domingo, 15 de diciembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La búsqueda interminable

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://www.ganadineroytiempo.com/wp-content/uploads/2011/05/Cambia-de-pensamientos-para-cambiar-de-vida.jpg

Hay frases que están vacías y formamos oraciones que no podemos cumplir

Los tiempos cambian, y, con los cambios llegan las nuevas doctrinas o creencias, o, ¿por qué no? nuevas teorías. Desde hace algún tiempo venimos dando vueltas y vueltas, en el campo de la Física, a esas avanzadas teorías que no podemos demostrar, toda vez que, al contrario del Modelo Estándar, no son (por ahora) verificables sus predicciones. Me estoy refiriendo, como habeis podido suponer a la Teoría de supercuerdas, La cuerdad Heterótica, la Supergravedad y Supersimetría, y, finalmente, la última versión que viene a ser un compendio de todas las demás, la Teoría M.

Como nos dice Brian Greene en uno de los capítulos del libro El tejido del cosmos, que él titula: “Especulaciones sobre el espacio y el tiempo en la teoría M”, hoy, tres décadas después de la articulación de la teoría de cuerdas,la mayoría de los que trabajan en ella, creen que aún no tenemos una respuesta general para la pregunta fundamental: ¿qué es la teoría de cuerdas? A pesar de que sabemos bastante de la teoría, sus características más elementales son familiares y, a estas alturas, casi cercanas. Tampoco debemos despreciar los éxitos que ha cosechado y, desde luego, es bien sabido todo lo que nos promete y también ¿cómo no? los desafíos que suponen lograr todas esas promesas que en ella están encerradas.

La relatividad especial tiene la constancia de la Velocidad de la luz, la relatividad general tiene el principio de Equivalencia, la mecánica cuántica tiene, el principio de Incertidumbre y, sin embargo, los teóricos de cuerdas aún siguen buscando algo de lo que carece la teoría de cuerdas que, precisamente es: el tipo de principio nuclear que se encontraron en aquellas otras teorías y le dan razón de ser y la sólida base que toda teo´ria necesita para ser.

Esa nueva teorías quiere explicarlo todo. Nada puede estar fuera de ella: El Universo que es, todo lo que existe, ahí estará

Un universo de Supercuerdas. El sueño de Einstein comienza a tomar realidad, a través de un nuevo paradigma de la ciencia que viene a romper con la toda la visión del mundo y del universo que teníamos hasta ahora, más allá de lo imaginable. Si la Teoría de cuerdas, finalmente resultase ser cierta, ese descubrimiento llevaría al mundo y a la conciencia humana hasta una nueva dimensión de su propia conciencia.

http://2.bp.blogspot.com/_PpqvrFDZLfg/TDToXt5ZEuI/AAAAAAAADb0/MlHY5j2G6RY/s1600/MUJER+CON+FIGURA+INFINITO.jpg

Una de las primeras controversias sobre la teoría de supercuerdas que salta al tapete en las discusiones entre físicos teóricos es aquella en las que se subrayan diferencias como el caso del modelo estándar (que explica la interacción de fuerzas y partículas) y sobre el cual la física ha sido capaz de extraer predicciones contrastables en laboratorios, a diferencia en el marco de las supercuerdas que ello no ha sido posible, ya que no se han logrado hacer predicciones verificables con experimentos. Es decir, que todos los esfuerzos que se han gastado en su elaboración pueden acabar siendo un excelente ejercicio de especulación matemática. Claro que, de tener éxito, no sería esta la primera vez que un descubrimiento puramente teórico en la ciencia de la física acaba dando en el clavo y profundizando espectacularmente en el conocimiento de la naturaleza.

Según la Teoría de Supercuerdas, todo el universo manifestado, todo lo que percibimos como materia, desde las partículas subatómicas, hasta las galaxias, estaría soportado por una gran Matriz Subyacente, o Supercuerdas, que actuaría como una “gran sinfonía musical” detrás de todo lo que contemplamos como materia.

Ciertamente, si en realidad existen, están tan lejos de nostros que, el viaje para “verlas” es demasiado costoso…, al menos de momento.

Hemos tratado, sin conseguirlo, de llegar hasta ellas, hasta las cuerdas vibrantes que residen en lo más profundo, más allá de los propios Quarks, y, hemos podido constatar que, nuestros ingenios y aceleradores, no son suficientes, no disponen la energía requerida para llegar hasta las cuerdas que serían la matriz del mundo. Allí, en su región de once dimensiones, todo es comprensión y armonía, todo cabe e incluso, la díscola Gravedad se junta apasiblemente con la Mecánica cuántica. Por eso algunos la llaman la Teoría del Todo, allí podemos encontrar todas las respuestas.

La supercuerda una poderosa estructura que no podemos localizar. Dicen que para poder hacerlo necesitamos de la energía de Planck, es decir, 1019 GeV, y, tal fuente de energía no existe aquí en nuestro mundo. Bueno, al menos no podemos disponer de ella, nuestras tecnologías no llegan a tener esa capacidad.

Resultado de imagen de Sostenerunagalaxia la mano

De la misma manera que no podemos sostener una galaxia en la mano, su inmensidad nos lo impide. Tampoco tenemos la capacidad de poder sujetar una “cuerda”, su infinitesimal tamaño, tampoco nos lo permite. Y, lo curioso del caso es que, de exisitr las cuerdas, esas enormes galaxias que podemos captar en el espacio interestelar, todas ellas, sin excepción, estarían hechas de cuerdas vibrantes que, al parecer, son los objetos que estarían más allá de los Quarks.

Uno de los problemas ligados a la teoría de supercuerdas y que más resalta es el que tiene que ver con la propia pequeñez de las cuerdas. Mientras más pequeño es algo, más difícil es de ver. Y estas supercuerdas son tan superpequeñas que no se observan esperanzas para hacer experimentos que nos puedan acercar a sus dimensiones. Sin experimentos no se pueden hacer comprobaciones de sus predicciones ni saber si son correctas o no. Exagerado, puede ser. Pero cada día se hace más insostenible su consideración sosteniéndola, tan sólo, con los fundamentos de un muy bien elaborado pensamiento experimental con el soporte de bellas ecuaciones matemáticas, o con algunas verificaciones experimentales que, para este caso, vienen a ser como indirectas, llámese Helio-3 y su superfluidez, etc…

               Branas, universos paralelos…¡cuerdas!

En esta teoría, hay problemas que se encuentran dentro de los enunciados de sus propios conceptos. Para desarrollar su formulación es necesario apelar a lo menos a diez dimensiones (en algunos casos, se han llegado hasta un número de veintiséis): espacio (3), tiempo (1) y a ellas se le agregan seis más como mínimo, que parecen estar enroscadas e invisibles para nosotros. Por qué aparecieron estas dimensiones adicionales a las cuatro que nos son familiares y por qué se atrofiaron en algún momento. Si en verdad existen, no lo sabemos. También, la teoría tiene decenas de miles de alternativas aparentemente posibles que no sabemos si son reales, si corresponden a miles de posibles universos distintos, o si sólo hay una realmente posible. En algunas de sus versiones se predice la existencia de 496 fuerzones, partículas como el fotón, que transmiten la fuerza entre 16 diferentes tipos de carga como la carga eléctrica. Afirmaciones como éstas, no comprobables por la imposibilidad de hacer experimentos, son las que plagan a la teoría de una multiplicidad de cuerdas. Ahora, las explicaciones más frecuentes que se dan para lo anterior, es de que los problemas surgen porque esta teoría se adelantó a su tiempo y no existe aún la estructura matemática consistente para formularla adecuadamente.

      Incluso el salto cuántico es más fácil de verificar

Las conclusiones a las que periódicamente llegan los adeptos a la TSC, se centran en el entusiasmo de proclamar que ésta otorga la única forma, hasta ahora, de poder contar en un futuro con una Teoría Cuántica consistente con la Gravedad. Como prácticamente todas las teorías de cuerdas, la TSC’s comienza con el concepto de dimensiones adicionales de Kaluza-Klein y comporta una enorme complejidad muy difícil de comprender para los que no están directamente involucrados en sus modelos. Con ella se aspira a resolver el más enigmático problema matemático que comporta la Física teórica en los finales del siglo veinte: la incompatibilidad matemática de los pilares fundamentales de la Mecánica Cuántica con la Teoría de la Relatividad General.

En cosmología, las partículas exóticas no sólo hay que proponerlas, es necesario también comprobar su existencia en experimentos de laboratorio y/o en observaciones.

La carencia de esa estructura matemática ha sido uno de los inconvenientes más serios que enfrentaba, y todavía lo es, la TSC y ello radica en las dificultades que presenta para hacer cálculos detallados. Sin embargo, en los últimos años, en alguna medida, especialmente después de la reunión de físicos teóricos cuerdistas realizada en la ciudad de Madrid, España, en el año 1995, ello se ha venido soslayando, ya que a través de el desarrollo de un conjunto de nuevas herramientas se ha logrado superar, en parte, las limitaciones matemáticas de la teoría.

Esas herramientas son las dualidades que vienen a ser como una especie, si se puede llamar así, de diccionario unificador que permite a los físicos «traducir» sus cálculos realizados en marcos teóricos asequibles a los modelos conocidos a marcos en que lo convencional no funciona. Es como si sabiendo calcular la electricidad y no el magnetismo; al descubrir que ambas fuerzas son dos caras de la misma moneda, se traducen las cantidades de una a otra, haciendo abordable el problema.

Sabemos de átomos y de Galaxias pero, ¿que es una cuerda?

Hasta ahora, ninguna propuesta de la teoría de supercuerdas ha podido ser contrastada con experiencias experimentales y, mucho menos, observacionales. Sus logros sólo han podido ser chequeados en los correspondientes archivos computacionales y las pizarras de las oficinas de los matemáticos. Ellos han demostrado una serie de conjeturas matemáticas que surgen de manera natural de la TSC. Ahora, ello también a implicado que se haya venido generando una coincidencia o relación entre distintas estructuras matemáticas, de las que ni se sospechaba su existencia y han servido de motor e inspiración para algunos matemáticos.

La interpretación de los cálculos que se realizan describe un objeto tan diminuto, como las supercuerdas, que querer imaginarlas es como querer encontrar un grano de arroz perdido en algún lugar del Universo; es imposible. Su calculada pequeñez las hace inimaginable para la gran mayoría de los mortales humanos. Por hacernos una idea: la Tierra es 10-20 más pequeña que el universo y el núcleo atómico es 10-20 veces más pequeño que la Tierra. Pues bien, una supercuerda es 10-20 veces más pequeña que el núcleo atómico.

Es indudable que se trata de una teorización matemática que expuesta al común de la gente se hace casi «indigerible» o poco realista. A los especialistas en física teórica les pasa lo mismo. La física que hoy se maneja se hace cada vez más distante de la generalidad de los seres humanos, ya que no es tan sencilla como la de antaño; no sólo por que la descripción matemática de los fenómenos naturales se haya vuelto más complicada, sino porque resulta cada vez más difícil de imaginar. Esto se debe a que cada vez nos alejamos más y más de los objetos de nuestra experiencia cotidiana. Adentrándonos en el “universo” de la física cuántica, llegamos a ser conscientes de que, nuestro mundo, es una realidad propia de nuestras mentes, ya que, el “mundo real” la Naturaleza, es otra cosa bien distinta y, precisamente por eso, nos cuesta tanto comprender.

Ese “universo” de lo infinitamente pequeño, vibrante y luminoso, ¿dónde estará?

Con la teoría de supercuerdas se ha llegado a un punto de abstracción que cuando nos zambullimos en su estudio y cálculos se llega a un momento en que la cabeza parece estallar, no por asombro, sino que por las incertidumbres que llega a concitar. Se parte con esperanzas y en el camino afloran –no voy a decir frustraciones– sino que una multiplicidad de inquietudes, ya que se va generando la sensación de que los resultados de los esfuerzos que se están realizando, nunca podrán ser comprobados.

Es cierto que en los procesos de hacer ciencia no se ha establecido como requisito que las teorías que se elaboran deban ser comprobadas en un pari-paso, de ello los científicos, por formación, están muy consciente. Pero la mera especulación intelectual, limitada para ser experimentada, en el tiempo tampoco es muy útil, ya que dejaría de ser considerada inserta dentro de los rangos de las exigencias consuetudinarias de lo que llamamos hacer ciencia.

Es aceptable considerar que aún la teoría de supercuerdas no ha alcanzado un desarrollo suficiente en el cual sus pronósticos puedan ser contrastados con experimentaciones en los actuales aceleradores de partículas. Pienso que aún se encuentra lejos de arrimarse a una maduración matemática que permita precisar cuales son sus predicciones. Los cálculos son bellos, pero sumamente difíciles.

 

Y, a todo esto, las ecuaciones de Eisntein de la Relatividad General, subyacen en lo más profundo de la Teoría de Cuerdas, ya que, cuando se están desarrollando sus ecuaciones, allí aparecen, sin que nadie las llame, las ecuaciones de campo de la relatividad general que, es un subproducto de aquella otra teoría más avanzada. Tal secuencia, nos lleva a pensar que, la Teoría de supercuerdas es cierta, ya que, en caso contrario, ¿Por qué estaría allí Einstein?

También en la TSC, se encuentran involucradas las fuerzas fuertes de una manera tal que, antes de comenzar, comúnmente ya se encuentra limitadas las actuales capacidades humanas para calcular. Hay importantes pasos a realizar para poder aprender como llegar a inferir cálculos predictibles y poder ser testeados experimentalmente. Está claro que esta teoría se adelantó a su tiempo.

Es posible que para algunos sea inadmisible que se encuentre en el tapete de las discusiones de física teórica una teoría que todavía no precisa sus predicciones con una contractación experimental. Sin embargo, por las trayectorias que ya han experimentado las teorías de cuerdas, no reúnen aún los méritos como para ser consideradas científicas, o meros ejercicios de matemática abstracta. Por ahora, se puede señalar que parece ser que los físicos cuerdistas han ido más allá de los umbrales matemáticos aconsejables, con saltos de pasos que algún día deberán dar.

Teoria-de-supercuerdas

En el mundo de la física existen detractores de las supercuerdas de la talla y del genio como la de Richard Feymman, quien acerca del trabajo de los teóricos de las supercuerdas, afirmaba en una entrevista poco antes de morir, en 1988, «No me gusta que no calculen nada, no me gusta que no comprueben sus ideas, no me gusta que, para cada cosa que está en desacuerdo con un experimento, cocinen una explicación, un arreglo para decir bueno, todavía podría ser verdad.»

La teoría de supercuerdas es relativamente joven aún y durante su existencia ha mostrado una alta propensión a ser enfermiza. Surgen problemas, y se la deja de lado; se solucionan los problemas y una avalancha de trabajos resucitan la esperanza. En sus cerca de treinta años de vida, este vaivén ha ocurrido más de una vez.

Todo tiene su tiempo, y, Feymman, era ya un físico de bastante edad y de que ello a lo mejor era la causa de su resistencia a las ideas nuevas como algunos de sus maestros se resistían ante los profundos cambios conceptuales registrados en la física cuando él era joven. Las supercuerdas, dicen sus defensores, integrarían la física actual como la teoría de la relatividad de Einstein integró la gravitación de Newton explicando que sólo era un caso (el de nuestra escala del universo) de leyes más profundas y generales.

Nuevas geometrías, como en aquel tiempo en que llegó el llamado corte de Riemann, mediante el cual, se podia acceder a dos regiones distantes del espacio, nos han traído estas nuevas teorías que cambian el concepto actual que, del Universo tenemos. El tensor métrico de Riemann permitió a Einstein formular su famosa teoría de la gravedad. Siempre ha sido así, las nuevas ideas nos trajeron las nuevas realidades de la Naturaleza y, si es así (que lo es), ¿por qué la teoría de cuerdas sería diferente?

Los matemáticos encuentran interesante esta teoría porque las dimensiones extra pueden tener geometrías muy complicadas y hay toda una rama matemática dedicada a explicar sus propiedades.

Los físicos-matemáticos piensan que, por ahora, es más lógico estudiar y observar el desarrollo de estas ideas teóricas cuerdistas como una consecuencia estética y grata en la consecución de una simple y definitiva teoría unificadora que reúna todos los requisitos necesarios para que pueda ser contrastada con pruebas experimentales.

Hemos sido capaces de inventar aparatos para medir las ondas gravitatorias provenientes de los agujeros negros, y, como no podemos parar en el querer descubrir y saber lo que el Universo es, queremos seguir avanzando y tratamos de conseguir una teoría de la Gravedad Cuántica que, según todos los indicios va implícita en esta teoría de supercuerdas de más dimensiones.

No sé si se ha llegado a un límite en que la abstracción matemática sea un medio coadyuvante o una pesadilla para los físicos. Se quiere simplificar las cosas y, al final, se hacen más incomprensibles y complejas. Ya convertimos la gravedad, la fuerza electromagnética y las fuerzas nuclear fuerte y débil en campos. La gravedad, que no sabemos qué cosa es, pero que hace caer una piedra, ha pasado a ser algo mucho más abstracto que lo propuesto por Newton: un campo, una modificación de la estructura del espacio que nos rodea. Como nos movemos dentro de ese espacio, su estructura nos influye y nos hace actuar de cierta manera. Por eso caen la piedras, porque seguimos la forma del espacio, su geometría que viene dada por la materia que contiene.

Ya para el común de los humano ese, el más simple nivel de abstracción, les parece que se trata de algo que nunca podrán llegar a comprender. Pero ese sentimiento empeora cuando se pasa al siguiente nivel. Se trata de aquel que es considerado como los grandes almacenes de la física teórica, el objeto de estudio son los grupos de simetría mediante los cuales se relacionan esos campos y las partículas.

Grupos de simetría que relacionan campos y partículas donde las fuerzas están presentes.

El no va más del nivel de abstracción, se encuentra el mundo donde se creee que vive el constituyente fundamental de la materia: las supercuerdas. Estos objetos definen a través de su comportamiento esos estados que provocan la aparición de los grupo de simetría que a su vez relacionan la fuerza con la materia, y que al mismo tiempo explican la interacción de las partículas subatómicas y el comportamiento de los átomos.

Y, a todo esto, la Topología tiene mucho que decir en el mundo de la cuerda, toda vez que, en esta rama de las matemáticas pueden estar las respuestas a tan extraño objeto vibrante que nos dicen que podría ser lo más pequeño y al mismo tiempo lo más esencial que en el universo existe para su conformación

Al final, se trata de explicar todo y, a su vez, complicar todo. Por ello, decir que una supercuerda es un diminuto objeto vibrante que cohabita en un espacio con más dimensiones de simetría peculiar que el conocido tetradimensional es, prácticamente, no decir nada.

Hasta principios del año 2001, la premisa que se habían colocado los físicos de contar ya con una muy simple y gran teoría unificadora de las cuatro fuerzas, no se ha cumplido. Es posible que dentro del primer cuarto del siglo el intento culmine con un final feliz. Pero también es probable que no encontremos esa anhelada teoría, sino sólo una multiplicidad de teorías, cada vez más bellas y mejores.

Por ahora, lo cierto del caso es que, a pesar de algunas luces y pequeños éxitos, lo único firme y coherente es que el mundo se puede armar a partir de sesenta objetos puntuales cuyo origen desconocemos. Si se alcanzara algún día el objetivo de obtener todas las partículas y sus propiedades a partir de principios de simetría o de alguna cuerda única, por ejemplo, habríamos encontrado un nuevo nivel donde se concentra lo más elemental. Ya no serían los átomos, ni tampoco las partículas puntuales mismas, sino las simetrías o la cuerda. ¿Habríamos terminado? Es más que probable que no, pues nos preguntaríamos entonces de dónde salen esas simetrías o esa cuerda, y con alta probabilidad su estudio en detalle nos mostraría que en realidad hay más complejidad que la que aparecía a simple vista. La historia (¡la sabia historia!) muestra que este es un cuento sin final, y pareciera que cada vez que simplificamos las cosas, nuevos niveles de complejidad aparecen como fantasmas que están siempre acechándonos a la vuelta de cada esquina.

Parece que siempre estaremos entrando por una puerta misteriosa que nos lleva a un lugar oscuro en el que nunca sabemos lo que podemos encontrar. Es la Incertidumbre de la mecánica cuántica que, no se limita a estar allí, en ese mini-universo de lo pequeño. La Incertidumbre está presente en todo el Universo, y, nosotros, curiosos y deseosos de saber, no dudamos de adentrarnos en esos lugares desconocidos en busca de esas respuestas anheladas.

Así, podemos leer en cualquier diccionario que si preguntamos por la supercuerda, comienza diciéndonos: “La teoría de supercuerdas es un esquema teórico para explicar todas las partículas y fuerzas fundamentales de la naturaleza en una sola teoría, que modela las partículas y campos físicos como vibraciones de delgadas cuerdas supersimétricas, las cuales se mueven en un espacio-tiempo de más de 4 dimensiones.”

Y, a todo esto, de vez en cuando podemos encontrarnos con noticias llamativas como esta:

“Científicos norteamericanos detectan la existencia de dimensiones adicionales. Las colisiones de neutrinos de alta energía con otras partículas corroboran uno de los postulados de la Teoría de Supercuerdas.

 

Científicos norteamericanos han detectado por primera vez indicios de la existencia de otras dimensiones más allá de las tres conocidas. Utilizando datos del telescopio Amanda, enterrado en el Polo Sur, han podido observar una decena de colisiones de neutrinos de alta energía con otras partículas elementales, obteniendo así la evidencia de las dimensiones adicionales sugerida por la Teoría de Supercuerdas. El descubrimiento no es concluyente y encontrará nuevas oportunidades cuando se inicie en 2009 el funcionamiento de otro telescopio 30 veces más potente, el Ice Cube, en el que participan diversas universidades europeas.”

 

¡Vivir para ver! Claro que, nosotros,  que vivímos en un mundo de tres dimensiones espaciales y una temporal, lo único que podemos hacer es tener paciencia y espewrar a que, esas lumbreras de la física, nos lleven de la mano hacia ese mundo mágico de las cuerdas que, según parece, nos mostrará un universo diferente, más completo y más real que el que ahora podemos observar.

emilio silvera

 

  1. 1
    Emilio Silvera
    el 3 de abril del 2017 a las 6:59

    Hay que ir más allá de lo establecido para poder entrar en una nueva región del conocimiento. 

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting