidificat esos cuantos de lus que llamamos fotones. Hasta dónde podrémos llegar?

¿Sabremos alguna vez comprender dónde estamos y para qué? No dejamos de crecer y, cuando morimos, ese crecimiento no ha podido finalizar… ¡Continúa el proceso en otros!
¡Es tan grande el Universo! ¿Podremos comprenderlo alguna vez? Sabemos que el Universo es todo lo que existe incluyendo la materia y el Espaciotiempo. Sin embargo, lo que no podemos saber (con plena certeza) es empezó todo ni cómo terminará. Tampoco podemos dar una explicación de si el universo está sólo o, por el contrario, deambula acompañado por otros universos por un inmenso Metacosmos que engloba múltiples universos.
Hemos puesto una serie de imágenes ahí arriba que quiere significar la diversidad que en el Universo existe, y, ni se pueden incluir todos los ejemplos que nos gustaría ni tampoco los tenemos a mano, ya que, la mayoría de los que podríamos poner, no están a nuestro alcance ni al alcance de nuestras tecnologías.

Hasta el momento, lo que realmente hemos demostrado, es que, para ser auténticos humanos nos falta mucho. Seguimos en el proceso de evolución, es mucha la carga animal que llevamos con nosotros y, el instinto, puede “todavía” a los sentimientos.
El Universo continúa, en muchos aspectos, siendo un gran misterio que pretendemos desvelar, pero como nos decía hace unos días Max Planck, el problema está en que nosotros, en último término, formamos parte de ese misterio que pretendemos .
Por ahí arriba podemos contemplar imágenes de bonitos paisajes de la Tierra cambiante, del Sol y de Nebulosas y galaxias. También de algunos seres humanos a los que el Universo, les ha otorgado el don de pensar (aunque no siempre lo demostremos). Algunas imágenes son de explosiones luminosos que nos enseñan y muestran las mayores energías que en el Universo se pueden generar, a través de explosiones de supernovas que son fuentes de potentes rayos gamma.
No cejamos en nuestro empeño de saber que es… ¡la materia! Incluso pensamos que podrían existir estrellas de Quarks-Gluones
La Materia y sus componentes han sido y son el objeto de muchos investigadores y pensadores que quieren profundizar y saber el por qué, a partir de lo que llamamos materia inerte, pudo surgir, mediante cambios producidos en muy especiales…¡La Vida!
Nos encontramos con el problema de la posible existencia de eso que llaman “materia oscura”, y, a primera vista, puede parecer que la materia oscura es sólo una pequeña pieza del enorme rompecabezas que resulta ser nuestro universo, un parámetro más, ni más ni menos importante que tantas otras. Claro que, este sería un punto de vista razonable si la materia oscura sólo formase una pequeña del Universo. En ese caso, la podríamos considerar como poco más que una nota a pie de página de la materia luminosa, más importante, ya que, de ella, estamos hecho nosotros. Además, es mucho más fácil detectar la materia Bariónica hecha de Quarks y Leptones que esa otra que, ni sabemos de qué estará hecha.
Sin embargo, ese punto de vista estaría equivocado, toda vez que, según todos los indicios, esa “materia oscura” supone casi el total del Universo junto con la “energía Oscura”, es decir, más del 90% de la materia-energía del universo, es oscura. Puede que las brillantes espirales de las Galaxias sirvan simplemente marcadores pasivos, testimonios mudos de fuerzas que operan en un nivel invisible para nosotros.

El Universo y la Vida… El Tiempo que inexorable pasa…
Es posible que, cuando sepamos más sobre nuestro Universo reconozcamos que nuestros conocimientos del universo visible, tan difícilmente obtenidos, son poco más que el primer paso en el camino hacia la comprensión de cómo son en realidad las cosas. Muchas de las nuevas teorías tratan de buscar nuevos caminos que divergen de los que seguimos y, buscando por otros lugares no explorados, es posible, sólo posible que, podamos encontrar algunas respuestas que nos son negadas en las teorías actuales.
Es inquietante que, a estas alturas, con seguridad, ningún Astrónomo sepa darnos una respuesta fiel de cómo se pudieron formar las Galaxias, y, todos, sin excepción, nos responden con hipótesis y conjeturas que, de ninguna manera, podemos asimilar a la realidad de como fueron las cosas en aquellos comienzos del Universo.
¿Qué fuerzas ocultas estaban ahí presentes para posible que las galaxias se pudieran conformar, y formarse los cúmulos de galaxias antes de que, la materia recien creada, se dispersara por todo el universo sin más? Seguramente, esa fuerza no podría ser otra que la generada por la Materia Oscura que, a decir verdad, podría ser la materia primaria que permea todo el Universo y, a partir de la cual, se puede estar formando (al evolucionar) la materia que sí podemos ver.

A mí todo esto me sobrepasa, y, “conociendo” de qué está formada la materia de la que están hechas las estrellas y las montañas, los ríos y los océanos, o los delfines y también nosotros, no deja de sorprenderme (más bien maravillarme) que, de esa materia pudieran surgir seres vivos y que, algunos, como nosotros mismos, podamos pensar y ser conscientes de toda esta grandeza.
Alguna vez, hemos podido sentirnos en un estado de euforia al sentirnos los “amos” del universo, nuestros conocimientos nos hacen grandes y, posiblemente, nada se resistirá ante tanta sabiduría. Sin embargo, ese estado de “gracia” suele durarnos muy poco. De inmediato caemos en la de que, la realidad, es muy distinta y recordamos lo que nos dijeron aquellos grandes pensadores como Sócrates. Platón y más cercano a nosotros Popper: “Nuestro conocimiento es limitado, nuestra ignorancia infinita”. Y, lo malo de dicha conclusión, es que era, y, sigue siendo cierta.
Así que, amigos míos, procuremos aprender, enterarnos de las cosas, ser conscientes de lo que no sabemos y, sobre todo, procurar entender lo que en la Naturaleza ocurre, ella siempre nos marca el camino a seguir pero, nosotros, no siempre prestamos la debida atención.
emilio silvera
Mar
24
¡Los grandes Números del Universo!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (24)
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.
Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.
![]()
Eddintong
Entre los números que Eddington consideraba de importancia primordial estaba al que ahora conocemos como número de Eddington, que es igual al número de protones en el universo visible. Eddington calculó (a mano) este número con enorme precisión en un crucero trasatlántico, sentado en cubierta, con libreta y lápiz en la mano, tras calcular concienzudamente durante un tiempo, finalizó escribiendo:
“Creo que el Universo hay:
15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296
de protones y el mismo número de electrones”.
Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente. A Eddington siempre le llamó la atención esos números invariantes que llamaron constantes de la Naturaleza y que tenían que ver con el electromagnetismo, la gravedad, la velocidad de la luz y otros fenómenos naturales invariantes. Por ejemplo:
La constante de estructura fina de (símbolo
) es la constante fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.
¿Por qué hay una relación entre la constante de estructura fina (σ) y las estrellas y las Galaxias? Estos números de las constantes, poseen un enigma fundamental en ellos mismos: No sabemos porqué tienen esos valores. Por ejemplo, la velocidad de la luz en el vacío es una constante universal y la conocemos con suma exactitud: c = 299.792.458 m/s. Pero no tenemos idea de porqué tiene ese valor y no otro. Tampoco sabemos porqué la constante de gravitación universal es G = 6,67259*10^-11 N(m/kg)^2 ni porqué cualquier otra constante física universal tiene el valor que tiene.
Le dicen “alfa” (α) o Constante de Estructura Fina, y tiene la particularidad de ser adimensional, es decir, no tiene unidades. Es solo un número:
Algo parecido a 1/137…
La constante de estructura fina y la expresión que la define y el valor recomendado es:
.
donde:
es la carga elemental.
es la constante racionalizada o reducida de Planck,
es la velocidad de la luz en el vacío, y
es la permitivdad del vacío.
Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte. Las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas. Eddington las dispuso en tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:
mpr/me ≈ 1840
La inversa de la constante de estructura fina
2πhc/e2 ≈ 137
Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,
e2/Gmpr me ≈ 1040
A estas añadió su número cosmológico, NEdd ≈ 1080. A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica:
“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física que pueda demostrar que una o todas ellas podrían ser prescindibles? ¿Podrían haber sido diferentes de lo que realmente son?… Surge la pregunta de si las razones anteriores pueden ser asignadas arbitrariamente o si son inevitables. En el primer caso, sólo podemos aprender sus valores por medida; en el segundo caso es posible encontrarlos por la teoría… Creo que ahora domina ampliamente la opinión de que las (cuatro anteriores) constantes… no son arbitrarias, sino que finalmente se les encontrará una explicación teórica; aunque también he oído expresar lo contrario.”
Medida una y mil veces, α parece que no cambia a pesar de todo
Siguiendo con su especulación Eddington pensaba que el número de constantes inexplicadas era un indicio útil del hueco que había que cerrar antes de que se descubriese una teoría verdaderamente unificada de todas las fuerzas de la naturaleza. En cuanto a si esta teoría final contenía una constante o ninguna, tendríamos que esperar y ver:
“Nuestro conocimiento actual de 4 constantes en lugar de 1 indica meramente la cantidad de unificación de la teoría que aún queda por conseguir. Quizá resulte que la constante que permanezca no sea arbitraria, pero de eso no tengo conocimiento.”
Eddington, como Max Planck, Einstein y Galileo, y Newton antes que ellos, era simplemente un adelantado a su tiempo; comprendía y veía cosas que sus coetáneos no podían percibir.
Hay una anécdota que se cuenta sobre esto y que ilustra la dificultad de muchos para reconciliar el trabajo de Eddington sobre las constantes fundamentales con sus monumentales contribuciones a la relatividad general y la astrofísica. La historia la contaba Sam Goudsmit referente a él mismo y al físico holandés Kramers:
![]()
Samuel Abraham Goudsmit, George Uhlenbeck y Hendrik Kramers
“El gran Arthur Eddington dio una conferencia sobre su derivación de la constante de estructura fina a partir de una teoría fundamental. Goudsmit y Kramers estaban entre la audiencia. Goudsmit entendió poco pero reconoció que era un absurdo inverosímil. Kramers entendió mucho y reconoció que era un completo absurdo. Tras la discusión, Goudsmit se acercó a su viejo amigo y mentor Kramers y le preguntó: ¿Todos los físicos se vuelven locos cuando se hacen mayores? Tengo miedo. Kramers respondió, “No Sam, no tienes que asustarte. Un genio como Eddington quizá puede volverse loco pero un tipo como tú sólo se hace cada vez más tonto”.
“La historia es la ciencia de las cosas que no se repiten”.
Paul Valéry

Aquí también están algunas de esas constantes
Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y, aunque pequeño, se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

Nuestro universo es como lo podemos observar gracias a esos números
El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay dentro del alcance del universo observable esta próximo al número
1080
Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a
1040
En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del universo observable en unidades fundamentales de Planck para la acción, obtenemos.
10120

Supernovas, Nebulosas, Estrellas… ¡Fuerzas y Constantes fundamentales!
Algunos llegan a afirmar que, el Universo es plano e indican que la energía oscura es probablemente la constante cosmológica de Einstein…¡Vivir para ver! El maestro llegó a decir que incluir la constante cosmológica en su ecuación había sido el mayor error de su vida y, sin embargo ahora… resulta que sí estaba en lo cierto. ¡Ya veremos!
Ya hemos visto que Eddington se inclinaba a relacionar el número de partículas del universo observable con alguna cantidad que incluyera la constante cosmológica. Esta cantidad ha tenido una historia muy tranquila desde esa época, reemergiendo ocasionalmente cuando los cosmólogos teóricos necesitan encontrar una manera de acomodar nuevas observaciones incómodas. Recientemente se ha repetido este escenario. Nuevas observaciones de alcance y precisión sin precedentes, posibilitadas por el telescopio espacial Hubble trabajando en cooperación con telescopios sensibles en tierra, han detectado supernovas en galaxias muy lejanas. Su pauta de brillo y atenuación característica permite deducir su distancia a partir de su brillo aparente. Y, sorprendentemente, resulta que están alejándose de nosotros mucho más rápido de lo que cualquiera esperaba. La expansión del universo ha pasado de ser un estado de deceleración a uno de aceleración. Estas observaciones implican la existencia de una constante cosmológica positiva (Λ+). Si expresamos su valor numérico como número puro adimensional medido en unidades del cuadrado de la longitud de Planck, entonces obtenemos un número muy próximo a
10-120
Nunca se ha encontrado un número más pequeño en una investigación física real. Podemos decir que es el más grande de los pequeños números.

Hablar del Universo en todo su conjunto…, no es nada fácil. Podemoshablar de parcelas, de elementos por separado y también de sucesos, objetos y de la mecánica celeste de manera individualizada para tratar de comprenderlos mejor y, más tarde, juntarlos para tener una perspectiva de su conjunto que… No siempre podemos llegar a comprender. ¡Es tanto lo que esas constantes nos quieren decir! que comprenderlas y entenderlo todo…, nos llevará algún tiempo.
¿Qué vamos a hacer con todos estos grandes números? ¿Hay algo cósmicamente significativo en 1040 y sus cuadrados y cubos?

Hermann Weyl
La aparición de algunos de estos grandes números ha sido una fuente de sorpresas desde que fue advertida por vez primera por Hermann Weyl en 1.919. Eddington había tratado de construir una teoría que hiciera comprensible su aparición, pero no logró convencer a un número significativo de cosmólogos de que estaba en la vía correcta. Pero sí convenció a la gente de que había algo que necesitaba explicación. De forma inesperada, fue precisamente uno de sus famosos vecinos de Cambridge quien escribió a la revista Nature la carta que consiguió avivar el interés por el problema con una idea que sigue siendo una posibilidad viable incluso hoy.
Paul Dirac
Paul Dirac ocupó la cátedra lucaciana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1937.
Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.
Esta es la hipótesis de los grandes números según Dirac:
“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.
![]()
Las dos imágenes nos hablan por sí mismas, y, sin indicaciones sobre ellas, ¿cuál es el universo y cuál el cerebro humano? Nos puede parecer mentira pero… Los verdaderos grandes números están en ¡La Mente!

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres:
N1 = (tamaño del universo observable) / (radio del electrón)
= ct (e2/mec2) ≈ 1040
N2 = Razón fuerza electromagnética-a-gravitatoria entre protón y electrón
= e2/Gme mp ≈ 1040
N = número de protones en el universo observable
= c3t/Gmp ≈ 1080
Aquí t es la edad actual del universo, me es la masa de un electrón, mp es la masa de un protón, G la constante de gravitación, c la velocidad de la luz y e la carga del electrón.
El Universo es todo lo que existe: Materia, Tiempo y Espacio inmenrsos en un océano de fuerzas y constantes
Según la hipótesis de Dirac, los números N1, N2y raizN eran realmente iguales salvo pequeños factores numéricos del orden de la unidad. Con esto quería decir que debe haber leyes de la naturaleza que exijan fórmulas como N1 = N2, o incluso N1 = 2N2. Un número como 2 ó 3, no terriblemente diferente de 1 está permitido porque es mucho más pequeño que los grandes números implicados en la fórmula; esto es lo que él quería decir por “coeficientes…. del orden de la unidad”.
Esta hipótesis de igualdad entre grandes números no era en sí misma original de Dirac. Eddington y otros habían escrito antes relaciones muy semejantes, pero Eddington no había distinguido entre el número de partículas del universo observable, que se define como una esfera centrada en nosotros con un radio igual a la velocidad de la luz multiplicada por la edad actual del universo, o lo que es lo mismo:

“El último de estos mapas se ha dado a conocer ahora. Corresponde a la parte del Universo más cercana a la Vía Láctea: hasta 380 millones de años luz de ella. El mapa digital que lleva el nombre de 2MASS Redshift Survey ha sido posible gracias a la colaboración de un nutrido grupo de astrofísicos. Y el resultado llama la atención: un huso moteado de puntos de colores que representan hasta las 45.000 galaxias situadas en el vecindario galáctico. Sólo un 5 por ciento de esa vecindad cósmica queda ausente en el mapa: el cinturón oscuro central, que se aprecia en una las imágenes, y que corresponde al plano de la Vía Láctea. Las estrellas y el polvo de nuestra galaxia impiden contemplar los objetos lejanos situados en esa dirección. En la otra imagen sí se ha insertado la Vía Láctea en esa región oscura central.”
Sí, demasiado grande para que lo podamos tomar en una sola imagen
¡Mejor así!
La trayectoria del llamado Universo Observable (y del cual somos su centro al recorrer su geodésica en la geometría espacio-temporal) tiene la forma perimetral de una gota (forma de media lemniscata; cosa curiosa, lemniscata: figura curva ∞ usada como el símbolo de infinito ¿?) que al girarla 45 ° y desarrollar un cuerpo de revolución, se obtienen dos campos toroidales cual si fuesen imágenes antagónicas (una reflejada) de una fuente (surtidor – sumidero cada uno), correspondiendo uno al campo material y el otro al antimaterial.

Trayectoria del Universo observable.
Lo están ocupando en su totalidad, se retroalimentan a sí mismos en la Hipersingularidad (punto de contacto de los dos campos, principio y fin de ambos flujos donde reacciona la materia y la antimateria con la finalidad de mantener separados ambos universos con el adicional resultado de impulsar nuevamente a los fluidos universales de ambos campos a recorrer la finita trayectoria cerrada (geodésica) siendo el motor propulsor universal de dos volúmenes dinámicos, finitos pero continuos).
Universo observable: R = 300.000 × 13.500.000.000
La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.
“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.
Cuando hablamos del Universo, de inmediato, surgen las polémicas y los desacuerdos y las nuevas ideas y teorías modernas que quieren ir más allá de lo que “se sabe”, nunca han gustado en los centros de poder de la Ciencia que ven peligrar sus estatus con ideas para ellos “peregrinas” y que, en realidad, vienen a señalar nuevos posibles caminos para salir del atolladero o callejón sin salida en el que actualmente estamos inmersos: Mecánica cuántica y Relatividad que llevan cien años marcando la pauta en los “mundos” de lo muy pequeño y de lo muy grande sin que nada, las haya podido desplazar.
Mientras tanto, continuamos hablando de materia y energía oscura que delata la “oscuridad” presente en nuestras mentes, creamos modelos incompletos en el que no sabemos incluir a todas las fuerzas y en las que (para cuadrar las cuentas), hemos metido con calzador y un poco a la fuerza, parámetros que no hemos sabido explicar (como el Bosón de Higgs en el Modelo Estándar que…, a pesar de todo ¡No está muy claro que esté ahí!). Sin embargo y a pesar de todo, el conocimiento avanza, el saber del mundo aumenta poco a poco y, aunque despacio, el conocimiento no deja de avanzar y, esperemos que las ideas surjan y la imaginación en la misma medida para que, algún día en el futuro, podamos decir que sabemos, aunque sea de manera aproximada, lo que el Universo es.
No debemos dejar de lado, las Unidades de Planck, esos pequeños números que, como Tiempo de Planck…
En este ámbito hablamos de las cosas muy pequeñas, las que no se ven. El Tiempo de Planck es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).
El valor del tiempo del Planck es del orden de 10-44 segundos. En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.

Hay cosas que no cambian, siempre haremos preguntas.
¿Os dais cuenta? Siempre tendremos que estar haciendo preguntas, y, desde luego, nunca podremos saberlo todo. No tener preguntas que formular, o secretos que desvelar… ¡Sería la decadencia del Ser Humano!
No debemos olvidar que:
“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nosotros vivimos en nuestro propio mundo, el que forja nuestros sentidos en simbiosis con el cerebro. Sin embargo, ese otro mundo, el que no podemos “ver”, no siempre coincide con “nuestro mundo”.
emilio silvera
Mar
1
El Universo y la Vida
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (5)

“Los Cometas lo dieron y los cometas se lo llevaron”
A diferencia de los asteroides que viajan alrededor del Sol en órbitas circulares confinadas al cinturón de asteroides y al plano de la eclíptica, los cometas lo hacen en órbitas elípticas inclinadas al azar con respecto al plano de la eclíptica. En la historia pasada, algunos de esos cometas, npos visitaron… ¡demasiado de ! Por otra parte, algunos dicen que puede ser que, precisamente, sea eso lo que trajo la vida a nuestro planeta.
Cuando un cometa se acerca al Sol, el calor solar vaporiza el hielo. Los gases liberados comienzan a brillar, formando una luminosa bola llamada coma. Empujados por el viento solar, estos gases luminosos forman una larga y cola, en uno de los espectáculos más impresionantes que pueden contemplarse en el cielo nocturno.
Como antes digo, más de uno apuesta por el hecho de que, la Vida en el planeta Tierra, fue traída por algún Cometa que impactó con ella en el pasado. Si nos paramos a pensar un poco, caeremos en la de que, el hecho de que la Biblia sea tan buena lectura reside en que está llena de drama y espectáculo: fuego y azufre, señales en los cielos, diluvios, aguas que se separan, plagas y pestilencias. Si el mundo fue creado hace seis mil años, como muchos cristianos creían en un tiempo (y algunos aparentemente todavía lo creen). Dios habría estado verdaderamente ocupado en dar la forma actual a nuestro mundo, construyendo montañas y océanos, excavando valles, moviendo glaciares… ¡En tan poco tiempo!

Cuando los geólogos del siglo XVIII trataron de explicar las montañas y los valles fluviales, los océanos salados y la glaciación, los estratos rocosos y los fósiles en términos de procesos físicos antes que de acción divina, se dieron de que serían necesarios muchos más de aquellos seis mil años para formar estos accidentes. Está claro que todos los accidentes de la Tierra han sido moldeados poco a poco por cambios sucesivos que se extendieron a lo largo de enormes períodos de tiempo. Son necesariosmuchos millones de años para asentar los sedimentos rocosos y levantar y erosionar las montañas.
Así que, el Diluvio de Noé, la vorágine volcánica y los rayos celestiales deben ser atribuídos a otros ámbitos más naturales que fueron bien explicados por Charles Lyell, en su publicado en 1830 con el título de Principios de Geología (el que se llevó Darwin como compañero de viaje en su viaje alrededor del mundo en el Beagle).

La Falla de Azores-Gibraltar o Falla transformante de Azores-Gibraltar, llamada también Zona de falla de Azores-Gibraltar, es una gran falla geológica que se extiende hacia el este desde el final del “rift” de Terceira en las Azores, prolongándose hacia el estrecho de Gibraltar hacia el Mar Mediterráneo. Esta forma parte del límite de placas entre la Placa Euroasiática y la Placa Africana. El tramo situado al este del Estrecho de Gibraltar está pobremente estudiado y es habitual considerarlo un límite “difuso”. En algunos puntos de la Península Itálica algunos geólogos creen que la falla conecta con una zona de subducción donde la placa Africana está subduciendo lentamente por debajo de la placa Euroasiática.
Si miramos en retrospectiva, podemos ver que el uniformismo de James Hutton tenía un impulso ideológico: era una reacción contra contra las interpretaciones religiosas de la naturaleza. Al final, ha resultado ser una doctrina notablemente tozuda. La evidencia de catástrófes geológicas y biológicas repentinas fue obvia durante mucho tiempo, y pese a todo fue generalmente ignorada. Quienes llamaban la sobre esto tendían a ser llamados charlatanes. Cuando el respetado astrónomo Edmon Halley conjeturó en 1694 que un cometa podría chocar ocasionalmente con un planeta, su sugerencia no mereció ninguna atención. El astrónomo H.A. Proctor fue lo bastante temerario como para proponer que los cráteres de la lunares podrían ser el resultado de impactos de meteoritos.

Sería que encontráramos un objeto espacial sin señales en su superficie
Si contemplamos la fotografía de planetas y lunas, todos, sin ecepción, nos muestran una imagen muy similar a la de la Luna con intensa formación de cráteres debidos a los impactos recibidos de cuerpos provenientes del espacio exterior: Mercurio y Marte proporcionan ejemplos excelentes. Estos cuerpos han conservado el de colisiones porque carecen de una atmósfera espesa y tienen poca actividad geológica. Por el contrario, la mayoría de los impactos en la Tierra…

Temible . El de Yucatan a los Dinosaurios les vino mal pero, a nosotros, se nos abrió una puerta
Como podréis observar si mirais de aquellos cráteres que se formaron en la Tierra en el pasado lejano, han sido borrados por la erosión. Pero no todos. Al menos veinticinco lugares de impactos han sido positivamente identificados tan sólo en Australia. Estados Unidos tiene una de los cráteres más famosos, próximo a la ciudad de Winslow, en Arizona.
![]()
Conocido como el Cráter del Meteoro o Cráter Berringer, tiene 1,2 Kilómetros de diámetro, cien metros de profundidad y treinta mil años de antigüedad. Se conocen cráteres mucho más grandes y más viejos. Se sabe que, fue hace entre 4.000 y 3.800 milllones de años, cuando se paso una fase de intensa violencia que creó los cráteres lunares.
El periodo medio de la órbita del cometa Halley es de 76 años, pero no se pueden calcular las fechas con exactitud ya que la garvedad de los planetas mayores altera el periodo del cometa en cada vuelta. La órbita del Halley es retrógrada e inclinada 18 grados respecto de la eclíptica. Y, como la de todos los cometas, altamente excéntrica.El núcleo del cometa Halley mide aproximadamente 16 x 8 x 8 kilómetros. El núcleo del Halley es muy oscuro: su albedo es de sólo 0.03, por lo que es más negro que el carbón y uno de los objetos más oscuros del solar. La densidad del núcleo del Halley es muy baja: unos 0.1 gramos/cm3, indicando que probablemente es poroso, quizá debido a la gran cantidad de polvo que queda después de que los hielos se sublimen.
El Halley es único entre los cometas, ya que es a la vez grande y activo, y tiene una órbita regular y bien definida. Ésto lo convierte en un objetivo relativamente fácil para los astrónomos, aunque no es el más representativo de los cometas. El cometa Halley volverá a acercarse al Sol en el año 2061.
Se especula con la idea de que el Sistema Solar entero pasó por una intensa fase de bombardeo de grandes meteoritos y que fue debido a la destrucción de una luna o de algún cometa monstruoso. Desde el punto de de la vida, después de esta intensa andanada, la Tierra pudo quedar “sembrada” de sustancias orgánicas. Cuando la nave espacial Giotto pasó del Cometa Halley en 1986, mostró un núcleo negro-alquitrán que contenía Carbono, Hidrógeno, Nitrógeno y Azufre. Los análisis de los granos de polvo que manaban de su parte frontal probaron que hasta una tercerqa parte era material orgánico

Ilustración de Donald E. Davis que recrea el impacto de un asteroide hace 65 millones de años en la península de Yucatán, donde formó el cráter de Chicxulub. Esta colisión cósmica causó la extinción masiva que hizo desaparecer a los dinosaurios. Fred Hoyle pensaba que, además de destrucción, este tipo de impactos pudieron traer la vida a la y, Arrenius propuso antes la misma idea y la llamó Panspermia (: NASA/JPL-Caltech)

El origen de la vida en la Tierra aún esconde secretos para la ciencia. Uno de los puntos de debate es si los bloques de la química de la vida se formaron in situ o si llegaron a bordo de meteoritos. De ser cierta esta segunda hipótesis, sería más fácil explicar cómo surgieron las enormes y complejas moléculas bioquímicas, ya que nuestro planeta se habría encontrado con parte del trabajo hecho, incluyendo componentes posiblemente escasos en la Tierra primitiva. Pero, además, esta siembra de semillas químicas pudo disparar la evolución de la vida no sólo aquí, sino en lugares como Marte, cuya primera infancia fue muy similar a la de la Tierra.
El descubrimiento de que la Tierra sufrió agotadoras andanadas cósmicas hace 3.800 millones de años nos pone delante de un auténtico rompecabezas. Si hay que creer en el fósil, la vida estaba floreciendo ciertamente hace 3.500 millones de años, y posiblemente ya hace 3.850 millones de años. Dadas las funestas consecuencias de un impacto importante, ¿podría la vida haber sobrevivido durante el último bombardeo intenso?
![[kleopatra2c1_cr_1_ws_browse[4].jpg]](http://lh3.ggpht.com/ctxarly/SNkbesZjcUI/AAAAAAAABDw/Eeod2EOzSfc/s1600/kleopatra2c1_cr_1_ws_browse%5B4%5D.jpg)
Por desgracia, el rastro de evidencia se acaba precisamente cuando este problema se hace más interesante. Aunque los geólogos han encontrado cristales de zirconio aislados de 4.200 millones de años de antigüedad, y han inferido que algún tipo de corteza sólida debía haber existido en dicha época, las más antiguas rocas intactas encontradas datan de hace 4.030 millones de años. Los procesos geológicos han eliminado casi toda la evidencia de lo que pudio haber sido nuestro planeta antes de hace aproximadamente unos 3.800 millones de años. La Tierra se muestra reacia a ofrecernos secretos de su juventud. Sin embargo, las evidencias indirectas de las que había antes de hace 3.800 millones de años puede estar justo debajo (¡incluso dentro!) de nuestras narices.
El ADN humano contiene a 6 mil millones de pares de bases de nucleótidos. Esto hace por lo menos dos metros de cadenas de ADN. Aquellas cadenas tienen que ser almacenadas dentro de ± 6 µ el núcleo clasificado de m de cada célula.: Claramente demasiado grande para caber en el núcleo. Hace falta pues un mecanismo que permita almacenar todo. Este mecanismo debería permitir a ciertas proteínas para tener a las partes específicas del ADN y el puesto en otras partes. Los eucariotas utilizan los nucleosomas. Un nucleosoma está constituido de:± 200 pb de DNA
![]()
2 moléculas de histona H2a
2 moléculas de histona H2b
2 moléculas de histona H3
2 moléculas de histona H4
1 molécula de histona H1

El ADN de nuestros cuerpos contienen un del pasado, porque nuestros genes han sido moldeados por circunstancias ambientales. Aunque el registro genético, como el registro geológico, ha quedado envuelto y oscurecido por los estragos del tiempo, no está completamente borrado. Sonsacando información de los genes, los microbiólogos pueden decir mucho sobre el ancestro universal que pudo haber vivido hace unos 4.000 millones de años, y con esta infromación podemos conjeturar algo sobre las condiciones que imperaban en aquella época. El mensaje que se extrae es una auténtica sorpresa.


La primera forma de vida en la Tierra, flotando en la proverbial espuma de los mares primordiales que dio lugar a los árboles, abejas y humanos, no es sólo un popular concepto darwiniano, sino también una premisa biológica esencial de la que dependen muchos investigadores como parte de las bases de su trabajo.
En el siglo XIX, Charles Darwin yendo más allá que otros, que proponían que podría haber un ancestro común para mamíferos u otros animales, y sugirió que había un ancestro común probablemente para la vida del planeta – plantas, animales y bacterias.
Un nuevo análisis estadístico lleva esta suposición al banco de pruebas y ha encontrado que no sólo se a flote, sino que es extremadamente sólida.
¿No era algo obvio, desde el descubrimiento y descifrado del ADN, que todas las formas de vida son descendientes de un único organismo común — o al menos una especie basal? No, dice Douglas Theobald, ayudante de bioquímica en la Universidad de Brandeis y autor del nuevo estudio, detallado en el ejemplar del 13 de mayo de la revista Nature. De hecho, dice: “Cuando me propuse esto, realmente no sabía cuál sería la respuesta”.

Imaginémos que pasaba durante la época de intenso bombaredeo cósmico. Todo gran impacto provocaba una gran convulsión global. La magnitud del desbarajuste era mucho peor incluso que el golpe que destruyó a los dinosaurios. En una época tan tadía como 3.800 millones de años, la Luna fue golpeada por un objeto de noventa kilómetros de diámetro, lo que produjo ujna colosal cuenca del tamaño de las Islas Británicas. cataclismos similares han dejado señales en forma de cercos de montañas. Al ser mucho más grande, la Tierra debe haber sufrido docenas de colisiones de esta magnitud, ademásd de algunas otras que eran incluso mayores.
Si alguno como el de arriba se nos viene encima, siempre me viene a la memoria la imagen (con los medios que tenemos para poder solucionar el problema hoy) de que parecerémos como Don Quijote queriendo derribar aquellos Molinos con su pobre lanza. ¿Qué podríamos hacer? NADA, sólo pagar las consecuencias.
Podríamos analizando más a fondo las consecuencias de lo que, un impacto de esta índole podría producir en la Tierra. Un cuerpo impactante de 500 kilómetros de diámetro escavaría un agujero de 1.500 kilómetros de diámetro y de unos 50 kilómetros de profundidad. Un enorme volumen de rocas quedaría vaporizado en una gigantesca bola de fuego que se extendería rápidamente por todo el planeta, desalojando la atmósfera y creando un horno global. La temperatura superficial ascendería a más de mil grados Celsius, lo que provocaría la ebullición de todos los océanos del mundo y fundiría las rocas hasta una profundidad de casi un kilómetro.
QA medida que la atmósfera, aplastantemente densa de vapor de roca y vapor supercalentado se enfriaba lentamente durante un período de algunos meses, empezaría a llover gotas de roca fundida. Pasaría todo un milenio antes de que pudiera haber lluvia normal, preludio de un gran aguacero de dos mil años (Un Diluvio) que finalmente rellenaria los océanos y haría volver el planeta a algún tipo de normalidad.
El “Tiempo” no me permite con lo que todo esto supondría para la vida tal como la conocemos y, si después de un desastre así, volveríamos a estar presentes en éste mundo que hoy es nuestra casa. Ya sabeis, amigos míos, que la Naturaleza cuando actúa, no tiene en cuenta que nosotros estamos aquí.
emilio silvera
















Totales: 84.421.452
Conectados: 48




















.





