sábado, 17 de noviembre del 2018 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Partículas, antipartículas, fuerzas…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Bajo la “definición basada en quarks y leptones”, las partículas elementales y compuestas formadas de quarks (en púrpura) y leptones (en verde) serían la “materia”; mientras los bosones “izquierda” (en rojo) no serían materia. Sin embargo, la energía de interacción inherente a partículas compuestas (por ejemplo, gluones, que implica a los neutrones y los protones) contribuye a la masa de la materia ordinaria.

 

 

 

File:Annihilation.png

 

Esquema de una aniquilación electrón-positrón.

 

Ya hemos descrito en trabajos anteriores las dos familias de partículas elementales: Quarks y Leptones. Pero hasta ahí, no se limita la sociedad del “universo” infinitesimal. Existen además las antifamilias. A quarks y electrones se asocian, por ejemplo, antiquarks y antielectrones. A cada partícula, una antipartícula.

Uno de los primeros éxitos de la teoría relativista del campo cuántico fue la predicción de las anti-partículas: nuevos cuantos que eran la imagen especular de las partículas ordinarias. Las antipartículas tienen la misma masa y el mismo spin que sus compañeras las partículas ordinarias, pero cargas inversas. La antipartícula del electrón es el positrón, y tiene, por tanto, carga eléctrica opuesta a la del electrón. Si electrones y positrones se colocan juntos, se aniquilan, liberando la energía inmensa de su masa según la equivalencia masa-energía einsteniana.

                      Una partícula y su antipartícula no pueden coexistir: hay aniquilación de ambas.

¿Cómo predijeron los físicos la existencia de antipartículas? Bueno, por la «interpretación estadística» implicaba que la intensidad de un campo determinaba la probabilidad de hallar sus partículas correspondientes. Así pues, podemos imaginar un campo en un punto del espacio describiendo la creación o aniquilación de sus partículas cuánticas con una probabilidad concreta. Si esta descripción matemática de la creación y aniquilación de partículas cuánticas se inserta en el marco de la teoría relativista del campo cuántico, no podemos contar con la posibilidad de crear una partícula cuántica sin tener también la de crear un nuevo género de partícula: su antipartícula. La existencia de antimateria es imprescindible para una descripción matemáticamente coherente del proceso de creación y aniquilación según la teoría de la relatividad y la teoría cuántica.

La misteriosa sustancia

conocida como “materia oscura” puede ser en realidad una ilusión, creada por la interacción gravitacional entre partículas de corta vida de materia y antimateria. Un mar hirviente de partículas en el espacio puede crear la gravedad repulsiva.

Algunas no se paran en barra, y, por sobresalir y obtener unos minutos de gloria, son capaces de cualquier cosa. El verdadero físico, ante este cartel, quedó asombrado y se preopueso investigar de quá iba todo aquello.

“Investigando un poco, la historia, hasta donde puedo determinarla, es que Alejandro Gallardo es un estudiante de la Facultad de Ingeniería de la UNAM, que está (o quiźa estaba) por presentar su examen de grado en estos días (sin ningún sinodal del área de gravitación) y que tiene alguna relación con la sociedad de astrónomos aficionados que ostensiblemente organizaba la conferencia. Desde hace al menos diez años labora en un intento de describir una fuerza de repulsión gravitatoria usando álgebra elemental, falsando así tanto la gravedad Newtoniana como la Relatividad General. En esto es similar a innumerables personas que hacen ciencia marginal o pseudociencia (entendida como algo que no es ciencia pero que pretende hacerse pasar por ciencia).”

Resultado de imagen de Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la "materia oscura". La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto

Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la “materia oscura”. La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto. Como consecuencia, los pares de partícula-antipartícula virtuales en el vacío cuántico y sus dipolos de forma gravitacional (una carga gravitacional positivos y negativos) pueden interactuar con la materia bariónica para producir fenómenos que se suele atribuir a la materia oscura. Fue el  físico del CERN, Dragan Slavkov Hajdukovic, quien propuso la idea, y demostró matemáticamente que estos dipolos gravitacionales podrían explicar las curvas de rotación de las galaxias observadas sin la materia oscura en su estudio inicial. Sin embargo,  señaló que quedaba mucho por hacer.

Pero sigamos con la cuántica…

El pionero en comprender que era necesario que existiesen antipartículas fue el físico teórico Paul Dirac, que hizo varías aportaciones importantes a la nueva teoría cuántica. Fue él quien formuló la ecuación relativista que lleva hoy su nombre, y a la que obedece el campo electrónico; constituye un descubrimiento comparable al de las ecuaciones del campo electromagnético de Maxwell. Cuando resolvió su ecuación, Dirac se encontró con que además de describir el electrón tenía soluciones adicionales que describían otra partícula con una carga eléctrica opuesta a la del electrón. ¿Qué significaría aquello? En la época en que Dirac hizo esta observación, no se conocían más partículas con esta propiedad que el protón. Dirac, que no deseaba que las partículas conocidas proliferasen, decidió que las soluciones adicionales de su ecuación describían el protón.

{\displaystyle \left(\alpha _{0}mc^{2}+\sum _{j=1}^{3}\alpha _{j}p_{j}\,c\right)\psi (\mathbf {x} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {x} ,t)}

“La llamada ecuación de Dirac es la versión relativista de la ecuación de ondas de la mecánica cuántica y fue formulada por Paul Dirac en 1928. Da una descripción de las partículas elementales de espín ½, como el electrón, y es completamente consistente con los principios de la mecánica cuántica y de la teoría de la relatividad especial. Además de dar cuenta del espín, la ecuación predice la existencia de antimateria.”

Pero, tras un análisis más meticuloso, se hizo evidente que las partículas que describían las soluciones adicionales tenían que tener exactamente la misma masa que el electrón. Quedaba así descartado el protón, cuya masa es por lo menos, 1.800 veces mayor que la del electrón. Por tanto, las soluciones adicionales tenían que corresponder a una partícula completamente nueva de la misma masa que el electrón, pero de carga opuesta: ¡El antielectrón! Esto quedó confirmado a nivel experimental en 1932 cuando Carl Anderson, físico del Instituto de Tecnología de Calífornia, detectó realmente el antielectrón, que hoy se llama positrón.

Antes de empezar, debemos recordar que el Premio Nobel de Física de 1936 se repartió a partes iguales entre Victor Franz Hess y Carl David Anderson. Merece la pena leer la Nobel Lecture de Carl D. Anderson, “The production and properties of positrons,” December 12, 1936, quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva, como si fuera un protón pero con la masa de un electrón. La Nobel Lecture muestra muchas otras fotografías de positrones y electrones. Anderson afirma: “The present electron theory of Dirac provides a means of describing many of the phenomena governing the production and annihilation of positrons.”

Resultado de imagen de quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva,

Por otro lado, el Premio Nobel de Física de 1933 se repartió a partes iguales entre Erwin Schrödinger y Paul Adrien Maurice Dirac. También vale la pena leer la Nobel Lecture de Paul A. M. Dirac, “Theory of electrons and positrons,” December 12, 1933, aunque no cuente la historia de su descubrimiento, afirma que su ecuación predice el “antielectrón” de soslayo: ”There is one other feature of these equations which I should now like to discuss, a feature which led to the prediction of the positron.” (fuente: Francis (th)E mule Science’s News).

Resultado de imagen de Las antipartículasResultado de imagen de Las antipartículas

La aparición de las antipartículas cambió definitivamente el modo de pensar de los físicos respecto a la materia. Hasta entonces, se consideraba la materia permanente e inmutable. Podían alterarse las moléculas, podían desintegrarse los átomos en procesos radiactivos, pero los cuántos fundamentales se consideraban invariables. Sin embargo, tras el descubrimiento de la antimateria realizado por Paul Dirac hubo que abandonar tal criterio. Heisenberg lo expresaba así:

Resultado de imagen de La ecuación relativista del electrón hecha por Direc

“Creo que el hecho de que Dirac haya descubierto partículas y antipartículas, ha cambiado toda nuestra visión de la física atómica… creo que, hasta entonces, todos los físicos habían concebido las partículas elementales siguiendo los criterios de la filosofía de Demócrito, es decir, considerando esas partículas elementales como unidades inalterables que se hallan en la naturaleza como algo dado y son siempre lo mismo, jamás cambian, jamás pueden transmutarse en otra cosa. No son sistemas dinámicos, simplemente existen en sí mismas. Tras el descubrimiento de Dirac, todo parecía distinto, porque uno podía preguntar: ¿por qué un protón no podría ser a veces un protón más un par electrón-positrón, etc.?… En consecuencia, el problema de la división de la materia había adquirido una dimensión distinta.”

 

Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?

                Existe un “universo” que se nos escapa de la comprensión

 

La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad.

El carácter mutable de la materia se convirtió en piedra angular de la nueva física de partículas. El hecho de que partículas y antipartículas puedan crearse juntas a partir del vacío si se aporta energía suficiente, no sólo es importante para entender cómo se crean las partículas en aceleradores de alta energía, sino también para entender los procesos cuánticos que se produjeron en el Big Bang.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

Como ya lo hemos expresado, el conocimiento que se obtuvo sobre la existencia de antifamilias de partículas o familias de antipartículas es una consecuencia de la aplicación de la teoría relativista del campo cuántico, para cada partícula existe una partícula que tiene la misma masa pero cuya carga eléctrica (y otras llamadas cargas internas) son de signo opuesto. Estas son las antipartículas. Así, al conocido electrón, con carga negativa, le corresponde un «electrón positivo» como antipartícula, llamado positrón, descubierto en 1932. El antiprotón, descubierto en 1956, tiene la misma masa que el protón, pero carga eléctrica negativa de igual valor. El fotón, que no tiene masa ni carga eléctrica, puede ser considerada su propia antipartícula.

Un agujero negro es un objeto que tiene tres propiedades: masa, espin y carga eléctrica. La forma del material en un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como Singularidad, de densidad infinita.

Resultado de imagen de Singularidad de densidad infinita

Un agujero negro tiene tres propiedades: masa, espín y carga eléctrica. La forma del material de un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como singularidad, de densidad infinita.

Resultado de imagen de Fotones libres

La luz (fotones), no son una onda distinta que un electrón o protón, etc.

1°- “No se dispersan”, no son más pequeñas, como las ondas del agua (olitas) cuando tiramos una piedrita, a medida que se alejan de su centro; sino que en el caso de la luz son menos partículas, pero son siempre el mismo tipo de onda (determinada frecuencia), igual tamaño.

2°- Las ondas con más energía son más grandes, los fotones al igual que las partículas son más pequeñas, contra toda lógica (contracción de Lorentz).

3°- No necesitan de un medio material para desplazarse. Viajan en el vacío. El medio que usan para viajar, es el mismísimo espacio.

4°- Su cualidad de onda no es diferente de las partículas. Lo podemos ver en la creación de pares y la cualidad de onda de las partículas, etc. En ningún momento la partícula, es una cosa compacta (ni una pelotita), siempre es una onda, que no se expande. En la comparación con la ola, sería como un “montón” o un “pozo” de agua, con una dirección, lo que conocemos como ecuación de Schrödinger. En ningún momento la partícula, es una pelotita; la ola sobre el agua, no es un cuerpo que se mueve sobre el agua, no es un montón de agua que viene (aunque parece), sino una deformación del agua. Así la partícula, no es un montón de algo, sino una deformación del espacio.

La curvatura está relacionadas con la probabilidad de presencia, no es una bolita que está en uno de esos puntos, sino que es una onda en esa posición. El fotón es una onda que no necesita de un medio material para propagarse, se propaga por el espacio vacío. Así como una onda de sonido es una contracción-expansión del medio en que se propaga, el fotón es una contracción-expansión del espacio (del mismísimo espacio), razón por la cual entendemos que el espacio se curva, se contrae y expande. La rigidez del medio, da la velocidad de la deformación (velocidad de  la onda), en el caso de la rigidez del espacio da una velocidad “c”.Esta onda por causa de la contracción del tiempo (velocidad “c”), no se expande, sino que se mantiene como en su origen (para el observador ), como si fuese una “burbuja”, expandida o contraída, en cada parte, positiva-negativa

Cada partícula está caracterizada por un cierto número de parámetros que tienen valores bien definidos: su masa, carga eléctrica, spin o rotación interna y otros números, conocidos como cuánticos. Estos parámetros son tales que, en una reacción, su suma se mantiene y sirve para predecir el resultado. Se dice que hay conservación de los números cuánticos de las partículas. Así, son importantes el número bariónico, los diversos números leptónicos y ciertos números definidos para los quarks, como la extrañeza, color, etc. Estos últimos y sus antipartículas tienen cargas eléctricas (± 1/3 o ± 2/3) y números bariónicos (±1/3) fraccionarios. No todos los números asociados a cada partícula han sido medidos con suficiente precisión y no todas las partículas han sido detectadas en forma aislada, por lo menos de su ligamento, como el caso de

los quarks

De los Quarks y de los gluones.

Los gluones son una especie de «partículas mensajeras» que mantienen unidos a los quarks. Su nombre proviene del término inglés “glue”, que significa pegamento, en español quizás podría ser gomón. Ahora, en cuanto a los quarks, ya hicimos referencia de ellos anteriormente. Pero recordemos aquí, que fueron descubiertos en 1964 por Murray Gell-Mann, como los componentes más reducidos de la materia. Hasta entonces se pensaba que los átomos consistían simplemente en electrones rodeando un núcleo formado por protones y electrones.

En estado natural, quarks y gluones no tienen libertad. Pero si se eleva la temperatura a niveles 100.000 veces superiores, como se ha hecho en aceleradores de partículas, a la del centro del Sol, se produce el fenómeno del desconfinamiento y por un brevísimo tiempo quedan libres. En ese preciso momento aparece lo que se suele llamar plasma, «una sopa de quarks y gluones» que equivale al estado en que se podría haber encontrado la naturaleza apenas una milésima de segundo luego del Big Bang.

11-three_quarks 11-heart2quarks_small

Recientemente se ha descubierto un nuevo estado de la materia, esta vez a niveles muy altos de energía, que los científicos han denominado Plasma Gluón-Quark. La transición ocurre a temperaturas alrededor de cien mil millones de grados y consiste en que se rompen las fuertes ligaduras que mantienen unidos los quarks dentro de los núcleos atómicos. Los protones y neutrones están formados, cada uno, por 3 quarks que se mantienen unidos gracias a los gluones (El gluón es la partícula portadora de interacción nuclear fuerte, fuerza que mantiene unida los núcleos atómicos). A temperaturas superiores se vence la fuerza nuclear fuerte y los protones y neutrones se dividen, formando esta sopa denominada plasma Gluón-Quark.

Resultado de imagen de Los Quarks libres

Pero por ahora aquí, nos vamos a quedar con los quarks al natural. Normalmente, los quarks no se encuentra en un estado separados, sino que en grupos de dos o tres. Asimismo, la duración de las vidas medias de las partículas, antes de decaer en otras, es muy variable (ver tablas).

Por otra parte, las partículas presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, conocidas de la vida cotidiana. Hay otras dos fuerzas, menos familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Resultado de imagen de Los campos magnéticos están presentes por todo el Universo

                            Los campos magnéticos están presentes por todo el Universo

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

La Fuerza Nuclear Débil: otra fuerza nuclear, considerada mucho más débil que la Fuerza Nuclear Fuerte. El fenómeno de decaimiento aleatorio de la población de las partículas subatómicas (la radioactividad) era difícil de explicar hasta que el concepto de esta fuerza nuclear adicional fue introducido.

La interacción nuclear débil es causa de la radioactividad natural y la desintegración del neutrón. Tiene un rol capital en las reacciones de fusión del hidrógeno y otros elementos en el centro de las estrellas y del Sol. La intensidad es débil comparada con las fuerzas eléctricas y las interacciones fuertes. Su alcance es muy pequeño, sólo del orden de 10-15 cm.

Archivo:CNO Cycle.svg

La interacción fuerte es responsable de la cohesión de los núcleos atómicos. Tiene la intensidad más elevada de todas ellas, pero es también de corto alcance: del orden de 10-13 cm. Es posible caracterizar las intensidades de las interacciones por un número de acoplamiento a, sin dimensión, lo que permite compararlas directamente:

Fuerte as = 15

Electromagnéticas a = 7,3 x 10-3

Débil aw 3,1 x 10-12

Gravitacional aG = 5,9 x 10-39

Por otro lado, la mecánica cuántica considera que la interacción de dos partículas se realiza por el intercambio de otras llamadas «virtuales». Tienen ese nombre porque no son observables: existen por un tiempo brevísimo, tanto más corto cuanto mayor sea su masa, siempre que no se viole el principio de incertidumbre de Heisenberg de la teoría cuántica (que en este contexto dice que el producto de la incertidumbre de la energía por el tiempo de vida debe ser igual o mayor que una constante muy pequeña). Desaparecen antes de que haya tiempo para que su interacción con otras partículas delate su existencia.

Monografias.com

                                      El fotón  virtual común se desplaza hacia la partícula menos energética.

Dos partículas interactúan al emitir una de ellas una partícula virtual que es absorbida por la otra. Su emisión y absorción cambia el estado de movimiento de las originales: están en interacción. Mientras menos masa tiene la partícula virtual, más lejos llega, mayor es el rango de la interacción. El alcance de la interacción es inversamente proporcional a la masa de la partícula portadora o intermedia. Por ejemplo, la partícula portadora de la fuerza electromagnética es el fotón, de masa nula y, por lo tanto, alcance infinito. La interacción gravitacional también tiene alcance infinito y debe corresponder a una partícula de masa nula: se le denomina gravitón. Naturalmente tiene que ser neutro. (Aún no ha sido vistos ni en pelea de perros).

Resultado de imagen de Bosones W+, W- y Zª

Como ya hicimos mención de ello, a las fuerzas nucleares se les asocian también partículas portadoras. Para la interacción débil estas partículas se llaman bosones intermedios, expresados como W+, W- y Zº (neutro). El W- es antipartícula del W+. Los W tienen masas elevadas comparadas con las otras partículas elementales. Lo de bosones les viene porque tienen spin entero, como el fotón y el gravitón, que también los son, pero que tienen masas nulas. Las fuerzas fuertes son mediadas por unas partículas conocidas como gluones, de los cuales habría ocho. Sin embargo, ellos no tienen masa, pero tienen algunas de las propiedades de los quarks, que les permiten interactuar entre ellos mismos. Hasta ahora no se han observado gluones propiamente tal, ya que lo que mencionamos en párrafos anteriores corresponde a un estado de la materia a la que llamamos plasma. Claro está, que es posible que un tiempo más se puedan detectar gluones libres cuando se logre aumentar, aún más, la temperatura, como está previsto hacerlo en el acelerador bautizado como “Relativistic Heavy Ion Collider”, empotrado en Estados Unidos de Norteamérica.

TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALES

tabla3

Una partícula y su antipartícula no pueden coexistir si están suficientemente cerca como para interactuar. Si ello ocurre, ellas se destruyen mutuamente: hay aniquilación de las partículas. El resultado es radiación electromagnética de alta energía, formada por fotones gamma. Así, si un electrón está cercano a un positrón se aniquilan en rayos gamma. Igual con un par protón-antiprotón muy próximos.

La reacción inversa también se presenta. Se llama «materialización o creación de partículas» de un par partícula-antipartícula a partir de fotones, pero se requieren condiciones físicas rigurosas. Es necesario que se creen pares partícula-antipartícula y que los fotones tengan una energía mayor que las masas en reposo de la partículas creadas. Por esta razón, se requieren fotones de muy alta energía, de acuerdo a la relación de Einstein E=mc2 . Para dar nacimiento a electrones/positrones es necesario un campo de radiación de temperaturas mayores a 7×109 °K. Para hacer lo mismo con pares protón/antiprotón es necesario que ellas sean superiores a 2×1012 °K. Temperaturas de este tipo se producen en los primeros instantes del universo.

Resultado de imagen de Gran emisión de rayos GammaResultado de imagen de Gran emisión´çon de rayos gamma

Se detectan grandes emisiones de rayos gamma en explosiones supernovas y otros objetos energéticos

Los rayos gamma están presentes en explosiones de supernovas, colisión de estrellas de neutrones… Todos los sucesos de altas energías los hace presente para que nuestros ingenios los detecten y podamos conocer lo que la materia esconde en lo más profundo de sus “entrañas”. Aún no hemos podido conocer en profundidad la materia ni sabemos, tampoco, lo que realmente es la luz.

emilio silvera

 

  1. 1
    Pedro
    el 17 de mayo del 2018 a las 18:13

    Acerca de los mesones, si resultan que sus componentes son quarks y antiquarks, como se explican su existencia, se suponen que no deberían existir ni siquiera infimo tiempo.ya que sus componentes se aniquilan en fotones.
    Desconcierto total. Saludos
    Hay artículos que resultan todo un regalo. Gracias a su implecable labor. 

     

    Responder
  2. 2
    Pedro
    el 17 de mayo del 2018 a las 21:09

    Bien dices que no estén lo suficientemente cerca, quark y antiquark.(Si Es mucha separación no formarían mesones, sino no componentes individuales), diría que el margen muy muy muy estrecho.

    Responder
  3. 3
    Pedro
    el 18 de mayo del 2018 a las 1:07

     

    Acerca de la luz: resulta que son ondas que se propagan en el vacio, no necesitan un medio para propagarse, a diferencia de las ondas del sonido, bien, también me parece entender estás ondas de luz provocan deformidades del propio espacio.

    Texto expreso “El fotón es una contracción-expansión del mismo espacio”,  y como consecuencia  su curvadura ,su deformidadad, expansión y contracción al unisono.
    Hasta aquí es lo que me parece entender.

    A diferencia de:

     Las ondas de presion expansivas provocadas por una explosion de una estrella en el medio que la circunda donde hay un frente de onda simultanea en todas direcciones cuyo origen es una sola fuente muy localizada y sin carácter electromagnético.
    Entonces podríamos decir que  la luz y el espacio vacío son la misma cosa osea energía, que se propaga atraves de ondas , y la expansion es una quimera osea un error de perpectiva. Entonces surge la pregunta ¿Porque cambia su longitud de onda la luz, si todo es luz, osea energía ?
    Algo no cuadra.
    Tal vez es el hecho que el tiempo si afecta a la luz-energia, o cualquier clase de energía sencillamente se disipa, por tanto no se conserva .Algún principio se viola. La simetría temporal queda en el aire.

    Responder
    • 3.1
      Emilio Silvera
      el 18 de mayo del 2018 a las 4:37

      Amigo Pedro, quizás, en ese último párrafo tuyo estén escondidas muchas de las respuestas que los físicos persiguen. 

      Responder
  4. 4
    Fandila Soria
    el 18 de mayo del 2018 a las 4:38

     

    Obviando la teoría del genial Dirac y otros muchos que lo han sido, hay sin embargo resultados teorico-matemáticos difíciles de asimilar.
     
    Así, el campo de Higgs y sus bosones, una genialidad cogida por alfileres pese al bombo que se ha dado.
     
    Mediante el acelerador de partículas y a base de probar y probar se obtiene un resultado que parece coincidir con bosón de Higgs. Pero es este el bosón dimensionalmente el menor como para abarcar y dar masa a todas las partículas que son y han sido. Puede que matemáticamente el resultado sea ese, ¿Pero realmente  realmente el campo de Higgs constituye la dimensión primera? Pero es que si la masa se ha definido como el efecto frenado en el medio vacío, tampoco lo será tanto, pues cualquier medio de partículas haría semejante efecto. El campo de Higgs en el vacío no podrá ser único.
     
    Por supuesto que el fotón no adquiría masa según Higgs, ni el gluón…
     
    Por su importancia nos centramos en el fotón cuyo fundamento es electromagnético, así se estima según se comprueba.
     
    Vino De Broglie para establecer la onda partícula, también para el fotón. Pero se dice que el fotón no posee masa
     
     
     
    El fotón se considera como una vibración o perturbación, una onda sobre el fluido del vacío. Visto así puede decirse que esta partícula excepcional, materialmente no es nada, sino una incidencia que avanza en el vacío transportando solo movimiento, energía.
    Pero resulta que cualquier partícula también es eso, una perturbación del vacío, con su característica onda
    Se dice que la masa del fotón es relativista porque su masa en reposo no existe.
    La masa de cualquier partícula en reposo tampoco existiría. La partícula nunca está en reposo, sino en apariencia. La partícula común, globalmente solo es como suma de sus subpartículas que nunca están reposo sino todo lo contrario. La consideración de masa en reposo solo es una resultante.
    Si dibujamos una partícula cualquiera lo que en realidad dibujamos son sus subpartículas, subpartículas onda y no otra cosa.
    Si ahora dibujamos un fotón, es decir su onda, el dibujo es tan parecido al de una partícula cualquiera en su onda que hasta cabe el asombro. Lo autónomo de un protón libre y de un fotón libre vendrá a representarse como una multionda para el protón y una menos “multi” para el fotón, pero solo en apariencia.
    Tanto protón como fotón, en su avance poseen el “mismo mecanismo”: unas orbitas no cerradas en el espacio. Una oscilación completa para ambas supone un periodo, y es ahí donde la masa mínima se manifiesta.
    La autonomía de las partículas libres hace que puedan circular, trasladarse, de manera casi indefinida salvo interacciones. El fotón no se sale de la norma, pero es bastante más simple “relativamente”. ¿De qué iba a ir un fotón de un lado a otro del Universo sin un “motor interno” que le procure su movimiento libre? No obstante en el vacío sufrirá interacciones de todo tipo y hasta puede desaparecer aniquilado. ¿Qué tiene el fotón que le permite esas proezas? ¿Acaso es el vacío quién se las procura?  ¿Es el vacío tan poco denso que un fotón pasa a su través, sin perturbarlo, sin ninguna novedad? Esto significaría que no se trata de un movimiento en el vacío, ¿o es que la perturbación en el vacío, porque fuera superdenso, se transmite elemento a elemento como aquel “juguete de las bolas de Newton”?
     
    Los campos del fotón, como cualquier otro campo, no están hechos de fuerzas abstractas ni de vectores y tensores, estos son solo una medida. El campo electromagnético consta de unos elementos transformados de unos a otros de eléctricos a magnéticos y viceversa, tan pequeños que será difícil detectarlos.
     
    Desde el primer instante de nacimiento del fotón, esos elementos (Que no son inmateriales sino pequeñas ondas partícula) ya tienen su masa. Por qué no habría de considerarse una masa desde el instante en que el fotón comienza su andadura.
     
     
     
    He aquí unas consideraciones sobre campos, masas, matemáticas y demás:
     
     
     
    “El problema Clay del Milenio del “salto de masa” en las teorías cuánticas de Yang-Mills es un ejemplo claro de que los físicos y los matemáticos no se entienden entre sí, salvo en contadas excepciones. Los físicos desean realizar cálculos para comparar las predicciones de la teoría en los experimentos, aceptando desarrollos matemáticos “formales” que parecen repletos de agujeros a ojos del matemático, acostumbrado al rigor como sustituto del entendimiento. Los físicos creemos entender las leyes de la Naturaleza, pero más que entenderlas las intuimos; conforme un físico madura se va acostumbrando a trabajar con estas leyes y va creyendo que las entiende, actuando como si fueran lo más obvio del mundo. Pero en el fondo, todo físico sabe que no sabe nada (nociones tan básicas como qué es el tiempo, el espacio, la energía, etc., son hoy tan “oscuras” como hace unos siglos). Yo creo acertado decir que “en física uno no entiende las cosas, se acostumbra a ellas” (frase basada en la de John von Neumann: “Joven, en matemáticas uno no entiende las cosas, se acostumbra a ellas,” que se supone que respondió a Félix T. Smith cuando dijo que “Me temo que no entiendo el método de las características” [WikiQuote]).
     
    Todo esto viene a cuento por la entrada de ayer. Hace unas semanas me pidieron que hablara de la formulación del problema del salto de masa en teorías de Yang-
     
    Mills usando un lenguaje matemático. Mañana me meteré en camisa de once varas y trataré de satisfacerles. Pero antes creo necesario recordar a los matemáticos (y a todos los demás) algunos conceptos básicos sobre teoría de campos, tanto clásicas como cuánticas. Me parece que sin estos conceptos será muy difícil que los matemáticos entiendan bien la entrada de mañana. Por supuesto, para entender bien lo que sigue es necesario estudiar un curso de teoría de campos; mi intención es solo presentar (o recordar) las ideas clave para la entrada de mañana, que estará repleta de matemáticas”. Francisco R. Villatoro
     
    (Profesor en la universidad de Málaga)
     
     
     

    Responder
    • 4.1
      emiliosilvera
      el 18 de mayo del 2018 a las 8:18

      El fotón se ha hecho, para los que visitamos c on frecuencia los aledaños de la física, un entrañable “amigo”,.


      “Un fotón es una partícula elemental, en la que convergen toda las formas de radiación electromagnética. También la luz. Cuando hablamos de las formas de radiación electromagnética, hablamos desde las microondas, a los rayos gamma, pasando por rayos x, luz infrarroja, ondas de radio o luz ultravioleta. Hay otras muchas, pero éstas son las más habituales. El fotón es quien se encarga de terciar con la fuerza electromagnética.”
       

       
       
      No es sencillo responder a qué es un fotón o la definición de un fotón. Y es que la terminología en este sector no es de la que se maneja a diario. Aún así, diremos que un fotón, al contar con una masa que no se altera, puede viajar por el vacío a una velocidad constante. Por tal motivo, un fotón es analizable tanto a nivel microscópico, como macroscópico.
      Heisenberg dijo: “El día que sepamos lo que realmente es la luz, los fotones, habremos conseguido desterrar de nuestras mentes, una buena proporción de la ignorancia que nos acompaña”.
      En cuanto al campo de Higgs, y, desde luego, su ya famosa partícula, por mi parte, no las tengo todas conmigo, no lo puedo explicar pero, cuando se habla de ella, siento una especie de desazón, una voz interior me grita… ¡Todo está mal!
      No participé de toda aquella fanfarria cuando el “decubrimiento” del “Bosón de Higgs” que, dicho sea de paso, se metió con ccalzador en el Modelo Estandar de mla Física de Partículas que, todavía, tiene cerca de una veintena de parámetros aleatorios para rellenar lo que no sabemos.
      Se crean Modelos matemáticos en lo que todo cuadra a la perfección, y, sin embargo, cuando tratamos de verificarlo experimentalmente, aquello salta en mil pedazos. Los grandes grupos científicos (a los que no les quiero quitar ni un ´`apice del mérito que tienen), necesitan ser subvencionados y, no pocas veces, exageran los resultados para obtener lo que, de otra manera, no les darían.
      ¿El Fotón? Dicen que no tiene masa en reposo, es un cuanto de energía que marca el límite de la velocidad que se puede alcanzar en nuestro Universo, y, si Einstein tenía razón, y la masa es la energía congelada…. ¿Tiene o no tiene masa el fotón?
      Es mucho lo que no sabemos.

      Responder
  5. 5
    nelson
    el 18 de mayo del 2018 a las 15:31

    Hola muchachada.
    Por cierto que me supera largamente el nivel de la discusión, por lo que evito comentar; prefiero leer a los compas procurando aprender. 
    Encontré este comentario de usuario que parece interesante y apropiado para compartir:

    Boondock Saint
    CoLD SToRAGE
    Lugar: ? · 3014 mensajes · Colección

     


     

     
     

    #9  Enviado: 23:13 03/03/2008

     Pedir moderación
     Responder a este post
     Votar
    0 votos
     

     

    Te pongo un texto que leí hace ya unos años de un usuario de Meristation:

    La velocidad de la luz no es una “velocidad”. Es un límite absoluto. Esto nunca se explica bien, ni en la escuela ni en las revistas de divulgación. No me extraña que muchos os hagáis un lío tremendo porque no hay manera de encontrar por ahí una explicación correcta. Y no es difícil. Vamos a intentarlo a ver cómo sale.

    Una de las premisas básicas de la mecánica es que si un objeto está libre de fuerzas entonces su momento lineal permanece constante. El momento lineal es el producto de su masa por su velocidad. Si lo representamos por p, entonces tenemos que p = mv (las letras en negrita son vectores, pero esto no importa mucho aquí).

    La mecánica clásica supone que la masa es una constante de inercia. Es decir, una característica del objeto, que representa la proporcionalidad entre la fuerza que se le aplica y la variación de su velocidad (aceleración). En este sentido, la fuerza, que se define como la variación del momento lineal, sería algo como (dx/dt representa la derivada de la función x con respecto al tiempo):

    F = dp/dt = d(mv)/dt

    Esta es la segunda ley de Newton: la tasa de variación del momento lineal es igual a la fuerza aplicada.

    Ahora bien, si la masa es una constante, entonces se puede sacar de la derivación, y tenemos

    F = m.dv/dt = ma (Newton)

    donde a es la aceleración del objeto. O sea, que la fuerza aplicada es proporcional a la aceleración del objeto. Esto es lo que dice la segunda ley de Newton en su forma clásica, tal y como se suele enseñar.

    Pero, realmente, Newton postuló que la fuerza era la variación temporal del momento lineal. Ahora es cuando cambia la cosa: si la masa NO es constante, no se puede sacar de la derivada. Si la masa de un objeto depende de la velocidad, entonces también varía con el tiempo. Por tanto, hay que derivar la expresión como si fuera un producto:

    F = dp/dt = (dm/dt).v + m.(dv/dt) = (dm/dt).v + ma (Lorentz)

    Esta fórmula es la misma que la anterior, pero tiene un término extra, consecuencia directa de suponer que la masa no es una constante, sino que podría variar con la velocidad. ¿Qué representa esto?

    Que la fuerza aplicada ya no es proporcional a la aceleración. La fuerza se emplea en variar el momento lineal, pero esta variación se emplea en dos cosas:

    1. Modificar la velocidad (término clásico).
    2. Modificar la masa (término nuevo).

    La manera en cómo la energía aplicada a un objeto se reparte entre estos dos términos depende de cuál sea la función que representa la dependencia de la masa con respecto a la velocidad.

    Pues bien, esta función resulta ser de la forma

    m(v) = M / (1 – (v/c)^2)^(1/2)

    (Elevar a la potencia 1/2 es lo mismo que extraer la raíz cuadrada). Aquí M y c son constantes; M depende del objeto, c es absoluta y universal. Concretamente, M es la “masa en reposo” del objeto: su coeficiente de inercia a velocidad cero. La constante c es la velocidad de la luz. Pero, como vemos en la fórmula, el valor de m solamente es un número real si 0 <= v < c. Por tanto la velocidad v está acotada superiormente por c, si la masa en reposo es distinta de cero.

    Por tanto, todo objeto con masa debe tener una velocidad inferior a la de la luz. La escala de velocidades NO es lineal: es una curva con asíntota en c. Cuando un cuerpo se mueve a velocidades bajas, un aumento de energía se emplea casi todo en acelerar (cambiar de velocidad) y casi nada en cambiar de masa; por eso los cambios de masa son despreciables a velocidades bajas. Si un cuerpo tiene una velocidad cercana a la de la luz, y se le proporciona más energía, casi toda irá a parar en aumentar la masa, y casi ninguna en acelerar, hasta que en el límite ya no se puede acelerar más. Eso es todo.

    Espero sea útil.
    Saludos cordiales para tod@s.

    Responder
    • 5.1
      Emilio Silvera
      el 19 de mayo del 2018 a las 4:27

      Siempre es bienvenida una buena aportación, y, si clarifica lasc cosas… ¡Mucho mejor!

      Gracias amigo

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting