viernes, 24 de mayo del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuestro sueño de ir a otros mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en Otros mundos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

                       Ilustración de la estrella enana ultra-fría TRAPPIST-1 y de sus tres planetas. (ESO)

Resultado de imagen de TRAPPIST-1

El sistema de TRAPPIST-1 puede tener hasta 3 planetas habitables

En la actualidad nos parece cosa cotidiana el anuncio de las Agencias Espaciales de EE. UU. y de Europa cuando anuncian el descubrimiento de nuevos planetas que, alumbrados por alguna estrella y situados a la distancia adecuada, podría tener las condiciones para la Vida. NO hace mucho podíamos leer en las noticias:

“Tres planetas potencialmente habitables que orbitan alrededor de una estrella enana ultrafría (TRAPPIST-1) a tan sólo 40 años luz de la Tierra, fueron descubiertos por un un equipo internacional de astrónomos desde el Observatorio La Silla, 470 kilómetros al norte de Santiago de Chile.

 

 

voyager 1

Claro que todos esos descubrimientos sólo nos podrán ser válidos para dentro de muchas décadas o siglos, ya que, nuestras tecnologías están en pañales para poder realizar viajes del calibre requerido en expediciones a otros mundos situados fuera del Sistema solar.

Acordémonos de que la NASA tardó un año en averiguar que la Voyager 1 había salido del Sistema solar, y, lo anunció hace relativamente poco tiempo, cuando el lanzamiento del Ingenio espacial data del año 1977 y ha tardado cerca de 40 años en sumergirse en la región exterior a la que no llegan las partículas del Sol.

Cuando pasen unos 5.000 millones de años, nuestro Sol, agotado el combustible nuclear de fusión, se convertirá en una Gigante roja (proceso que durará unos 600 millones de años) que engullirá a los planetas interiores, y, entonces, la vida, dejará de existir tal como la conocemos. Cuando  alcance su tamaño máximo, que se estima será casi 260 veces mayor y su luminosidad que llegará a 2 700 veces más de la que tiene hoy.

Nuestro Sol, cada segundo, fusiona 4.654.600 Toneladas de Hidrógeno, en 4.650.000 Toneladas de Helio y, las 4.600 Toneladas que en la transmutación se “pierden”, son lanzadas al Espacio Interestelar en forma de luz y de calor. Una pequeña fracción de esa luz y de ese calor (2.000 millonésimas), llega a nuestro planeta para que la Vida sea posible y se produzca el ciclo de la fotosíntesis entre otros beneficiosos fenómenos naturales.

Descubren el planeta habitable más cercano a la Tierra

Simulación de Proxima b en la órbita de su estrella, la enana roja Proxima Centauri (ESO/M. Kornmesser)

El empeño que tenemos de seguir oteando el Espacio Exterior y vigilando estrellas que, parecidas a nuestro Sol, puedan contener planetas en órbita que sean idóneos para la Vida, no es gratuito, ya que, aunque aún falta mucho tiempo, si conseguimos continuar por aquí, el suceso llegará y necesitaremos otros lugares en los que asentar colonias humanas.

Claro que, por muchos motivos, las cosas no serán nada fáciles y, no todos los mundos tienen las condiciones de la Tierra. Aunque puedan ser habitables sus variables pueden ser inmensas, y, habrá que adaptarse a nuevas condiciones naturales distintas de las de la Tierra.

Resultado de imagen de Planetas habitables en estrellas cercanas

Imagen relacionada

Plantas con dos soles y con varias “lunas”, con unas condiciones climáticas distintas a las de la Tierra, con estrella que al no ser de la misma clase que nuestro Sol (G2V amarillo), nos enviarán una luz distinta que cambiará el color de las plantas y los paisajes…

Claro que, llegado ese momento, no tendremos otra salida, habrá que adaptarse a lo que podamos encontrar y que sirva para sustentar nuestras vidas. De los muchos planetas que para entonces tendremos a nuestra disposición, unos serán más idóneos que otros pero… ¡Nos olvidamos de lo más importante! CÓMO LLEGAR HASTA ELLOS.

Resultado de imagen de Recreación del planeta Próxima b. Al fondo, la estrella Próxima Centauri y en medio, Alfa Centauri.

 Imagen distribuida por el Observatorio Europeo Austral (ESO) el 24 de agosto de 2016 que muestra una recreación artística del cielo en torno a la estrella Alpha Centauri AB, y la enana roja Proxima Centauri, la estrella más cercana al Sistema Solar (Observatorio Europeo Austral/AFP

El rumor era cierto. Próxima Centauri, la estrella más cercana al Sol, alberga un planeta. Un mundo que además, se parece a la Tierra y está situado a una distancia de su estrella que en teoría, le permitiría tener agua líquida, un requisito necesario aunque no suficiente para que pudiera albergar algún tipo de vida.

Próxima b, como ha sido bautizado, se convierte por tanto en el planeta más cercano a la Tierra encontrado fuera del Sistema Solar. En el catálogo de exoplanetas (como se denominan los planetas fuera de nuestro sistema) hay más de 2.000 mundos de características y tamaños muy diversos, pero hasta ahora no se había encontrado ninguno tan cercano.

Imagen de Próxima Centauri, tomada por el telescopio espacial Hubble (NASA)

                  Imagen de Próxima Centauri, tomada por el telescopio espacial Hubble (NASA

Esta es la estrella que orbita ese posible planeta habitable y, se encuentra fuera del Sistema solar a 4,2 años luz de nosotros y una distancia de 4,2 años-luz es equivalente a casi 40 billones de kilómetros, un 4 seguido de 13 ceros. Comparemos esto con cifras asociadas a la actividad humana en el espacio hasta la fecha. La máxima distancia de la Tierra a la que los humanos han volado se alcanzó en abril de 1970 cuando la tripulación del Apolo 13 pasó por detrás de la Luna a una altitud de 254 km sobre su superficie, lo que la situó a 400.171 km de la Tierra. Esto es apenas 1,33 segundos-luz de distancia, la máxima a la que ha estado el ser humano hasta el día de hoy. Los ingenios no tripulados, sí alcanzaron distancias más largas pero, eso no nos valdría. Además, fijáos que el Voyager-1 ha tardado 40 años en salir del Sistema solar. ¿Qué nave se necesitaría para hacer un viaje con garantías a Próxima CEntauri.

El calculo realizado con la velocidad que pueden alcanzar nuestras “naves” actuales de unos 50/60.000 Km/h, podríamos ir a Próxima Centauri en un viaje que duraría 30.000 años. ¿Cuántas generaciones tendrían que pasar hasta llegar allí. Además, habrá que contar con los imprevistos (que los habría), con las carencias de la nave no preparada para ese viaje y pondría en peligro la integridad de los viajeros. Cuando oímos decir que vamos a ir a Marte (mucho más cerca) en unos años… ¡Me entra la risa!

                      Estrellas más cercanas al Sol con distancias expresadas en años-luz

Con estos datos en la mano nos podemos desilucionar un poco, ya que, llegamos a comprender que, en ese ámbito de los Viajes Espaciales, estamos aún muy lejos de poder decir que dominamos la técnica de ir a otros planetas, ya que, no podríamos garantizar la seguridad física de los viajeros. Ahora estamos comenzando a vislumbrar ese futuro (aún muy lejos) en el que nuestros descendientes puedan visitar los planetas más cercanos de manera habitual.

Capturafff

Cuando hablamos acerca de por qué es tan difícil ir a Marte, tal vez el ambicioso próximo objetivo a conquistar en nuestro sistema solar, vemos que las dificultades para posar allí seres humanos derivaban principalmente de la distancia a ese planeta. Y, sin embargo, cuando trasladamos a unidades de tiempo-luz los 55 millones de km de distancia más cercana o los 400 millones de km de distancia más lejana a la que la Tierra puede estar del planeta en su recorrido orbital alrededor del Sol, estas distancias resultan ser equivalentes a 3 minutos-luz y a 22 minutos-luz respectivamente, comparables a los 8,3 minutos-luz que nos separan de nuestra propia estrella. Ciertamente, estas distancias palidecen ante la de Próxima b a pesar de ser el exoplaneta más cercano a nosotros.

Sonda Voyager 1. Fuente: NASA/JPL-Caltech.

A día de hoy, la sonda Voyager 1, lanzada al espacio en 1977, es el artefacto humano que más se ha alejado de nuestro sistema solar. La Voyager 1 entró en el espacio interestelar en agosto del 2012 y en la actualidad se encuentra mucho más lejos que Plutón, a algo más de 20 mil millones de kilómetros del Sol, una distancia absolutamente increíble, pero que es de tan solo casi 19 horas-luz, una distancia que sigue siendo imperceptible frente a los 4,2 años-luz que nos separan de nuestra estrella más cercana fuera del Sistema Solar y de su planeta.

https://ambientech.org/blog/wp-content/uploads/2014/02/620029main_Clouds-Astrospheres_946-710.jpg

Alpha Centauri situada a 4,3 años luz de nosotros nos obligaría a recorrer 41,3 billones de kilómetros de distancia para poder llegar hasta ella. Y, si tenemos en cuenta las velocidades máximas que pueden alcanzar nuestras navez actuales… ¿Cuándo llegaríamos hasta el planeta más cercano que orbita Próxima Centauri y que, posiblemente, sea habitable?

https://genesisnanotech.files.wordpress.com/2014/11/star_trek_space_station.jpg

Inmensas Naves surcarán los Espacios Siderales en ese futuro que nunca podremos conocer. Tan grandes como ciudades y en las que, dotadas de toda clase de adelantos: Hospitales, Escuelas, lugares de cultivo hidrophónico, Laboratorios de todo tipo y, en definitiva, irán dotadas de todo aquello que los “habitantes aventureros” pudieran necesitar. No digamos de las tecnologías de a bordo que, como los materiales inteligentes capaces de repararse así mismo en caso de una colisión con micrometeoritos, la gravedad simulada terrestre… ¡Y un sin fin de adelantos que ahora, ni podemos imaginar! Esas serán las navez que podrán llevar a nuestros descendientes a otros planetas antes de que el Sol, agotado, se despida para siempre antes de convertirse en una Gigante roja primero y en una enana blanca después que se situará en el centro de una bonita Nebulosa Planetaria.

emilio silvera

Caprichos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Orion Arm.JPG

El concepto de vecindad es relativo e indefinido. Su valor puede variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.

Resultado de imagen de La Luna como vecina de la Tierra

Con el empleo de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida entre los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.

Pero mi intención al comenzar este comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:

R LEPORI

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”. R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelaciónde Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind. A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono-oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.

Resultado de imagen de Rigel

Como nos dice más arriba Wilipedia, cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que puede observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. Desde aquel día, el espectáculo celeste se repite periódicamente cada año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.

R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que antes me refería y que han permitido al hombre percibir la magia de los cielos y buscar en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí para deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.

A diferencia del Sol y de las estrellas de su clase, que permanecen estables, el brillo de una gran parte de la población estelar es variable, y en algunos casos su ciclo hace oscilar espectacularmente su intensidad lumínica ante nuestros ojos. En R Leporis, más que sus cambios de brillo, la faceta más hermosa es su tonalidad roja, una de las más intensas que puede observarse en todo el cielo, pero otras variables tienen un ciclo que las hace apagarse y encenderse como si fueran faros en la Vía Láctea. Ese es el caso de Mira, a la que Hevelius llamó “la estrella maravillosa” después de que apareciera en el cielo como por arte de magia.

Mira es el nombre propio que Hevelius le puso a esta estrella, cuya denominación original en el catálogo de Johann Bayer, basado en el alfabeto griego, era Omicrón Ceti, es decir, la estrella omicrón de la constelación de Cetus, la Ballena. Su variabilidad fue descubierta en 1596 por David Fabricius, pero Hevelius se sintió tan atraído por ella que le dedicó un libro, que tituló Historia de la estrella maravillosa. Realmente lo es; el brillo de Mira disminuye hasta la magnitud 11, invisible a ojo desnudo y sólo observable con telescopio como un débil punto de luz, pero al cabo de un tiempo su gigantesca máquina nuclear la hincha vertiginosamente y se convierte en una estrella de segunda magnitud, alcanzando un brillo notable, similar al de la estrella polar. Por eso, cuando está en la parte inferior del ciclo, Mira no puede verse sin ayuda óptica, pero después surge entre las demás estrellas de su constelación, como si se hubiera encendido de repente.

http://upload.wikimedia.org/wikipedia/commons/e/e8/Mira_1997.jpg

Imagen de Mira obtenida con el Telescopio Espacial Hubble

Mira pertenece a la clase espectral M, la misma que Antares y Betelgeuse. Las tres son estrellas muy frías en comparación con el Sol, ya que su temperatura es del orden de los 3000 grados. Sin embargo, Mira, Betelgeuse y Antares son decenas de miles de veces más luminosas que el Sol, puesto que figuran entre las estrellas más grandes conocidas, alcanzando diámetros de unos ochocientos millones de kilómetros, equivalentes a la distancia a la que se halla Júpiter del Sol. Estas tres gigantes, sin embargo, comparten sus atributos relativos a la clase espectral con las estrellas representativas del polo opuesto: las enanas rojas, como la estrella de Barnard y Próxima Centauri. Todas se muestran ante nosotros con el bello color rojizo, pero la gigante Betelgeuse es una estrella inestable a la que los astrónomos consideran una de las mejores candidatas de la Vía Láctea para estallar en cualquier momento en forma de supernova; puede ocurrir mañana o dentro de mil años, pero Betelgeuse está destinada a un final cataclísmico que se observará alguna vez. En cambio Barnard y Próxima, dos diminutos soles rojos, viven en la eternidad, al ser tan frías y pequeñas podrían permanecer en sus condiciones actuales en torno a doscientos mil millones de años, de acuerdo con la teoría aceptada de la evolución estelar para este tipo de bajo consumo de material nuclear.

 Resultado de imagen de los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la Historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Alguno de estos días, tendremos que hablar de Eta Carinae, otra variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, es probablemente la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida se masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

emilio silvera

GAIA, un Ente Vivo que nos permite habitar

Autor por Emilio Silvera    ~    Archivo Clasificado en La Vida en la Tierra    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Por qué las placas tectónicas y sus movimientos son indispensables para la vida

Resultado de imagen de Las placas tectónicas

 

 

Si nuestro planeta fuera una roca fría e inamovible, la vida probablemente no existiría

 

 

Es posible que la superficie terrestre se haya visto como en esta ilustración una vez
           Es posible que la superficie terrestre se haya visto como en esta ilustración una vez.

 

Incluso si le sacás a todos sus habitantes, la Tierra aún seguiría “viva”. Su núcleo líquido se mueve, generando un campo magnético que envuelve al planeta. Los volcanes en erupción vomitan gases y pavimentan nuevas tierras con lava fresca.

Resultado de imagen de Grandes corrientes de lavaImagen relacionada

La superficie terrestre es un rompecabezas de placas del tamaño de continentes que se empujan, se rozan y chocan entre sí, generando poderosos procesos que forman montañas y transforman paisajes.

Y el metabolismo geológico del planeta -especialmente el dinamismo de sus placas tectónicas- es también responsable de hacerlo habitable. Si el planeta fuese una roca espacial fría, muerta e inerte, probablemente la vida como la conocemos no podría existir.

Resultado de imagen de Otros mundos cargados de cráteres

Otros mundos en el Sistema Solar tienen superficies antiguas con marcas de cráteres de millones o incluso miles de millones de años. Sin embargo, sobre la Tierra, las placas tectónicas se desplazan y se deslizan, renovando constantemente su superficie. En las dorsales oceánicas el magma se eleva, formando una nueva corteza al separar dos placas.

La Tierra es un mosaico de placas tectónicas

                                                       La Tierra es un mosaico de placas tectónicas

Cuando dos placas se presionan entre sí, una sección de una puede quedar bajo la otra. Ese proceso puede cavar trincheras oceánicas profundas o inducir erupciones volcánicas. Y a veces, como en los Himalayas, las placas continentales chocan entre sí y, al no tener otro destino, construyen montañas.

Proceso vital

Todo eso es esencial para que haya vida sobre la Tierra. Esos procesos llevan carbono dentro y fuera del interior del planeta, regulando la cantidad de dióxido de carbono en la atmósfera, un gas con efecto invernadero. Cuando hay demasiado, la atmósfera atrapa mucho calor.

“La temperatura de la superficie aumenta y la Tierra finalmente se convierte en un planeta como Venus“, dice Jun Korenafa, geofísico de la Universidad de Yale, EE.UU. Y si hay demasiado poco, todo el calor se escaparía dejando al planeta inhóspito y frío.

El ciclo de carbono, por lo tanto, actúa como un termostato global, regulándose a sí mismo cuando es necesario (aunque no toma en cuenta el exceso de dióxido de carbono que está causando el cambio climático por la actividad humana).

Europa, la luna de Júpiter, es un fuerte contendor al título de espacio extraterrestre en el que puede haber vida

Europa, la luna de Júpiter, es un fuerte contendor al título de espacio extraterrestre en el que puede haber vida.

Un clima más cálido también genera más lluvia, que ayuda a extraer más dióxido de carbono fuera de la atmósfera. El gas se disuelve en gotas que caen sobre la roca expuesta y las consecuentes reacciones químicas liberan el carbono y minerales como el calcio.

El agua entonces fluye a través de ríos y riachuelos, hasta alcanzar finalmente el océano donde el carbono forma rocas carbonatadas y objetos orgánicos como conchas marinas. El carbonato se sedimenta en el fondo marino sobre una placa tectónica que queda bajo subducción, llevando el carbono al interior de la Tierra.

Entonces, los volcanes escupen el carbono de vuelta a la atmósfera en forma de dióxido de carbono. Después de cientos de millones años, el ciclo finalmente se termina.

Actividad tectónica

Resultado de imagen de Actividad tectónica en imágenes Gifs

Y no solo la subducción devuelve el carbono al manto terrestre: la actividad tectónica también lleva rocas frescas a la superficie que, expuestas, son cruciales para las reacciones químicas que liberan minerales.

Las montañas, formadas de placas tectónicas, canalizan el aire hacia arriba, donde se enfría, se condensa y forma gotas de lluvia que ayudan a extraer el carbono de la atmósfera.

Si no tuviera placas tectónicas la Tierra sería un lugar caliente e inhóspito, como Venus

            Si no tuviera placas tectónicas la Tierra sería un lugar caliente e inhóspito, como Venus.

Luego están los volcanes. “La placas tectónicas ayudan a mantener el vulcanismo activo por mucho tiempo”, dice Brad Foley, un geofísico de la Universidad de Penn State, EE.UU.

Si el vulcanismo no devolviera el dióxido de carbón a la atmósfera, el planeta podría quedar muy frío“. Y mantener un clima cálido es clave para un planeta habitable.

Placas y diversidad

Hay estudios que sugieren, por ejemplo, que la erosión y los procesos de meteorización eliminan de la roca elementos como el cobre, el zinc y el fósforo, llevándolos hasta el mar.

Son nutrientes importantes para organismos como el plancton y podrían haber sido responsables de estallidos de diversidad como la explosión cámbrica ocurrida hace 540 millones de años.

Hay pruebas que también sugieren que períodos de poca erosión -con menos nutrientes disponibles en el océano- coincidieron con eventos de extinción masiva. Al desplazar continentes, las placas tectónicas también podrían haber creado diversos hábitats que impulsaron la evolución de la vida.

Resultado de imagen de respiraderos hidrotermalesResultado de imagen de respiraderos hidrotermalesResultado de imagen de respiraderos hidrotermales

Y son también responsables de los respiradores hidrotermales sobre el lecho marino. Cerca del borde de una placa, el agua del mar puede filtrarse en las grietas, donde el magma las calienta a cientos de grados, expulsando el agua caliente de vuelta al océano.

Esos respiradores albergan diversos ecosistemas y algunos científicos sugieren que unas fuentes similares dieron origen a las primeras formas de vida sobre la Tierra.

Los movimientos constantes de las placas pueden incluso desempeñar un rol en el campo magnético terrestre, que podría haber actuado como un escudo, impidiendo que el viento solar arrancara la atmósfera.

¿Placas y vida extraterrestre?

Los astrónomos calculan que hay hasta cien mil millones de planetas en la galaxia. Y muchos del tamaño de la Tierra están dentro de la llamada zona habitable de su estrella, la región donde no hace demasiado calor, ni demasiado frío para que potencialmente exista agua líquida sobre la superficie.

Las placas tectónicas también hacen otras contribuciones

                                        Las placas tectónicas también hacen otras contribuciones.

Estar en la zona habitable y tener agua líquida son los factores más importantes para determinar si puede existir vida sobre un planeta. Pero después de eso, otras características, como las placas tectónicas, entran en juego, dice Norm Sleep, geofísico de la Universidad de Stanford, EE.UU.

Sleep dice que si un planeta las tiene, “la habitabilidad aumentaría enormemente”. Todo eso es, obviamente, especulativo,ya que la Tierra es el único ejemplo conocido de mundo habitable y con placas tectónicas. Algunos investigadores dicen que incluso puede que no hayan sido necesarias para que hubiese vida en la Tierra.

En 2016, Craig O’Neill, un científico planetario de la Universidad Macquarie en Sídney, Australia, desarrolló modelos informáticos que sugieren que no había placas tectónicas en el pasado distante del planeta, ni siquiera cuando la vida se originó hace 4.100 millones de años.

Sin embargo, otros investigadores señalan que esa conclusión es prematura. “Hay que tomar cualquier predicción sobre los inicios de la Tierra con pinzas”, señala Foley.

Geología y biología

Las ventosas hidrotermales son el hogar de diversos ecosistemas

                        Las ventosas hidrotermales son el hogar de diversos ecosistemas.

Sleep apunta que “esos ciclos geológicos están haciendo más habitable a la Tierra”, pero agrega que la biología también es importante. “La vida ha tenido 4.000 millones de años para evolucionar rasgos que se adaptan a sí mismos a la vida sobre un planeta con placas tectónicas”, dice.

Pero incluso si fuesen necesarias para la vida, los astrónomos probablemente no podrían determinar si un planeta las tiene. Los que están fuera del Sistema Solar son muy distantes y es virtualmente imposible medirlas sobre otros planetas.

Miles de exoplanetas han sido descubiertos hasta ahora

                         Miles de exoplanetas han sido descubiertos hasta ahora.

“Apenas las detectamos sobre nuestro planeta y estamos parados sobre ellas”, resalta Lindy Elkins-Tanton, científica planetaria de la Universidad del Estado de Arizona, EE.UU.

Las placas tectónicas constituyen uno de muchos factores que pueden influenciar la habitabilidad y puede que los científicos no logren determinar la fórmula para la vida hasta que descubran, efectivamente, seres extraterrestres. Pero, mientras tanto, la Tierra seguirá siendo el único mundo verdaderamente vivo.

emilio silvera

Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos. Como decía Einstein el UNiverso es igual en todas partes, ya que, en caso contrario, estaríamos en otro universo.
Resultado de imagen de Otro universo diferente al nuesstro

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentale son


Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z-
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

matriz

Gracias al Tensor de Rieman, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aparecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujerods negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera