viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Estrellas de Quarks! Materia extraña

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ESTABILIDAD DE LA MATERIA EXTRAÑA, Y POSIBLES ESTRELLAS DE QUARKS.

Resultado de imagen de Estrellas de Quarks, materia extrañaResultado de imagen de Estrellas de Quarks, materia extraña

Hipotético tipo de estrella exótica de inmensa densidad que está hecha de materia conformada por Quarks

Estrella de quarks. El término estrella de quarks o estrella extraña, es usado para denominar un tipo de estrella exótica en la cual, debido a la alta densidad, la materia existe en forma de quarks desconfinados.
Resultado de imagen de Estrellas de Quarks, materia extraña
Sabemos de las estrellas ordinarias como el Sol y otras que, cuando “mueren” pasan por distintas fases y, según sus masas originales, terminan como estrellas enanas blancas, de neutrones o, agujeros negros. Sin embargo, intermediando las de neutrones y agujeros negros, podrían existir estrellas de Quarks (no detectadas hasta el momento).
Resultado de imagen de Estrellas de Quarks, materia extraña

Estrella de quarks. El término estrella de quarks o estrella extraña, es usado para denominar un tipo de estrella exótica en la cual, debido a la alta densidad, la materia existe en forma de quarks desconfinados.

La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.

Resultado de imagen de Estrellas de Quarks, materia extrañaResultado de imagen de Estrellas de Quarks, materia extraña

Resultado de imagen de Estrellas de Quarks, materia extrañaResultado de imagen de Estrellas de Quarks, materia extraña

Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.

La “sopa“ que mencionamos antes, se conoce como Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados (conocido por sus siglas en ingles como RHIC) de Brookhaven, New York.

Leer más

Si existen ¿Cómo serían otros universos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Caos y Complejidad    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundos

Siempre hablamos de visitar otros mundos, otros universos y, en ellos, las condiciones físicas no tienen, necesariamente, que ser como en el nuestro. Los mundos, como las estrellas y los universos, pueden tener sus propias características dependiendo de muchos factores que lo podrían conformar de manera muy diferente a como lo está nuestro mundo y vemos que se comporta el universo con sus cuatro leyes fundamentales y sus constantes que, en otro universo, podrían ser de otra manera.

Resultado de imagen de Paisajes de otros mundos

Formas de vida diferentes, estructuras asombrosas y para nosotros desconocidas, y, hasta el Tiempo se podría comportar de diferente manera.

Si es cierto lo que afirman algunas teorías, entonces existen en realidad un número infinito de universos paralelos, muchos de ellos con diferentes constantes físicas. En algunos de ellos, quizá los protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch tiene lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un número infinito de estos universos paralelos están muertos, sin las leyes físicas que puedan hacer posible la vida tal como la conocemos.

En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar esta cuestión. Si esto es cierto, entonces quizá no haya que invocar a Dios para explicar por qué la vida, por preciosa que sea, es posible en nuestro universo. Sin embargo, esto reabre la posibilidad del principio antrópico débil, es decir, que coexistimos con nuestros universos muertos y que el nuestro sea el único compatible para vida.

La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger. Empezamos con una función de onda que describe el conjunto de todos los universos posibles. Esto significa que el punto de partida de la teoría de Hawking debe ser un conjunto infinito de universos paralelos, la función de onda del universo. El análisis bastante simple de Stephen Hawking, reemplazando la palabra partícula por universo, ha conducido a una revolución conceptual en nuestras ideas sobre la cosmología.

Resultado de imagen de La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo.

La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo.

Resultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo

La teoría cuántica afirma también que nunca se conoce realmente el estado de una partícula hasta que se haya hecho una observación. Antes de que haya una medida, la partícula puede estar en uno de entre una diversidad de estados, descritos por la función de onda de Schrödinger. Por consiguiente, antes de que pueda hacerse una observación o medida, no se puede conocer realmente el estado de la partícula.  De hecho, la partícula existe en un estado ultramundano, una suma de todos los estados posibles, hasta que se hace una medida.

Cuando esta idea fue propuesta por primera vez por Niels Bohr y Werner Heisemberg, Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?“, -o un gato- le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un número infinito de estados, incluyendo el estado de estar en el cielo, de estar explotando, o de no estar allí en absoluto. Es el proceso de medida que consiste en mirarla el que decide que la Luna está girando realmente alrededor de la Tierra“. Decía Einstein con ironía.

Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato esta descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.

Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.

        Sí, a veces la mecánica cuántica parece tan fantástica como el cuento de Alicia

La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás“, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe.   Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.

El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado.  Nadie sabe como puede ser eso“. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.

Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.

Aunque no siempre, lo más simple tiene que ser lo verdadero. El principio de la Navaja de Ockham es fundamental para el reduccionismo metodológico.

Existe un principio de la física denominado Navaja de Ockham, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.

Para seguir fielmente el consejo contenido en la navaja de Ockham , primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos necesarios para hacer las preguntas adecuadas.

Resultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempoResultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo

Resultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempoResultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo

Resultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempoResultado de imagen de para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo

¿Quién puede saber lo que ahí fuera existe? ¡Nadie! Sólo podemos imaginarlo en función de cada Mente y de distintas maneras

Hugo Everett, Bryce DeWitt y ahora Hawking (también otros), han propuesto la teoría de los universos múltiples. En unos universos los protones se desintegran antes haciendo inestable la materia, en otros, el átomo de uranio se desintegra mediante un proceso sin radiaciones, y en otros universos las constantes universales que existen en el nuestro, son totalmente diferentes y no dan posibilidad alguna para la existencia de seres vivos. Está claro que cualquier variación que en principio pudiera parecer sin importancia, como por ejemplo la carga del electrón, podría transformar radicalmente nuestro universo.

Como apuntó el físico Frank Wilczek:

Resultado de imagen de Elena de Troya con una berruga en la nariz

“Se dice que la historia del mundo sería totalmente distinto si Helena de Troya hubiera tenido una verruga en la punta de su nariz.”

 

Hasta el momento, se han celebrado varias conferencias internacionales sobre la función de onda del universo. Sin embargo, como ocurre en la teoría de supercuerdas, las matemáticas implicadas en la función de onda del universo, parecen estar más allá de la capacidad de cálculo que cualquier humano en este planeta pudiera resolver, y tendríamos que esperar años antes de que aparezca un individuo genial que pudiera encontrar una solución rigurosa a las ecuaciones del añorado Hawking.

Resultado de imagen de La función de onda del Universo

Resultado de imagen de La función de onda del UniversoResultado de imagen de La función de onda del Universo

Recordemos aquí de nuevo que, precisamente ahora, un siglo más tarde, en el Congreso Internacional de Matemáticas celebrado en Madrid el mes de Agosto de 2.006, se otorgó la Medalla Field (una especie de Nobel de las matemáticas) al matemático ruso Perelman, extraño ser que ni se dignó comparecer a recogerla con el premio, hizo caso omiso. Perelman ha resuelto la conjetura expuesta por Poincaré planteada en 1.904.

La conjetura de Poincaré de 1.904, en el año 2.000, fue catalogada por el Instituto Clan como uno de los siete problemas del milenio. Para hacer un comentario sobre esta conjetura tengo que referirme a la topología, el nivel de las matemáticas donde está ubicada.

Resultado de imagen de Grisha Perelman

En el Año Internacional de las mátemáticas, reunidos en Madrid y presididos por el Rey de España, todos esperaban la llegada del genio Grigori Perelman, le entregarían el premio de un millón de dolares por haber resuelto uno de los 7 problemas matemáticos del milenio. No apareció a recogerlo y desapareció sin dejar rastro.

El personaje vive dentro de su propio mundo, opinaba que toda aquella gente no merecía que le explicara algo que no entenderían.

Resultado de imagen de Grisha Perelman

Vive en una pequeña casa de 60 m/2 con su madre y sale al campo a coger setas

 

Las últimas fotos que se conocen de él se las sacaron con un celular en un vagón del metro de Petersburgo. Se está quedando pelado pero las mechas largas y desgreñadas le llegan a los hombros, va en zapatillas sucias, un traje arrugado que le queda corto, sin corbata y con la camisa enteramente desprendida, flaco como un Cristo, la barba igual, la mirada perdida, las uñas largas y sucias y curvadas hacia adentro como garras. El vagón va en dirección sur, a Kúpchino, un barrio de monoblocks donde muere el metro. Todos los vecinos de Kúpchino saben quién es Grisha Perelman y cuál es la puerta del ínfimo departamento que comparte con su madre. Pero ninguno va a decírselo a los periodistas y a los fanáticos de la matemática que cada tanto merodean por ahí.

    La topologia tienen unas matemáticas endiabladamente complejas

La topología es la geometría de los objetos elásticos o flexibles que cambian de forma pero tienen las mismas propiedades que antes de ser estirados, achatados, etc. Se pueden retorcer pero no cortar ni pegar.

Los topólogos no tienen en cuenta la distancia, puesto que se puede variar al deformar el objeto, sino nociones más sutiles. Los orígenes de la topología se remontan a mediados del siglo XVIII, con los trabajos de Euler en teoría de grafos, que llamó “análisis situs”.

A finales del siglo XIX y principios del siglo XX, la topología recibió un gran impulso con los trabajos de Poincaré, matemático francés muy influyente en el posterior desarrollo de diversas áreas de las matemáticas y de la física. En particular, en 1.904 planteó la conjetura que lleva su nombre y que no se ha resuelto hasta el siglo XXI. Este problema ha sido un motor para la investigación en topología de todo el siglo pasado y se ha llegado a su resolución con ideas nuevas y apasionantes.

                                                               Henri Poincaré en su estudio trabajando

Para situarnos mejor debemos hablar de las variedades, espacios que tienen una dimensión determinada. Por ejemplo una recta o un circulo son variedades de dimensión uno, puesto que se describen como un parámetro.  El plano o la esfera son ejemplos de variedades bidimensionales, al utilizar dos parámetros para describir sus posiciones. El espacio en que vivimos es una variedad tridimensional, y si le añadimos la dimensión temporal, el espacio-tiempo es una variedad de dimensión cuatro. Ya he comentado en este mismo trabajo cómo las singularidades geométricas, las variedades, fueron introducidas por Riemann a mediados del s.    XIX y constituyeron una herra-mienta clave para la física del siglo XX. De hecho, la teoría de la relatividad especial de Einstein fue postulada por Einstein en 1.905, pero hasta que no incorporó las variedades contenidas en el tensor métrico de Riemann, no pudo completar la teoría de la relatividad que incluía los espacios curvos.

La pregunta que hizo Poincaré fue la siguiente: ¿Es la esfera la única variedad tridimensional para la cual toda curva se contrae?

Se pasó un siglo entero antes de que un genio de las matemáticas, el extraño G. Perelman, pudiera demostrar la conjetura de Poincaré.

De todas las maneras, avanzar en el conocimiento de las cosas no resulta nada fácil, y, aunque el avance es exponencial (cuanto más datos vamos teniendo más rápidamente avanzamos), hay algunos enigmas de la Naturaleza que, de momento, segurán en la oscuridad de nuestra profunda ignorancia.

emilio silvera

Conjeturar… ¡Tratando de saber!

Autor por Emilio Silvera    ~    Archivo Clasificado en Teorías ¿Imposibles?    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El principio antrópico y otras cuestiones

Resultado de imagen de El Principio Antrópico

¡El Universo! ¿Sabría que nosotros íbamos a venir?

Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

Resultado de imagen de El Principio Antrópico

¿Controlados por entidades superiores… ¡Creo que no! El único control existente sobre nosotros es la propia Naturaleza, el UNiverso en fin. Independientemente de que cada uno de nosotros tengamos una pequeña parcela en la que podemos decidir, lo cierto es que, estamos a merced de grandes fuerzas y acontecimientos que no podemos evitar. Sinmplemente formamos parte (una pequeña parte) de un algo mucho mayor.

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

Resultado de imagen de El Destino del Universo

Lo que ocurra en la naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenemo0s  del “libre albedrío”.

            ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

                                  El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

 Nuevos cálculos sugieren que el cosmos puede estar un poco más cerca a una muerte térmica.Si resulta que finalmente, todo será así, el frío se apoderará de todo y, a -273 ºC, ni los átomos tendrán el menos movimiento, todo quedará como petríficado y yerto… ¡Nuestro Universo habrá llegado a su fin!

Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

Resultado de imagen de Entropia  del UniversoResultado de imagen de Entropia  del UniversoResultado de imagen de Entropia  del UniversoResultado de imagen de Entropia  del Universo

             Como sistema cerrado, todo el Universo tiende al aumento de su Entropía

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenador de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros supermasivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros supermasivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación, según informaban los científicos el 23 de septiembre en ArXiv.org.

Resultado de imagen de Muerte térmica del Universo

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

¿Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

Conseguir abrir puertas que nos lleven a otras estrellas, más rápido que la velocidad de la luz pero, sin violar la supremacía de c, que es la que obstenta ese primer puesto que, nuestro universo le dio y nada le podrá quitar nunca, ya que, el universo es así: Los fotones sin masa los más rápidos. Otra cosa será encontrar otros caminos como abrir puertas al Hiperespacio o saber activar Agujeros de Gusano.

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

Resultado de imagen de La Gravedad cuántica

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro. Dicen que dentro de la Teoría de cuerdas subyace una teoría cuántica de la Gravedad, es decir, que por fín pueden estar allí juntas ambas teorías sin que surjan infinitos indeseables que no pueden ser renormalizados.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

                              ¿Veremos por fin, lo grande y lo pequeño unidos por una misma teoría?

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

Resultado de imagen de La teoría MResultado de imagen de La teoría M

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

Dibujo20160630 some formulae from edward witten physics today

“búsqueda de una teoría cuántica de la gravedad en 4D (un espaciotiempo 3+1) usando las herramientas de la teoría cuántica de campos presenta ciertos problemas sin solución. Para ilustrarlos, Witten nos propone usar dichas herramientas para buscar una teoría cuántica de la gravedad en 1D (un espaciotiempo 0+1). Más sencillo imposible. La geometría del espaciotiempo será una curva abierta o una curva cerrada, en ambos casos parametrizada por el tiempo propio.” (según la ciencia de la Mula Francís)

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea.

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

Resultado de imagen de La Gravedad cua´ntica

        También en la teoría de supercuerdas está incluída ¡la Gravedad-Cuántica! Otra Ilusión

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

  Sí, hemos logrado mucho. Arriba tenemos la  imagen de la emisión en radio de un magnetar

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionantede lo que podría haber sido si…

¿Dónde estará el límite? ¡No hay límites!

emilio silvera

Es nuestro destino: Siempre buscando respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 En busca del primer hijo entre neandertales y sapiens.

 

Un cráneo humano hallado en Israel demuestra que ambas especies vivían a apenas 40 kilómetros y compartieron la misma zona durante milenios.

 

            El cráneo humano de hace 55.000 años hallado en la cueva de Manot (Israel) / Nature

La evolución humana es como una película censurada: alguien parece haber cortado los mejores trozos. En uno de ellos, nuestra especie tiene hijos con otra. Se trataba de los neandertales y, decenas de miles de años después, seguimos sin conocer todos los detalles de lo que pasó.

Ahora, un nuevo fósil hallado en la cueva de Manot, al norte de en Israel, permite rescatar unos cuantos fotogramas perdidos de esa película que cuenta quiénes somos. Se trata de la parte superior de un cráneo y las imágenes que se desprenden de su estudio muestran que ambas especies vivieron como cazadores nómadas muy cerca los unos de los otros posiblemente durante milenios. Aunque el fósil no aporta datos concluyentes, sus descubridores creen que este enclave bien pudo ser el escenario del cruce entre ambas especies e incluso especulan con que aquel individuo era uno de los primeros hijos entre sapiens y neandertales.

El profesor Hershkowitz muestra el cráneo de 55.000 años encontrado en una …

“Lo más excitante de este hallazgo es que se trata del primero y único humano moderno datado entre 60.000 y 50.000 años que se encuentra fuera de África”, explica a Materia el antropólogo Israel Hershkovitz, coautor del hallazgo. “Este es justo el tiempo en el que los modelos genéticos y arqueológicos dicen que surgieron los humanos modernos, los primeros antepasados de todas las poblaciones vivas actuales”, resalta. También es el periodo en el que, según los análisis genéticos, los sapiens africanos tuvieron hijos con los neandertales.

La cueva de Manot está a apenas 40 kilómetros de la cueva de Amud y a 54 kilómetros de la de Kebara, ambas habitadas por los neandertales en aquella época, resalta Hershkovitz. La calavera de Manot tiene unos 55.000 años con lo que “probablemente coincidieron en esta zona durante miles de años”, comenta el investigador.

Resultado de imagen de La cueva de Manos está a apenas 40 kilómetros de la cueva de Amud y a 54 kilómetros de la de Kebara,Resultado de imagen de La cueva de Manos está a apenas 40 kilómetros de la cueva de Amud y a 54 kilómetros de la de Kebara,

A partir de aquí, la película vuelve a cortarse. Hace 50.000 años, los neandertales de la zona desaparecen mientras los sapiens llegados de África seguían allí. Unos 5.000 años después estos comenzaron a moverse hacia Europa mientras la otra especie se precipitaba hacia la extinción completa, sin que se conozcan las causas.

¿Es este el cráneo de uno de los primeros híbridos neandertales y sapiens? Es una posibilidad, según el estudio firmado por Hershkovitz en Nature junto a otros 23 investigadores de Israel, EE UU, Alemania y Austria. La calavera presenta una morfología muy parecida a la de africanos actuales y también a la de restos fósiles de humanos modernos encontrados posteriormente en Europa. Esto refuerza la teoría de que ese individuo era descendiente de una oleada sapiens que salió del continente africano hace unos 70.000 años para asentarse por todo el mundo. El hecho de que sea más evolucionado que otros sapiens más primitivos hallados hace unos 100.000 años en la misma zona refuerza la teoría.

Guerras y ADN

Sin embargo, los investigadores advierten de que es imposible saber si estamos ante uno de los primeros hijos entre ambas especies analizando solo la forma del cráneo. La única forma de asegurarlo es analizando su ADN, algo que ya se han propuesto hacer, aunque no será tarea fácil debido a que el clima de esta zona bien ha podido destrozar todo el material genético. Los autores del estudio albergan algo de esperanza porque la entrada principal a la cueva quedó bloqueada hace 30.000 años y desde entonces ha sido como una “cápsula del tiempo” no perturbada por la presencia humana.

Resultado de imagen de La cueva de Manos está a apenas 40 kilómetros de la cueva de Amud y a 54 kilómetros de la de Kebara,Resultado de imagen de La cueva de Manos está a apenas 40 kilómetros de la cueva de Amud y a 54 kilómetros de la de Kebara,

El genetista español Carles Lalueza-Fox ofrece una opinión independiente del hallazgo. Este humano “podría ser un representante de la población que saliendo de África se hibridó con los neandertales, pero no un descendiente de dicho acontecimiento, ya que no muestra señales evidentes de neandertal”, opina.

Ahora, el problema del ADN amenaza con mantener la otra parte de esta y otras secuencias jugosas en negro durante mucho tiempo, según el experto. “Es una lastima que las condiciones térmicas de Oriente próximo no favorezcan la conservación del material genético porque hay diversos acontecimientos evolutivos en nuestra especie, como la salida de África, la hibridación con neandertales y el surgimiento de la agricultura que tienen lugar en esta zona geográfica”, explica Lalueza-Fox. Tampoco ayuda que las guerras estén devastando otros escenarios claves de la evolución humana como Siria o Irak.

Fuente: El Pais.

Teorías, masas, partículas, dimensiones…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una nos habla del Cosmos y de como el espacio se curva ante la presencia de masas, la otra, nos habla de funciones de ondas, entrelazamientos cuánticos, de diminutos objetos que conforman la materia y hacen posibles los átomos y la vida.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

Resultado de imagen de Imagenes del Tiempo de PlanckResultado de imagen de Imagenes del Tiempo de PlanckResultado de imagen de Imagenes del Tiempo de PlanckResultado de imagen de Imagenes del Tiempo de Planck

{\displaystyle \ell _{P}={\sqrt {\frac {\hbar G}{c^{3}}}}\approx 1.616199(97)\times 10^{-35}{\mbox{ metros}}}

La longitud de Planck (P) u hodón (término acuñado en 1926 por Robert Lévi) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de Gravedad Cuántica.

¿Quién puede ir a la longitud de Planck para verla? A distancias comparables con la longitud de Planck, se cree que están sucediendo cosas muy curiosas que rebasan ampliamente los límites de nuestra imaginación. A diferencia de la filosofía reduccionista que propone que lo más complejo está elaborado -axiomáticamente- a partir de lo más elemental, lo que está sucediendo en la escala de Planck no parece tener nada de elemental o sencillo. Se cree que a esta escala la continuidad del espacio-tiempo en vez de ir marchando sincronizadamente al parejo con lo que vemos en el macrocosmos de hecho stá variando a grado tal que a nivel ultra-microscópico el tiempo no sólo avanza o se detiene aleatoriamente sino inclusive marcha hacia atrás, una especie de verdadera máquina del tiempo. Las limitaciones de nuestros conocimientos sobre las rarezas que puedan estar ocurriendo en esta escala en el orden de los 10-35 metros, la longitud de Planck, ha llevado a la proposición de modelos tan imaginativos y tan exóticos como la teoría de la espuma cuántica que supuestamente veríamos aún en la ausencia de materia-energía si fuésemos ampliando sucesivamente una porción del espacio-tiempo plano

Resultado de imagen de ¿Donde están las dimensiones extra?

Resultado de imagen de ¿Donde están las dimensiones extra?Resultado de imagen de ¿Donde están las dimensiones extra?

No pocos han tratado de encontrar la puerta para acceder a esas dimensiones extras que pregonan algunas teorías. Sin embargo, hasta el momento, nadie ha dado con el camino para poder llegar a ellas y traspasarlas para ver, lo que puedaxistir más alla de las dimensiones que rigen en nuestro propio mundo.

Resultado de imagen de ¿Donde están las dimensiones extra?Resultado de imagen de ¿Donde están las dimensiones extra?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

Resultado de imagen de ¿Donde están las dimensiones extra?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el LHC que ha trabajado a 14 TeV, y, necesitaria disponer de la energía de Planck, es decir 1019 GeV, y dicha energía, queda lejos, muy lejos de nuestro alcance en el presente y, si alguna vez podemos disponer de ella esrtaría situada muy lejos en el futuro.


Resultado de imagen de El Modelo Estándarç+

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

¡Necesitamos algo más avanzado!

Cada partícula tiene encomendada una misión, la de Higgs, ya sabemos lo que dicen por ahí.es la dadora de masa a las demás partículas (cosa que -particularmente- no tengo nada claro).

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

Resultado de imagen de Que hay más allá de los Quarks

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

 

Cuando los físicos hablan de la belleza de algunas ecuaciones, se refieren a las que, como ésta, dicen mucho con muy pocos caracteres. De hecho, puede que ésta sea la ecuación más famosa conocida en nuestro mundo.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta hace bien poco no teniamos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC cuando la buscaba). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Pero, encierra tantos misterios la materia que, a veces me hace pensar en que la podríamos denominar de cualuquier manera menos de inerte ¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 Kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: r0 = e2/mc2 = 2’82 x 10-13 m. No se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

¡No por pequeño, se es insignificante!

Recordémoslo, todo lo grande está hecho de cosas pequeñas.

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.

Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

Han llevado años captarlas, las ondas gravitatorias llevadas por el gravitón son débiles

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

Resultado de imagen de La entropía de un agujero negro

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs).

El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica. En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch* en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido.

Resultado de imagen de Campos fermiónicosResultado de imagen de Campos fermiónicos

Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránidos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

emilio silvera