jueves, 29 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las cosas del Universo que tratamos de comprender

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro universo: los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contra), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Las ondas gravitacionales ya han hablado y se han dejado capturar por LIGO pero, ¿que pasa con el esquivo gravitón? Acaso la fuerza de Gravedad es la única que no tiene su Bosón mensajero?

http://2.bp.blogspot.com/_w1kycNNBkOE/S_gaatwNuCI/AAAAAAAADNo/3MoIFAgTsDk/s1600/strange_spc_gravity_waves_02.jpg

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-tiempo que viaja a la velocidad de la luz transportada por los “gravitones”.

Resultado de imagen de Espuma cuántica

Si nos adentramos con un microscopio electrónico de barrido hasta lo más profundo de la materia, allí encontramos un mundo extraño, nos topamos con escenarios que nuestro sentido común rechazaría.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transportan de este mundo material nuestro a otro fascinante donde residen las maravillas del universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal como lo conocemos, deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Experimentos en el LHC que nos muestran la materia en su mínimo exponente (hasta el momento), se espera que cuando funcione a 100 TeV, quizás podamos llegar hasta las cuerdas vibrantes de esa misteriosa teoría.

Experimento sobre fluctuaciones del vacío

Experimento sobre fluctuaciones del vacío Crédito: Adaptado de C. RIEK ET AL., SCIENCE (2015)

“Gracias al principio de incertidumbre, el vacío bulle con pares de partículas-antipartículas que aparecen y desaparecen. Incluyen, entre muchos otros, los pares electrón-positrón y pares de fotones, que son sus propias antipartículas. Normalmente, esas partículas “virtuales” no pueden captarse directamente. Pero, como un fantasmal coro griego, ejercen sutiles influencias sobre el mundo “real”.”

Por ejemplo, los fotones virtuales que aparecen y desaparecen constantemente producen un campo eléctrico fluctuante.

        Diagrama de Feynman

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío; esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

Resultado de imagen de el vacío

En física, cuando hablamos de vacío, no nos referimos al del abismo. Es la ausencia de material, y, dicho vacío no existe, ni en el laboratorio lo hemos podido conseguir. En el espacio Interestelar

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor infinita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2 – 10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultraalto. No puedo dejar de referirme al vacío theta (vacío θ), que es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados. Esto significa que el vacío theta es análogo a una función de Bloch* en un cristal. Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido. El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica.

                                              Ese otro “mundo” desconocido de las fluctuaciones de vacío

En astronomía, el vacío está referido a regiones del espacio con menos contenido de galaxias que el promedio, o ninguna galaxia. También solemos llamarlo vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son, a menudo (aunque no siempre), esféricas.

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque hemos captado, no sabemos descifrar. Cuando esté totalmente preparado para ello, os lo contaré; el mensaje permanece escondido fuera de nuestra vista.

La física cuántica tiene una cualidad espectral que destruye toda lógica. Una de sus más extrañas predicciones, que el vacío en realidad contiene una serie de partículas virtuales que entran y salen de la existencia, parece haber sido confirmada por un grupo de investigadores de la Universidad Tecnológica de Chalmers en Gotenburgo. De forma cuasidivina, este equipo ha logrado crear luz del vacío usando espejos en movimiento.

La física cuántica sostiene que existen estas partículas virtuales que desaparecen y reaparecen en la espuma cuántica, pero que pueden tener efectos tangibles. Por ejemplo: si dos espejos son colocados extremadamente cerca, los tipos de partículas virtuales, o fotones, que pueden existir entre ellos pueden estar limitados. Este límite significa que más fotones virtuales existen afuera de los espejos que entre ellos, creando una fuerza que junta las placas. Esto es lo que se conoce como ‘la fuerza de Casimir’, la cual en casos así es suficientemente fuerte para ser medida.

Resultado de imagen de Unidades de masa, longitud y Tiempo

Sabemos referirnos al producto o cociente de las unidades físicas básicas, elevadas a las potencias adecuadas, en una cantidad física derivada. Las cantidades físicas básicas de un sistema mecánico son habitualmente la masa (m), la longitud (l) y el tiempo (t). Utilizando estas dimensiones, la velocidad, que es una unidad física derivada, tendrá dimensiones l/t, y la aceleración tendrá dimensiones l/t2. Como la fuerza es el producto de una masa por una aceleración, la fuerza tiene dimensiones mlt-2. En electricidad, en unidades SI, la corriente, I, puede ser considerada como dimensionalmente independiente, y las dimensiones de las demás unidades eléctricas se pueden calcular a partir de las relaciones estándar. La carga, por ejemplo, se puede definir como el producto de la corriente por el tiempo; por tanto, tiene dimensión It. La diferencia de potencia está dad por la relación P = VI, donde P es la potencia. Como la potencia es la fuerza por la distancia entre el tiempo (mlt-2 × l × t-1 = ml2t-3), el voltaje V está dado por V = ml2t-3I-1. Así queda expresado lo que en física se entiende por dimensiones, referido al producto o cociente de las cantidades físicas básicas.

En la mecánica clásica la cantidad de acción, producto de energía por tiempo, puede expresarse de forma continua desde cero hasta infinito, pero la revolución que supuso el descubrimiento del llamado cuanto de acción fue, precisamente, que esta cantidad física sólo podía existir de forma estable en múltiplos enteros de esa mínima cantidad llamada h, o cuanto mínimo de acción de Planck .

Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un campo que lo inunda todo llamado campo de punto cero.

Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Resultado de imagen de Ondas que fluctuan desde el vacío

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

Estos son los misteriosos silbidos procedentes del espacio, grabados por la NASA

La NASA: “Aunque técnicamente el espacio es un vacío, este no está vacío ni es silencioso, afirma la agencia espacial estadounidense.”
“El espacio no está vacío ni es silencioso. Aunque técnicamente es un vacío, contiene partículas energéticas cargadas, gobernadas por campos magnéticos y eléctricos que pueden ser escuchadas. En regiones atadas con campos magnéticos, como el ambiente espacial que rodea nuestro planeta, las partículas son continuamente lanzadas hacia adelante y atrás por el movimiento de varias ondas electromagnéticas conocidas como ‘ondas de plasma'”

Imagen relacionada

Partículas efímeras que surgen del “vacío” producido por fluctuaciones

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

No creo que esto sea el salto cuántico

De la misma forma, si tratamos de eliminar todas las oscilaciones electromagnéticas o gravitatorias de alguna región del espacio, nunca tendremos éxito. Las leyes de la mecánica cuántica insisten en que siempre quedarán algunas oscilaciones aleatorias impredecibles, es decir, algunas ondas electromagnéticas y gravitatorias aleatorias e impredecibles. Estas fluctuaciones del vacío no pueden ser frenadas eliminando su energía (aunque algunos estiman que, en promedio, no contienen energía en absoluto). Claro que, como antes decía, aún nadie ha podido medir de ninguna manera la cantidad real de energía que se escapa de ese supuesto “vacío”, como tampoco se ha medido la cantidad de fuerza gravitatoria que puede salir de ese mismo espacio “vacío”. Si la energía es masa y la masa produce gravedad, entonces ¿qué es lo que hay en ese mal llamado “espacio vacío”?

                                          No, el espacio no está vacío como alguna vez se pudo creer.

…el espacio no está vacío como creíamos, está lleno de una esencia viva que empezamos a entender. Está demostrado que nuestras experiencias internas influyen en el mundo a través del espacio. La nada no existe, si de “ella” surgió algo, es por había.

No podemos contestar de momento a esas preguntas, sin embargo, parece que no sería un disparate pensar en la existencia allí (en eso que llamamos vacío) de alguna clase de materia que, desde luego, al igual que la bariónica que sí podemos ver, genera energía y ondas gravitacionales que, de alguna manera que aún se nos oculta, escapa a nuestra vista y sólo podemos constatar sus efectos al medir las velocidades a las que se alejan las galaxias unas de otras: velocidad de expansión del universo, que no se corresponde en absoluto con la masa y la energía que podemos ver.

Resultado de imagen de El vacío que resulta estar lleno a rebosar

El vacío no existe, siempre hay. También resulta ser así en nuestras mentes. Sin embargo, en algunas hay más que en otras. No todos tenemos abundancia de ese ingrediente que llamamos capacidad intelectual

Estoy atando cabos sueltos, uniendo piezas y buscando algunas que están perdidas de tal manera que, por mucho que miremos, nunca podremos ver. El lugar de dichas piezas perdidas no está en nuestro horizonte y se esconde más allá de nuestra percepción sensorial. Se necesitará tiempo y evolución para que, nosotros, podamos “ver” esas dimensiones extra que, al parecer, hacen posible que todo alcance una simetría universal en la que, pacíficamente, convivan todas las fuerzas, todas las energías y, toda la materia.

Materia perdida

Se habla de la materia perdida. Situada a lo largo de la línea de observación de este AGN, a una distancia de alrededor de  millones de años luz de la Tierra, se encuentra una estructura conocida como Pared del Escultor. Esta estructura muy difusa se prolonga a lo largo de decenas de millones de años luz conteniendo en su interior miles de galaxias y también una reserva importante de gas difuso y caliente (WHIM) en el que podría hallarse la materia buscada.

Imagen relacionada

No dejamos de observar, seguimos buscando esas respuestas a preguntas planteadas que nadie ha sabido contestar…

Estamos en un momento crucial de la física, las matemáticas y la cosmología, y debemos, para poder continuar avanzando, tomar conceptos nuevos que, a partir de los que ahora manejamos, nos permitan traspasar los muros que nos están cerrando el paso para llegar a las supercuerdas, a la materia oscura o a una teoría cuántica de la gravedad, que también está implícita en la teoría M. Estamos anclados; necesitamos nuevas y audaces ideas que puedan romper las cadenas virtuales que atan nuestras mentes a ideas del pasado. En su momento, esas ideas eran perfectas y cumplieron su misión. Sin embargo, ahora no nos dejan continuar y debemos preparar nuestras mentes para evolucionar hacia nuevos conceptos y ahondar en aquellos que, aun estando ahí presentes, no somos capaces de utilizar, como por ejemplo el hiperespacio, de tan enorme importancia en el futuro de la Humanidad. Cuando sepamos “ver” dimensiones más altas, todo será mucho más sencillo y encontraremos las respuestas a los problemas que hoy no sabemos resolver.

emilio silvera

¿Cómo se desarrolló la Teoría de la Relatividad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A ella se pudo llegar gracias al desarrollo de una serie de pensamientos que comienza por Faraday y Maxwell y asentados en el principio de que todo suceso físico debe atribuirse a acciones cercanas, o, dicho en términos más matemáticos, en ecuaciones a derivadas parciales. Maxwell consiguió expresarlo así para el caso de los fenómenos electromagnéticos en cuerpos inmóviles, desarrollando la idea del efecto magnético de la corriente de desplazamiento en el vacío y proponiendo la identidad entre los campos “electromotores” producidos por inducción y los campos electrostáticos.

Con esta reconocida imagen nos podemos hacer una idea del campo magnético

La ampliación de la electrodinámica al caso de los cuerpos en movimiento fue una tarea que quedó para los sucesores de Maxwell. H. Hertz intentó resolver el problema asignado al espacio vacío (éter) unas propiedades físicas totalmente similares a las de la materia ponderable; en particular, el éter, al igual que la materia debería poseer determinada velocidad en cada punto. La inducción electromagnética o magneto-eléctrica debía estar determinada por la velocidad de variación del flujo eléctrico, o magnético, como en los cuerpos en reposo, siempre que estas variaciones de velocidad se produjeran con respecto a elementos de la superficie que se movieran con el cuerpo. Sin embargo, la teoría de Hertz contradecía el experimento fundamental de Fizeau sobre la propagación de la luz a través de fluidos en movimiento. La ampliación más inmediata de la teoría de Maxwell a los cuerpos en movimiento era incompatible con el experimento.

Resultado de imagen de la mat3eria moviendose por el éter

                La física oculta del éter

En ese punto la salvación llegó de la mano de H. A. Lorentz. Siendo partidario incondicional de la teoría atomista de la materia, Lorentz no podía concebir esta última como un emplazamiento de campos electromagnéticos continuos. En consecuencia, concibió estos campos como condiciones o estados del éter, que se consideraba continuo. Lorentz se imaginaba el éter como algo que en esencia era independiente de la materia, tanto mecánica como físicamente. El éter no debía participar del movimiento de la materia y sólo debía mantener una interacción con ella en tanto que la materia se concebía como conductora de cargas eléctricas ligadas a ella.

Núcleo Atómico

Bien sabido es de todos que el átomo es un conglomerado de cargas eléctricas que, siendo positivas (protones) y negativas (electrones), al ser equivalentes se anulan las unas a las otras y se logra la armonía y estabilidad requerida para que, el universo pueda formar las moléculas y, éstas, se agrupan para conformar la materia.

Resultado de imagen de átomos, moléculas y materia

El gran avance metodológico de la teoría de Lorentz residía en el hecho de que, gracias a ella, toda la electrodinámica de los cuerpos en reposo y en movimiento se podía reducir a las ecuaciones del espacio vacío de Maxwell. Esta teoría no sólo era superior a la de Hertz desde un punto de vista metodológico, sino que, además, gracias a ella, H. A. Lorentz consiguió dar una explicación asombrosamente acertada de los hechos experimentales.

Sólo hay un punto de importancia fundamental en el que la teoría no resulta satisfactoria. Parece ser que daba preferencia a un sistema de coordenadas que se encontrara en un determinado estado de movimiento (un sistema de coordenadas que estaba en reposo con respecto al éter luminífero) frente a todos los demás sistemas de coordenadas que se encontraran en movimiento con relación a éste. En este punto parecía que la teoría estaba en contradicción frontal con la mecánica clásica, en la cual todos los sistemas inerciales (que tienen un movimiento uniforme unos con respecto a otros) son equivalentes como sistemas de coordenadas (principio especial de la relatividad). En este sentido, todos los experimentos realizados en el ámbito de la electrodinámica (en particular el experimento de Michelson) ponía de manifiesto la equivalencia de todos los sistemas inerciales, es decir, apoyaban el principio especial de la relatividad.

Resultado de imagen de El experimento de MIchelson-Morley

Experimento Michelson-Morley Reposo con el éter luminífero Interferómetro de Michelson y Morley en reposo respecto al éter luminífero

El movimiento del éter siempre fue un misterio que muchos quisieron resolver y, para ello, se hicieron experimentos de todo tipo. El de Michelson-Morley vino a dejar claro el tema y sirvió a Einstein para descartar el éter de su teoría. Sin embargo, pasado el tiempo, ahora mismo, se está hablando de nuevo de la existencia de una especie de “éter” que impregna todo el espacio.

Así las cosas, la teoría especial de la relatividad surgió precisamente gracias a esta dificultad inicial, que en sí misma resultaba insoportable. La teoría nació como respuesta a la pregunta: ¿Realmente existe una contradicción entre el principio especial de la relatividad y las ecuaciones de campo de Maxwell para el espacio vacío? Aparentemente la respuesta tenía que ser afirmativa. Las mencionadas ecuaciones son va´lidas para un sistema de coordenadas K y se introduce un nuevo sistema de coordenadas K1 mediante las ecuaciones de transformación, aparentemente fáciles de justificar (aquí las obviaré) y que nos llevan a la transformación de Galileo y, entonces, las ecuaciones de campo de Maxwell ya no se cumplen para esas nuevas coordenadas.

 

Las coordenadas han sido muy útiles y de fructífero rendimiento

Pero siguiendo con en tema tenemos que decir que, muchas veces, las apariencias engañan. Mediante un análisis más profundo del significado físico del espacio y del tiempo se puede ver que la transformación de Galileo se basa en suposiciones arbitrarias, especialmente en la hipótesis de que la afirmación de la simultaneidad tiene un sentido independiente del estado de movimiento que tenga el sistema de coordenadas utilizado. Queda claro que las ecuaciones de campo en el vacío satisfacían el principio especial de la relatividad cuando se utilizaban las ecuaciones de la Transformación de Lorentz.

Es estas ecuaciones, x, y, z son las coordenadas medidas con una vara de medir que se encuentra en reposo con respecto al sistema de coordenadas (y aunque no las he querido reflejar aquí para no enredar), y en ellas, t representa el tiempo medido con un reloj que se encuentra en reposo y está debidamente ajustado.

 

Lo grande y lo pequeño: Eso es la Teoría

Ahora bien, para que pueda cumplirse el principio especial de la relatividad, es necesario que todas las ecuaciones de la física conserven invariable su forma al pasar de un sistema inercial a otro, cuando utilizamos para este cambio la Transformación de Lorentz. En lenguaje matemático, diremos que todos los sistemas de ecuaciones que expresan leyes físicas deben ser covariantes con respecto a la Transformación de Lorentz. Por consiguiente, bajo un punto de vista metodológico, el principio especial de la relatividad es comparable al principio de Carnot, que afirma la imposibilidad del perpetuum mobile (movimiento perpetuo o continuo) de segunda especie, ya que, al igual que este último, establece una condición general que deben cumplir todas las leyes naturales.

Resultado de imagen de La transformación de Lorentz

De manera que la transformación de Einstein, que es la transformación de Lorentz queda como

Podría dejarlo aquí, pero vamos a complicarlo un poco. Introducimos una nueva coordenada espacial a partir de ct, el producto de una velocidad por el tiempo es el espacio y utilizamos la siguiente notación:

Con lo que la transformación de Lorentz queda de la forma más simétrica.

Resultado de imagen de La condición de covariancia de Lorentz vista por MInkouski

“El origen en el diagrama espacio-tiempo (ct, r) = (0, 0) representa el “ahora”. En la región de color amarillo que representa el “futuro” que le espera al observador predomina el componente temporal sobre el componente espacial, con lo cual s² siempre es mayor que cero (positivo) y por lo tanto es una región de intervalos tipo temporal. En la región de color ciano que representa el “pasado” que recorrió el observador también predomina el componente temporal sobre el componente espacial, con lo cual s² siempre es mayor que cero (positivo) y por lo tanto también es una región de intervalos tipo temporal (timelike). En las líneas que delimitan al cono de luz la componente temporal es igual a la componente espacial con lo cual s² = 0, y es aquí en donde tenemos a los intervalos tipo luminoso que involucran rayos de luz. Y fuera de todo esto tenemos a los intervalos en donde el componente espacial es mayor que el componente temporal con lo cual s² es menor que cero (negativo) siendo por lo tanto la región de intervalos tipo espacial.”

Para esta condición de covariancia encontró H. Minkowski una espresión especialmente bella y sugerente que revela un parentesco formal entre la geometría euclidea tridimensional y el continuo espacio-tiempo de la física.

Seguidamente tendría que exponer aquí un esquema con ecuaciones de la geometría euclidea tridimensional y otro (para comparar) de la teoría especial de la relatividad. Sin embargo, no queriendo complejidades que desvíen al lector de la historia esencial, diré que de ellas se deduce que el tiempo es equivalente a las coordenadas espaciales (dejando a un lado sus relaciones con la realidad), no por lo que respecta a su significado físico, sino por el papel que desempeña en las ecuaciones de la física. desde este punto de vista, la física es en cierto modo una geometría euclidea de cuatro dimensiones o, mejor dicho, un determinado tipo de estática en un continuo euclideo cuatridimensional.

http://smolinacalvo.files.wordpress.com/2011/04/250px-world_line-es-svg1.png

Cono de luz en un espacio-tiempo de Minkowski

El desarrollo de la teoría especial de la relatividad se desarrolló en dos pasos principales: la adaptación de la métrica espacio-temporal a la electrodinámica de Maxwell y una adaptación del resto de la físca a esa métrica espacio-temporal modificada. El primero de estos procesos de adaptación profujo la relativización de la simultaneidad, la influencia del mocimiento en varas de medir y relojes, una modificación de la cinemática y, en particular, un nuevo teorema de adiciín de las velocidades.

El segundo proceso de adaptación dio lugar a una modificación de las leyes newtonianas del movimiento para grandes velocidades, así como una aclaración sobre la naturaleza de la masa inercial cuya importancia es fundamental. Se descubrió que la inercia no es una propiedad fundamental de la materia, ni una magnitud irreducible, sino una propiedad de la energía. Si a un cuerpo se le suministra una energía E, su masa inercial aumenta en una cantidad E/c2, donde c es la velocidad de la luz en el vacío; a la inversa, un cuerpo de masa m debe ser considerado como una reserva de energía de magnitud mc2.

Resultado de imagen de La Gravedad de Einstein en el Espacio

Cuando se intentó establecer el vínculo entre las teorías de la gravitación y la teoría especial de la relatividad, no tardó en verse que esto no era posible de una manera natural. A propósito de ello a Einstein de le ocurrió que la fuerza de la gravedad posee una propiedad fundamental que la distingue de la fuerza electromagnética: todos los cuerpos caen en un campo gravitatorio con la misma aceleración, o -formulando lo mismo de otra manera- la masa inercial y gravitatoria de un cuerpo son numéricamente iguales.

 

                                  La vinculación gravitatoria de los cuerpos es bien patente y, en la Tierra y la Luna, tenemos la mejor prueba de ello.

Esta igualdad numérica de la masa inercial y gravitatoria nos hace sospechar que ambas sean esencialmente idénticas; pero ¿pueden las masas inerciales y gravitatorias ser realmente iguales? Esta pregunta nos lleva directamente a la teoría general de la relatividad. ¿No sería posible considerar que la Tierra no realiza un movimiento de rotación, si concibo la fuerza centrífuga, que actúa sobre los cuerpos que están en reposo con respecto a la Tierra, como un campo gravitatorio “real” (o como una parte del campo gravitatorio)? Si esta idea es viable, entonces está realmente demostrado que las masas inercial y gravitatoria son idénticas, ya que el mismo efecto que se considera como inercia desde el punto de vista de un sistema que “no toma parte en la rotación”, puede interpretarse como gravedad si se observa desde un sistema que comparte la rotación. Según Newton, esta interpretación es imposible, porque no se puede considerar según la ley de Newton que el campo centrífugo esté generado por masas, y porque un campo “real” del tipo de “campo de Coriolis” no está contemplado en la teoría newtoniana.

Pero, ¿sería posible sustituir la ley de campos de Newton por alguna otra compatible con el campo que puede existir con respecto a un sistema de coordenadas “en rotación”? El convencimiento de que las masas inercial y gravitatoria son idénticas inspiró a Einstein una confianza incondicional en la validez de esta interpretación y, una idea le llenó de esperanza: conocemos los campos “aparentes” que son válidos con respecto a cualquier sistema de coordenadas que se mueve arbitrariamente con relación a un sistema inercial; utilizando los campos (especiales) se podrá estudiar la ley que cunplen en general los campos gravitatorios. para ello habrá que tener en cuanta que, como generadoras de estos campos, serán determinantes las masas ponderables, o bien lo será la densidad de energía (una magnitud que posee el carácter transformador de un tensor), según el resultado fundamental de la teoría especial de la relatividad.

Resultado de imagen de Tensor métrico de Riemann

Tensor métrico de Riemann

A partir de aquí, tendríamos que entrar en el Tensor métrico de Riemann pero, ¡el tiempo! como pasa siempre, me lo impide así que, dejaremos para mejor ocasión el continuar con el tema que, como todo lo que concierne a Einstein, termina siendo fascinante porque, dentro de su complejidad, subyace una sencillez de ideas que, finalmente, terminan por conquistarnos.

emilio silvera