viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Fluctuaciones de vacío! ¿Que son?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un fuerte campo gravitatorio puede inducir un efecto desbocado en las fluctuaciones cuánticas que se producen en el espacio, aparentemente vacío, …

En física cuántica, la fluctuación cuántica es un cambio temporal en la cantidad de energía en un punto en el espacio como resultado del Principio de Incertidumbre que imaginó Werner Heisenberg. De acuerdo a una formulación de este principio energía y tiempo se relacionan de la siguiente forma:

\Delta E\Delta t\approx {h \over 2\pi }

Esto significa que la conservación de la energía puede parecer violada, pero sólo por breves lapsos. Esto permite la creación de pares partícula-antipartícula de partículas virtuales. El efecto de esas partículas es medible, por ejemplo, en la carga efectiva del electrón, diferente de su carga “desnuda”. En una formulación actual, la energía siempre se conserva, pero los estados propios del Hamiltoniano no son los mismos que los del operador del número de partículas, esto es, si está bien definida la energía del sistema no está bien definido el número de partículas del mismo, y viceversa, ya que estos dos operadores no conmutan.

Imagen relacionada

Científicos lograron filmar por primera vez un electrón en movimiento gracias a una tecnología reciente que genera pulsos cortos e intensos de luz láser. A un electrón le toma 140 atosegundos

En un estudio realizado por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:

“La materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.

Cada protón (o neutrón) se compone de tres quarks – véase ilustración – pero las masas individuales de estos quarks apenas comprenden el 1% del total de la masa del protón ¿Entonces de dónde sale el resto? La teoría sostiene que esta masa es creada por la fuerza que mantiene pegados a los quarks, y que se conoce como fuerza nuclear fuerte.  En términos cuánticos, la fuerza fuerte es contenida por un campo de partículas virtuales llamadas gluones, las cuales irrumpen aleatoriamente en la existencia para desaparecer de nuevo. La energía de estas fluctuaciones del vacío debe sumarse a la masa total del neutrón y del protón.”

 

 

Resultado de imagen de Los misterios que encierra la materiaResultado de imagen de Los misterios que encierra la materiaResultado de imagen de Los misterios que encierra la materia

Sus distintas formas no dejan de ser materia, y, las dudas que podamos tener sobre la luz que son fotones energéticos… ¿No dicen Einstein que la energía es materia y la materia energia (E=Mc2)?

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen, su esencia,  lo que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está?

Resultado de imagen de las llamadas fluctuaciones del vacío son oscilaciones aleatorias, e impredecibles

Claro que hemos llegado a saber que las llamadas fluctuaciones del vacío son oscilaciones aleatorias, impredecibles e ineliminables de un campo de fuerza (electromagnético o gravitatorio) que son debidas a un “tira y afloja” en el que pequeñas regiones del espacio toman prestada, momentáneamente, energía de regiones adyacentes y luego las devuelven. Pero…

– ¿Qué regiones adyacentes?

Acaso universos paralelos, acaso defomraciones del espacio-tiempo a escalas microscópicas, micros agujeros negros que pasan a ser agujeros blancos salidos de estas regiones o campos de fuerza que no podemos ver pero sí sentir, y, en última instancia, ¿por qué se forman esas partículas virtuales que de inmediato se aniquilan y desaparecen antes de que puedan ser capturadas? ¿Qué sentido tiene todo eso?

Resultado de imagen de El Vacío

                No, no era este el vacío al que me quería referir

Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado campo de punto cero.

Resultado de imagen de Fluctuaciones de Vacío

En nuestro Universo cualquier cosa puede surgir de una fluctuación de “Vacío”

Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del , y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

                       Son muchas  las preguntas que no tienen respuestas

Parece que las fluctiuaciones ocurren en cualquier lugar, pero que, son tan minúsculas que ningún observador o experimentador las ha detectado de una manera franca hasta la fecha y, se sabe que están ahí por experimentos que lo han confirmado. Estas fluctuaciones son más poderosas cuanto menos escala se considera en el espacio y, por debajo de la longitud de Planck-Wheeler las fluctuaciones de vacío son tan enormes que el espacio tal como lo conocemos “pareciera estar hirviendo” para convertirse en una especie de espuma cuántica que parece que en realidad, cubre todo el espacio “vacío cuántico” que sabemos que está ahí y es el campo del que surgen esas partículas virtuales que antes menccionaba.

     ¿Espuma cuántica? Si profundizamos mucho en la materia… Podríamos ver otro universo distinto al nuestro. Las cosas miles de millones de veces más pequeñas que en nuestro mundo cotidiano, no parecen las mismas cosas.

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro. ¡Qué locura!

Resultado de imagen de Una teoría cuántica de la Gravedad

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

En física como en todas las demás disciplinas científicas, los conocimientos avanzan y las teorías que sostuvieron los cimientos de nuestros conocimientos se van haciendo viejas y van teniendo que ser reforzadas con las nuevas y más poderosas “vigas” de las nuevas ideas y los nuevos hallazgos científicos que hacen posible ir perfeccionando lo que ya teníamos.

Recientemente se han alzado algunas voces contra el Principio de Incertidumbre de Heisenberg. He podido leer en un artíoculo de la prestigiosa Revista Nature, un artículo del premio Nobel de Física Gerald ´t Hoofft, en el que propone que la naturaleza probabilistica de la mecánica cuántica, desaparecería a la escala de Planck, en la que el comportamiento de la materia sería determinista; a longitudes mayores, energías más pequeñas.

El mundo de lo muy pequeño (el micro espacio), a nivel atómico y subatómico, es el dominio de la física cuántica, así nunca podríamos saber, de acuerdo m con el principio de incertidumbre, y, en un momento determinado, la posición y el estado de una partícula. Este estado podría ser una función de la escala espacio-temporal. A esta escala tamaños todo sucede demasiado deprisa para nosotros.

cuerdascuantica.jpg

El “universo cuántico” nada es lo que parece a primera vista, allí entramos en otro mundo que en nada, se parece al nuestro

 Cuando hablamos de la mecánica cuántica, tenemos mirar un poco hacia atrás en el tiempo y podremos darnos del gran impacto que tuvo en el devenir del mundo desde que, en nuestras vidas, apareció el átomo y, más tarde, sus contenidos. Los nombres de Planck, Einstein, Bohr, Heisenberg, Schrödinger, Pauli, Bardeen, Roentgen, Dirac y muchos otros, se pudieron a la cabeza de la lista de las personas más famosas. Aquel primer premio Nobel de Física otorgado en 1900 a Roentgen por descubrir los rayos X, en el mismo año llegaría el ¡cuanto! De Planck que inspiró a Einstein para su trabajo sobre el Efecto fotoeléctrico que también, le valdría el Nobel, y, a partir de ese momento, se desencadenó una especie de alucinante por saber sobre el átomo, sus contenidos, y, de qué estaba hecha la materia.

epr

          La conocida como Paradoja EPR y los conceptos de Tiempo y , presente, pasado y futuro.

 

La Mecánica Cuántica es incompleta (conclusión EPR).  Dos posibles conclusiones enfrentadas:
La Mecánica Cuántica es completa, pero el realismo local no se cumple. Entonces… ¿Cómo se comporta la Naturaleza en realidad? Bueno, no siempre lo sabemos y, no hace mucho me encontré con el comentario de un científico que decía:
“Nadie ha resuelto la paradoja del gato de Schroedinger, ni la paradoja de Einstein-Podolsky-Rosen. El principio de incertidumbre no se ha explicado y se asume como un dogma, lo mismo pasa con el spin. El spin no es un giro pero es un giro.  Aquí hay un desafío al pensamiento humano. ¡Aquí hay una aventura del pensamiento!”

Fueron muchas las polémicas desatadas a cuenta de las aparentes incongruencias de la moderna Mecánica Cuántica. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.

A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas.

Imagen relacionada

Por otro lado, en un entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene paralaje en el mundo de nuestras experiencias cotidianas. Cabe enfatizar pues que cuando se mide el estado de una partícula, enseguida sabemos el estado de la otra, lo cual aparentemente es instantáneo, es decir, sin importar las distancias a las que se encuentren las partículas, una de la otra, ambas saben instantáneamente el estado de la otra.

El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

File:O2 MolecularOrbitals Anim.gif

Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental. Las nubes de color representan los orbitales atómicos. Los orbitales 2s y 2p de cada átomo se combinan para formar los orbitales σ y π de la molécula, que la mantienen unida. Los orbitales 1s, más interiores, no se combinan y permiten distinguir a cada núcleo. Lo que ocurre a escalas tan pequeñas es fascienante.

Si nos pudiéramos convertir en electrones, por ejemplo, sabríamos dónde y cómo estamos en cada momento y podríamos ver asombrados, todo lo que estaba ocurriendo a nuestro alrededor que, entonces sí, veríamos transcurrir a un ritmo más lento del que podemos detectar en los electrones desde nuestro macroestado espacio temporal. El electrón, bajo nuestro punto de vista se mueve alrededor del núcleo atómico a una velocidad de 7 millones de km/h.

A medida que se asciende en la escala de tamaños, hasta el tiempo se va ajustando a esta escala, los objetos, a medida que se hacen mayores se mueven más despacio y, además, tienen más duración que los pequeños objetos infinitesimales del micro mundo cuántico. La vida media de un neutron es de unos 15 minutos, por ejemplo, mientras que la vida media de una estrellas se puede contar en miles de millones de años.

En nuestra macroescala, los acontecimientos y ,los objetos se mueven a velocidades que a nosotros nos parecen normales. Si se mueven con demasiada lentitud nos parece que no se mueven. Así hablamos de escala de tiempo geológico, para referirnos al tiempo y velocidad de la mayor parte de los acontecimientos geológicos que afectan a la Tierra, el tiempo transcurre aquí en millones de años y nosotros ni lo apreciamos; nos parece que todo está inmóvil. Nosotros, los humanos, funcionamos en la escala de años (tiempo biológico).

El Tiempo Cosmológico es aún mucho más dilatado y los objetos cósmicos (mundos, estrellas y galaxias), tienen una mayor duración aunque su movimiento puede ser muy rápido debido a la inmensidad del espacio universal en el que se mueven. La Tierra, por ejemplo, orbita alrededor del Sol a una velocidad media de 30 Km/s., y, el Sol, se desplaza por la Galaxia a una velocidad de 270 km/s. Y, además, se puede incrementar el tiempo y el espacio en su andadura al estar inmersos y ligados en una misma maya elñástica.

Así,  el espacio dentro de un átomo, es muy pequeño; dentro de una célula, es algo mayor; dentro de un animal, mayor aún y así sucesivamente… hasta llegar a los enormes espaciosa que separan las estrellas y las galaxias en el Universo.

Distancias astronómicas separan a las estrellas entre sí, a las galaxias dentro del cúmulo, y a los cúmulos en los supercúmulos.

Las distancias que separan a los objetos del Cosmos se tienen que medir con unidades espaciales, tal es su inmensa magnitud que, nuestras mentes, aunque podamos hablar de ellas de manera cotidiana, en realidad, no han llegado a asimilarlas.Y, a todo ésto, los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.

gran-muralla-galaxias

Una cosa nos ha podido quedar clara: Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

Resultado de imagen de La era de Planck cuántica

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

Y después de todo ésto, sólo una caso me queda clara: ¡Lo poco que sabemos! A pesar de la mucha imaginación que ponemos en las cosas que creemos conocer.

emilio silvera

Rumores del saber del mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

El punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.

Resultado de imagen

André-Marie Ampère

Poco después, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).

Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.

En 1.821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).

Resultado de imagen

Michael Faraday

Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.

Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.

La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.

Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.

Resultado de imagen de James Clerk Maxwell

Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.

Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.

Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.

Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”

Resultado de imagen de Los trabajos de Faraday

Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).

No quiero seguir por este camino de personajes y sus obras ya que están enmarcados y recogidos en mi anterior libreta (primera parte de personajes), así que desviaré mis pensamientos hacia otras diversas cuestiones de mi interés, y espero que también del vuestro.

Antes dejaba la reseña de algún refrán o pensamiento sobre la amistad, y en realidad también podemos ver la cara amable de esta forma de sentimiento-aprecio-amor que llamamos amistad.

Resultado de imagen de Nosotros, los seres humanos, nunca vemos a nuestros semejantes como objetos o cuerpos neutros, sino que los miramos como personas con una riqueza interior

    Siempre hay mucho más de lo que se ve: Sarah Brightman symphony live in vienna completo on Vimeo

Nosotros, los seres humanos, nunca vemos a nuestros semejantes como objetos o cuerpos neutros, sino que los miramos como personas con una riqueza interior que refleja su estado de ánimo o forma de ser, y de cada uno de ellos nos llegan vibraciones que, sin poderlo evitar, nos transmiten atracción o rechazo (nos caen bien o nos caen mal).

Resultado de imagen de Signos sensoriales que vemos en los demás

Son muchos y diversos los signos sensoriales que, en silencio, nos llegan de los demás y son recogidos por nuestros sensores en una enorme gama de mensajes sensitivos que llamamos indistintamente simpatía, pasión, antipatía, odio, etc.

Está claro que cuando el sentimiento percibido es positivo, la satisfacción se produce por el mero hecho de estar junto a la persona que nos lo transmite, que con su sola presencia, nos está ofreciendo un regalo, y si apuramos mucho, a veces lo podríamos llamar incluso “alimento del alma”. Estar junto a quien nos agrada es siempre muy reconfortante, y según el grado de afinidad, amistad o amor, el sentimiento alcanzará un nivel de distinto valor.

“Donde tú vayas, iré yo. Donde tú habites, habitaré yo. Tu pueblo será mi pueblo, y tu Dios será mi Dios. Donde tu mueras, moriré yo también, y allí seré enterrada, y que Dios me castigue si algo que no sea muerte me separa de ti.”

Libro de Rut (Biblia)

C. S. Lewis, en su ensayo de Los cuatro amores, explica cómo el afecto ignora barreras de edad, sexo, inteligencia y barreras sociales.

Lleva toda la razón; cada uno de los afectos ubicados en su justo nivel: el banquero todopoderoso irremisiblemente atado al cariño que le une con su niñera ya anciana; el jefe de gobierno que no puede evitar visitar (en la menor oportunidad) a su compañero de infancia, el zapatero de su pueblo; el rico hacendado, unido a su humilde secretario, 30 años a su lado, con el que comparte sus íntimos problemas; el hombre de 40 años que se ve inevitablemente enamorado de su secretaria de 20 años.

Resultado de imagen de Hombre mayor se enamora de chica joven

Son fuerzas irresistibles que invaden el interior de los seres humanos de toda edad o condición y les lleva a unir sus sentimientos a otras personas que, en ocasiones, parecen no tener ninguna afinidad con su situación social o cultural, pero así ocurre.

Nacemos para amar y ser amados; ¿qué sería de nosotros si no? Todo lo malo que hacen los hombres está basado siempre en la falta de sentimiento. Cuando el amor o el afecto están presentes, nada malo podrá suceder. Por el contrario, el amor nos lleva, sin dudarlo, a sufrir y darlo todo por la persona amada. Ésa es la grandeza del amor verdadero, lo podemos dar todo sin pedir nada. Sin embargo, el mecanismo humano, en esos casos, hace que la persona que recibe tanto amor tenga también la necesidad de darlo.

El afecto es la primera forma, el primer escalón para amar, y la amistad es la segunda, un escalón más arriba. Tenemos muchos ejemplos de autores clásicos que nos hablan de la amistad: Homero, Platón, Aristóteles, Cicerón, Séneca o San Agustín.

Resultado de imagen de Ulises por Troya y el Egeo

La primera literatura occidental, desde que Homero saca a pasear a Ulises por Troya y el Egeo, ya elogia esa relación que se presta entre los seres humanos y que da a sus vidas un colorido especial. La Ilíada y La Odisea, esas maravillas escritas hace casi tres milenios, son un canto a la amistad. Al leer en ellas podemos ver cómo la muerte de Patroclo es profundamente sentida por Aquiles, que gime y exclama:

“¡Oh, Patroclo! Ya que yo he de bajar después que tú a la tumba, no quiero enterrarte sin haberte traído las armas y la cabeza de Héctor…”

 

Sigue su bárbara perorata que, en aquellos tiempos y lugares, sólo reflejaban su sentimiento.

Dice Eurípides que cuando Dios da bienes, no hay necesidad de amigos. Pero nadie querría poseer todas las riquezas y estar solo, pues el hombre, como todos sabemos, es eminentemente un animal social, y su naturaleza le exige convivir con los otros seres de su misma condición para compartir con ellos sus logros, sus esperanzas, sus sentimientos y sus penas y alegrías. Así somos los humanos.

Resultado de imagen de Esa fuerza que llamamos AmorResultado de imagen de La pareja con los años está situada más allá de la amistadImagen relacionada

En cada época sentimos de manera diferente y, nuestros sentimientos también, tienen significados distintos.

El cualquier tratamiento de la amistad aparecen varios rasgos comunes en todos los casos: relación entrañable y libre, recíproca y exigente, desinteresada y benéfica, nacida de una inclinación natural por atracción y simpatía de las partes implicadas y que se alimenta y acreciente del convivir compartiendo. Así, en los malos momentos, nos refugiamos en los amigos que nos ofrecen consuelo y, con ellos, nos gusta compartir también las alegrías. Sí, es una verdadera suerte contar con amigos en los que, de verdad, podamos confiar.

No soy masoquista, sin embargo, siento profundamente que, en verdad, sufrir por algo que vale la pena, es una alegría.

¿Quién no está dispuesto a sacrificarse por el bien del ser amado?

Pero… ¿Cómo he terminado así el trabajo?

emilio silvera

Sabemos cómo evoluciona el Universo, observando las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Hace algún tiempo que salió la noticia en los medios: “Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hipergigante HR 8752, que han revelado el eslabón perdido en la evolución de este tipo de astros.Concretamente, han descubierto que, la región inestable conocida como Vacío Evolutivo Amarillo, puede cambiar profundamente la evolución de una estrella ya que, en estas tres décadas, HR 8752 ha aumentado de forma espectacular su temperatura superficial en 3.000 Kelvin (K) a su paso por esta región.”

Los resultados obtenidos venían a desvelar algunos misterios que antes, no tenían explicación.

Resultado de imagen de La estrella hipergigante HR 8752 atravesando el Vacío Evolutivo Amarillo

La estrella hipergigante HR 8752 atravesando el Vacío Evolutivo Amarillo (YEV, por sus siglas en inglés) en una recreación artística. La gráfica muestra el aumento de temperatura que ha sufrido la superficie de la estrella en las últimas décadas. /© A.Lobel-ROB. SRON.
Informaron sobre el hallazgo y dieron los detalles:
“Las hipergigantes –de las que solo se conocen 12 en la Vía Láctea–son las estrellas más luminosas que se conocen en la actualidad en el universo. Pueden llegar a ser hasta millones de veces más brillantes que el Soly tener un tamaño de varios cientos de radios solares, con temperaturas superficiales de entre los 3.500 K y los 35.000 K. En concreto, HR 8752 es unas 250.000 veces más luminosa que el Sol y puede ser observada con prismáticos en la constelación del hemisferio norte de Casiopea.”
Resultado de imagen de Comparación entre los tamaños del Sol y VY Canis Majoris, una hipergigante
Comparación entre los tamaños del Sol y VY Canis Majoris, una hipergigante. Se trata de la estrella roja más grande conocida. Cuando miramos la reseña de este tipo de estrellas, en casi cualquier sitio que podamos mirar nos dicen algo parecido a esto:
“Una hipergigante (hypergiant en inglés) es una estrella excepcionalmente grande y masiva, incluso mayor que una supergigante. Su masa puede ser de hasta 1000 veces la masa de nuestro Sol, próxima al límite máximo teórico, el cual establece que la cantidad de masa en una estrella no puede exceder las 120 masas solares. Este límite en masa está asociado a la luminosidad de Eddingtong, por el que estrellas más masivas simplemente no pueden estar en equilibrio al vencer la presión de radiación interna a la fuerza gravitacional: producirían tanta energía que se desprenderían de la masa en exceso de las 120 M. Aun así, algunas hipergigantes aparentan tener más de 100 M e, inclusive, haber tenido, inicialmente, entre 200 y 250 M, al contrario de lo que predicen las teorías actuales sobre la formación y evolución estelar.”
EtaCarinae.jpg
En esta imagen del Telescopio Espacial Hubble se pueden apreciar a la estrella Eta Carinæ y los restos de erupciones antiguas que forman la nebulosa del Homúnculo alrededor de la estrella. La nebulosa fue creada por una erupción de η Car cuya luz alcanzó la Tierra en 1843. η Car aparece como un parche blanco en el centro de la imagen, donde los dos lóbulos de la nebulosa Homúnculo convergen.
Lo que más arriba se explica, es decir, que cuando una estrella tiene más de 120 masas solares, su propia radiación la podría destruir y, para evitarlo, eyecta material estelar al espacio evitando su propia destrucción.
Imagen relacionada
Eta Carinae podría estar a punto de explotar. Pero nadie sabe cuándo -lo mismo podría ser mañana que tardar cientos de miles o millones de años- Eta Carinae es una de edsas estrellas masiva  – aproximadamente 100 veces mayor que nuestro Sol – hace que sea un excelente candidato para una supernova que sembrará el espacio interestelar de gas y polvo y materiales complejos del que, de nuevo, volverán a surgir estrellas y mundos. Los registros históricos muestran que hace unos 150 años Eta Carinae sufrió una explosión inusual que la convirtió en una de las estrellas más brillantes del cielo austral.
Eta Carinae, en la Nebulosa Keyhole, es la única estrella en la que actualmente se han detectado emisiones de luz LASER de manera natural. La imagen de arriba fue tomada en 1996, fue resultado de sofisticadas combinaciones de procesamiento de imágenes y los procedimientos diseñados para llevar a cabo nuevos detalles de la nebulosa que rodea a esta inusual estrella perdida entre las brumas del material que eyecta para evitar su muerte. Ahora son claramente visibles dos lóbulos, una región central caliente, y extrañas rayas radiales. Los lóbulos están llenos de carriles de gas y polvo que absorben la luz azul y ultravioleta emitida cerca del centro. Las rayas siguen sin explicación. ¿Estos indicios nos dicen cómo se formó la nebulosa? ¿ Sabremos algún día cuando Eta Carinae explotará?
Resultado de imagen de Estrellas enanas rojas
Últimamente se han descubierto algunos sistemas planetarios comandados por enanas rojas
Una estrella enana roja que son las más abundantes del Universo y las que tienen mayor edad. Otra estrella como nuestro Sol, una estrella celeste claro supermasiva y otra última de dimensiones inconmensurables. Las estrellas que han sido profundamente estudiadas en todas sus variantes, formas y colores, tienen aún algunos secretos que tenenos que desvelar.
Alguna vez me he referido aquí a R. Leporis, que es un capricho estelar. En el espacio existen muchas estrellas que, de poder saber de ellas nos dejarían sumidos en el mayor de los asombros. Las hay de Carbobo como R. Lepori, de Circonio, de Litio, de Manganeso, de estroncio, de Helio, de bario, de manganeso-mercurio, de metales pesados, de silicio, de tecnecio, de neutrones, y… ¿por qué no podría incluso existir algunas de Quarks?

 

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.

R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono-oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.
En la imagen podemos contemplar como algo que nos parece tan enorme como el Sol, puede quedar empequeñecido al lado de otros astros de cuya inmensidad ni podíamos imaginar que pudieran existir. Arriba Betelgeuse se exhibe presumida al lado de las otras estrellas que, siendo grandes y muy grandes, no piueden compararse a grandiosidad. Sin embargo, aún las hay mucho mása grandes que ella.
                   Ahora es Antares la que se puede pavonear ante las demás

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla desde 520 a.l. de distancia y tiene una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aprpoximadamente la mitad de la distancia del cúmulo.

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces superior a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 siatuada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minúsculos como podemos ver en la imagen y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.

¡No por pequeño se es insignificante! Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

      El grupo de tres estrellas gigantes Pismis 24-1 (CSIC).

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Por ejemplo, de Eta Carinae (antes mencionada y cuya imagen tenéis arriba), es una variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, en tiempos se llegó a creer que era la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida de masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

Estrellas masivas como Eta Carionae, Betegeuse, Arthurus, Antares y tantas otras que ahora sabemos que existen nos llevan a saber que, cuando mueren, se pueden convertir en otros objetos distintos como, por ejemplo:

Estrellas de Neutrones

Estrellas que se forman a partir de estrellas amasivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la estrella comienza a contraerse bajo su propio peso, de forma tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de esclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de nweutrones de intensom campo electromagnético y rápida rotación. Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

¿Estrella de Quarks?

Es hipotética, aún no se ha observado ninguna pero se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad que sería frenada por los Quarks que también, son fermiones.

Si la estrella no es masiva, y tiene una masa como la del Sol, su final será la de convertirse en una ¡Estrella Enana Blanca!

Nuestro Sol es de esta clase de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo número cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

Nos despediremos con estas bellas imágenes de sendas Nebulosas Planetarias como, un día lejano aun en el futuro, nos mostrará nuestro Sol al llegar al término de su vida. Ese será su final: Una bonita Nebulosa Planetaria con una estrella enana blanca en en el centro.

Claro que, tampoco ese será el final para el Universo en el que, nuevas estrellas seguirán naciendo para hacer posible que, mundos como la Tierra puedan, con su luz y su calor, hacer surgir formas de vida que, como la nuestra, pueda alcanzar la consciencia de Ser y, a partir de ahí… comenzará otra nueva aventura que será digna de contar.

emilio silvera