viernes, 14 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Ciencia no duerme

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia ABC

Hallan, por vez primera, la forma de teletransportar un organismo vivo. Científicos proponen cómo pasar la memoria de un microorganismo a otro en un experimento que parece sacado de Star Trek

La investigación puede ser un espectacuar primer avance en el teletransporte de seres vivos completos

La investigación puede ser un espectacuar primer avance en el teletransporte de seres vivos completos – Archivo

JOSÉ MANUEL NIEVES – Madrid

 

 

Nunca hasta ahora habíamos estado tan cerca de Star Trek y el impresionante teletransportador que permitía a la tripulación de la nave Enterprise desmaterializarse en un punto y reaparecer instantaneamente en otro. Un equipo mixto de investigadores de las Universidades de Purdue, en Estados Unidos, y Tsinghua, en China, ha elaborado, en efecto, el primer esquema realizado hasta ahora para teletransportar el estado cuántico interno (la memoria) de un microorganismo vivo a otro. La investigación constituye un espectacular avance en el camino, hoy propio de la ciencia ficción, del teletransporte de seres vivientes completos.

El esquema propuesto por Tongcan Li y Zhang-qi Yin prevé el uso de osciladores electromecánicos y circuitos superconductores para lograr su ambicioso objetivo. En un artículo publicado en Science Bulletin, los investigadores proponen también un esquema para crear un estado de “Gato de Schrodinger” en el que un microorganismo puede estar en dos lugares al mismo tiempo.

En 1935, Erwin Schroedinger propuso un experimento imaginario que consistía en encerrar un gato vivo dentro de una caja en la que se había introducido también una probeta con gas venenoso y un dispositivo, de una sola partícula radiactiva y que tenía una probabilidad del 50% de desintegrarse en un tiempo dado. Al desintegrarse la partícula, el veneno quedaría liberado y el gato moriría sin remedio. Una vez pasado el tiempo establecido, tendríamos un 50% de probabilidades de que la partícula se haya desintegrado y encontrar que el gato está muerto, y otro 50% de que no haya sido así y el gato siga vivo. En el idioma de la Física Cuántica, estaríamos ante una superposición de dos estados posibles (vivo o muerto) que no se concretará hasta el instante en que se abra la caja. Hasta ese momento, en efecto, podríamos decir sin miedo a equivocarnos que el gato está vivo y muerto al mismo tiempo. Sólo abriendo la caja modificaremos el estado de Superposición y haremos que se concrete una de las dos posibilidades.

Realidades «imposibles»

La idea de Schroedinger sirvió para revelar por primera vez al gran público las profundas implicaciones de la Mecánica Cuántica, en cuyo reino la superposición de estados de las partículas está a la orden del día y es pura rutina para los investigadores, que han tenido que acostumbrarse a realidades “imposibles”, como electrones que están en varios lugares a la vez, partículas que se comunican de forma instantánea sin importar la distancia o que, incluso, son capaces de viajar en el tiempo. Desde el hipotético experimento de Schroedinger, los físicos han dedicado décadas de estudio y esfuerzo para tratar de averiguar si las extrañas leyes que rigen en el universo cuántico pueden trasladarse también al mundo macroscópico. Y es que, después de todo, tanto nosotros como todo lo que nos rodea está hecho de partículas.

Por supuesto, se han hecho ya importantes avances. Y en las últimas dos décadas diversos grupos de investigadores han conseguido cada vez mejores resultados a la hora de “teletransportar” estados cuánticos, primero de partículas individuales (un único fotón, en 1997), después de átomos completos, y últimamente de conjuntos cada vez más numerosos de átomos. Recientemente, por ejemplo, un equipo de la Universidad de Colorado logró llevar al estado cuántico toda una membrada de aluminio de 15 micrómetros de diámetro (un micrómetro es la milésima parte de un milímetro), y “teletransportar” sus características y su movimiento a una serie de fotones aislados.

Pero nadie ha conseguido hacer lo mismo con un organismo vivo. Y todos los experimentos llevados a cabo hasta ahora están aún muy lejos de conseguir teletransportar un organismo, o su estado cuántico.

Bacteria cuántica

 

En su estudio, Tongcang Li y Zhang-qi Yin proponen colocar una bacteria sobre un oscilador electromecánico integrado en un circuito superconductor para conseguir un estado cuántico de superposición en el organismo y teletransportar después ese estado. En principio, el microorganismo es mucho más pequeño que la membrana del oscilador y no debería, por lo tanto, afectar a su funcionamiento. La bacteria, junto a la membrana, serían llevados a un estado cuántico. Después de lo cual, ese estado se podría teletransportar hasta otro organismo distante por medio de circuitos superconductores de microondas. Dado que los estados internos del organismo contienen información, la propuesta de los investigadores supone, en realidad, un esquema para teletransportar esa información, o memoria, de un organismo vivo a otro.

Este es el esquema propuesto por Tongcan Li y Zhang-qi Yin para teletransportar un organismo

 

Este es el esquema propuesto por Tongcan Li y Zhang-qi Yin para teletransportar un organismo- Science China Press

 

La configuración propuesta por Tongcang Li y Zhang-qi Yin constituye también un poderoso microscopio, ya que no solo es capaz de detectar la existencia del spin de electrones individuales (que puede asociarse a determinados defectos genéticos), sino que puede también manipular y detectar sus estados cuánticos, permitiendo su uso como “memorias cuánticas”.

En palabras de Li, “proponemos un método sencillo para poner un microorganismo en dos lugares al mismo tiempo, y facilitamos un esquema para teletransportar el estado cuántico de un organismo completo. Espero que nuestro trabajo inspire a otros investigadores para que piensen seriamente sobre la posibilidad de la teleportación cuántica de microorganismos y en sus posibilidades futuras. Nuestro trabajo también proporciona pistas para futuros estudios sobre los efectos de las reacciones bioquímicas en los estados de superposición cuántica de los organismos vivientes”.

En Astronomía, cada día afinamos más

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Foto con mayor resolución de la historia de la Astronomía. Obtenida con una red de radiotelescopios, muestra una galaxia a 900 millones de años luz que solo veríamos si nuestros ojos tuvieran ocho veces el tamaño de la Tierra

Representación del núcleo activo de una galaxia

Representación del núcleo activo de una galaxia – Wolfgang Steffen

J. DE J.Madrid – 26/01/2016 a las 12:10:03h. – Act. a las 12:17:49h.Guardado en: Ciencia

 

 

Imagen en ondas de radio de BL Lacertae. La zona más brillante (azul y blanco) corresponde al agujero negro. El color verde es el chorro de partículas que emana
Imagen en ondas de radio de BL Lacertae. La zona más brillante (azul y blanco) corresponde al agujero negro. El color verde es el chorro de partículas que emana- IAA

Esta imagen (izquierda), que corresponde a BL Lacertae, el núcleo activo de una galaxia situada a 900 millones de años luz con un agujero negro 200 millones de veces la masa del Sol, es la de mayor resolución de la historia de la astronomía. Ha sido captada por una colaboración internacional entre 15 antenas terrestres y la antena de la misión espacial RadioAstron (de la Agencia Espacial Rusa), en órbita alrededor de la Tierra. Que nadie espere una foto al uso, no se ha obtenido con un telescopio óptico, sino gracias a la técnica conocida como interferometría de muy larga base (VLBI por su acrónimo en inglés), que permite que múltiples radiotelescopios separados geográficamente trabajen al unísono, funcionando como un único instrumento gigantesco. Si quisiéramos verla con nuestros propios ojos, estos tendrían que ser ocho veces más grandes que la Tierra. Imposible. El trabajo, liderado por investigadores del CSIC en el Instituto de Astrofísica de Andalucía, aporta nuevas claves para el estudio de las galaxias activas.

«Al combinar por primera vez todas estas antenas hemos logrado la resolución que tendría una antena con un tamaño equivalente a ocho veces el diámetro terrestre, unos veinte microsegundos de arco», explica José Luis Gómez, investigador del CSIC en el Instituto de Astrofísica de Andalucía, que encabeza el estudio.

Visto desde la Tierra, esos 20 microsegundos de arco corresponderían al tamaño de una moneda de dos euros en la superficie de la Luna, una resolución que ha permitido atisbar «con una precisión inigualable» las regiones centrales de BL Lacertae.

 

 

Los núcleos de galaxias activas son los objetos más energéticos del Universo y pueden emitir de forma continua más de 100 veces la energía liberada por todas las estrellas de una galaxia como la nuestra. Estas galaxias contienen un agujero negro supermasivo de hasta miles de millones de masas solares rodeado de un disco de gas. Perpendiculares al disco hay unos chorros de partículas subatómicas que viajan a velocidades cercanas a la de la luz.

«Parece claro que los jets se originan como consecuencia de la caída de material del disco al agujero negro central, pero aún desconocemos en gran medida cómo se forma el haz de partículas y cómo se acelera», señala Gómez. La hipótesis predominante sostiene que, debido a la rotación del agujero negro y el disco, las líneas de campo magnético se «enrollan» y forman una estructura helicoidal que confina y acelera las partículas que forman los jets. El estudio de BL Lacertae ha permitido obtener la primera evidencia directa de la existencia de un campo magnético helicoidal a gran escala en un núcleo de una galaxia activa, lo que parece confirmar ese esc

 

Fuente: ABC Ciencia