martes, 11 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre buscaremos nuevas teorías de la Física del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones.”

 

En la serie rumores del saber del mundo que hemos ido dejando aquí, de manera esporádica, algunos retazos de ese saber que por el mundo, a lo largo y a lo ancho del discurrir del tiempo, han dejado los pueblos y civilizaciones que nos precedieron. Ellos sentaron las bases de lo que hoy somos. Hemos hablado aquí de los sumerios, egipcios, hindúes, chinos y de otras civilizaciones también misteriosas. Hemos dedicado algún tiempo al surgir de la escritura y de los números, sin dejar de lado a los grandes filósofos naturales que estudiaban la Naturaleza para tratar de desvelar sus secretos.

 

 

 

Tiempos de Oráculos y Deidades

 

Sin embargo, en Alejandría, las matemáticas o, al menos, los números,  tuvieron otro aspecto muy importante, y también muy diferente. Se trata de los denominados “misterios órficos” y su énfasis místico.

 

 

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.

 

 

Photograph taken inside the ISOLDE experimental hall at CERN

 

 

La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.

 

 

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

 

Vista hemisférica de Venus. (Cortesía de NASA)

 

El segundo planeta a partir  del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.

La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.

 

 

 

 

 

Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar

 

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariaciado por nuestras mentes que se resisten a estar sólas en tan vasto Universo que, poseyendo miles de millones de mundos, también debe estar abarrotado de una diversidad de formas de vida que, al igual que ocurre aquí en la Tierra, pudieran (algunas de ellas) estar haciéndose la misma pregunta: ¿Estaremos sólos en tan inmenso Universo.

 

Siempre buscaremos nuevas teorías de la Física del Universo

Hace algún tiempo que los medios publicaron la noticias:

“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”

 

 

 

Imagen de Archivo donde Einstein escribe una ecuación sobre la densidad de la Vía Láctea en el Instituto Carnegie en Pasadena (California)

“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einstein nunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”

Si hablamos de nuestra Galaxia, la Vía Láctea, lo havcemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlñsares, los agujeros negros o los manétares, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente “insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.

   Tenemos el Universo dentro de nuestras mentes

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

myst4

Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que tesolver. ¡Menos mal!

La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materia y los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

 

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones,  aparece el esquivo gravitón implicándo con ello que la teoría contiene implicitamente una teoría cuántica de la Gravedad.

                                                     Ahora, en la nueva etapa del LHC, tratarán de buscar partículas supersimétricas

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.

          Muchos sueñan con encontrar esa Teoría del Todo

Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.

GEO 600

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

 

Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.

         La relatividad general nos dijo cómo era la geometría del Universo

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

 

                   Pero… ¿somos en verdad tan insignificantes?

Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.

Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.

Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.

En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada,  (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación (Iv = 2hc-2v3/[exp(hv/KT)-1]), con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.

Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usado principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad.  Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimiensionalidad, está presente en la constante de estructura fina (2pe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega a (alfa).

Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang. El tiempo de Planck por ejemplo, expresado por , tiene un valor del orden de 10-43 segundos, o lo que es lo mismo, el tiempo que pasó desde la explosión hasta el tiempo de Planck fue de: 0,000.000.000.000.000.000.000.000.000.000.000.000.000.001 de 1 segundo. En la fórmula, G es la constante universal de Newton, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

Es una unidad de tiempo infinitesimal, como lo es el límite de Planck que se refiere al espacio recorrido por un fotón (que viaja a la velocidad de la luz) durante una fracción de tiempo de ínfima duración y que es de 0,000.000.000.000.000.000.000.000.000.000.001 de cm.

Algunas veces insisto en explicar sobre las unidades de Planck para que el lector llegue a comprender, que no siempre todos los números y cantidades han sido inventos del hombre y, en esas unidades, sólo podemos ver la mano de la Naturaleza que nos dice, cómo son las cosas.

Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…

Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratán de nbuscar partículas supersimñétricas y el origen de la “materia oscurta”.

Desgraciadamente, aún no se han fabricado aceleradores tan potentes como para poder detectar la partícula de Higgs, esa partícula responsable de proporcionar masa a todas las demás partículas. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.

Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienem atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.

emilio silvera

¡La Luz! ¡La Mecánica Cuántica! Nuestro Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

El universo primitivo, en una espectacular imagen en 3D


                      Cuando en nuestro Uni9verso quedaron libres los fotones… ¡Se hizo la Luz!

En alguna parte he podido leer que para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos infinitesimales objetos: el electrón y el fotón. Todo el argumento de la QED [electrodinámica cuántica] gira en torno a un proceso fundamental: la emisión de un único fotón por un único electrón.

Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica:

 Un equipo de científicos lograron filmar por primera vez un electrón en movimiento gracias a una tecnología reciente que genera pulsos cortos e intensos de luz láser.

Toda la luz visible que vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotones que han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.

Los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotones entre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido al átomo. Sin estos fotones saltarines, el átomo se desharía y toda la materia dejaría de existir.

Foto

Se ha conseguido observar por primera vez la desintegración radiativa del neutrón.
Dentro de los núcleos de los átomos hay neutrones y protones. En condiciones normales y mientras que están ahí los neutrones son estables. Sin embargo los neutrones libres son inestables, tienen una vida media de unos 10 minutos, y se desintegran produciendo un protón un electrón y un antineutrino. Pero los físicos nucleares teóricos predijeron que una de cada mil veces los neutrones decaerían en todas esas partículas y además en un fotón.

Foto Típicamente el neutrón decae en un protón, un antineutrino y un electrón. Muy raramente lo hace radiativamente emitiendo además un fotón. Diagrama: Zina Deretsky, National Science Foundation.

Mientras que un electrón pertenece al grupo de partículas llamadas fermiones, los fotones pertenecen a la familia de los bosones. Intentemos comprender esta película que es la intermediaria de todas las formas de radiación electromagnética.

…protagonizada por bosones

Los fermiones hacen posible la materia “al estilo tradicional”, mientras que los bosones son elementos muy raros desde la forma de pensar a que estamos acostumbrados el común de los mortales. Para no complicarnos, la tabla periódica de elementos existe porque los fermiones no pueden “ser iguales”: no pueden solaparse uno sobre otro y se repelen si los obligamos. Es lo que damos por hecho cuando hablamos de materia, que cada pedazo de ésta ocupa su lugar y tiene sus propias cualidades.

Toda la materia que conocemos, la que forma las estrellas y los mundos y las galaxias, esa que llamamos luminosa o bariónica, la que emite radiación, está hecha de Leptones y Quarks, partículas que son Fermiones, y, esas otras partículas intermediarias de las cuatro fuerzas fundamentales, son las que pertenecen a la familia de los Bosones, tales como el Fotón, las W+, W- y Zº, los Gluones y el Gravitón.

Los bosones carecen de este sentido de la individualidad que tienen los Fermiones, digamos que poseen “alma grupal” y, en su estado más puro, todos forman una misma “superpartícula”.

Para entenderlo mejor, conviene recordar que las partículas no son bolitas como nos siguen enseñando en la escuela, sino que más allá de esta imagen existen como ondas o, al menos, sus funciones se equiparan al comportamiento de una onda.

En la década de 1920, Albert Einstein y el hindú Satyendra Nath Bose pronosticaron un quinto estado de la materia: el condensado de Bose-Einstein (BEC), el cual fue conseguido en laboratorio en 1995, algo que le valió el premio Nobel de 2001 a los científicos que lo lograron.

Un condensado de Bose-Einstein es un estado de la materia que se da en ciertos materiales a muy baja temperatura. En este estado de la materia, todos los átomos que lo constituyen se encuentran en el nivel de mínima energía, denominado estado fundamental. Descubierto en 1924 para los fotones por el indio Bose y por Einstein, no fue obtenido en laboratorio hasta 1995 por Cornell y Wieman al enfriar átomos a pocos nanokelvin por encima del cero absoluto. El condensado de Bose-Einstein fue la “molécula del año” según la revista Science en 1995 ya que se trata de un sistema cuántico macroscópico similar a una molécula pero con millones de átomos. Un átomo en un gas se mueve a una velocidad de unos unos 1000 km/h (unos 300 m/s) pero un condensado de Bose-Einstein se mueve a sólo 1 cm/s. Un condensado de Bose-Einstein es respecto a la materia ordinaria, como la luz de un láser es respecto a la de una bombilla. Gracias a ello se puede fabricar un láser de átomos, que en lugar de producir un haz de luz como un láser óptico, produce un haz (coherente) de átomos. En 1997 Ketterle fabricó el primer láser de átomos que producía un haz de átomos de sodio.

Cuando ciertas formas de materia [bosones] se enfrían hasta casi el cero absoluto, sus átomos se ponen en el estado de energía más baja, de modo que todos sus átomos vibran al unísono y se hacen coherentes. Las funciones de onda de todos los átomos se solapan, de manera que, en cierto sentido, un BEC [condensado de Bose-Einstein] es como un “superátomo” gigante en donde todos los átomos individuales vibran al unísono.

Al enfriar los átomos, su velocidad disminuye hasta que las longitudes de onda de cada uno de ellos se vuelven casi planas, superponiéndose unas a otras para formar una única onda que los describe a todos.

Así que un BEC se forma cuando los átomos en un gas sufren la transición de comportarse como “bolas de billar” al estilo de la física clásica, a comportarse como una onda gigante de materia al estilo de mecánica cuántica:

Si creamos dos BECs y los colocamos juntos, no se mezclan como gases ordinarios ni rebotan como lo harían dos sólidos. Donde los dos BECs se superponen, ellos “interfieren” como las ondas: delgadas capas paralelas de materia son separadas por capas delgadas de espacio vacío. El patrón se forma porque las dos ondas se suman donde sus crestas coinciden, y se cancelan donde una cresta se encuentra con un valle — a lo cual llamamos interferencia “constructiva” y “destructiva” respectivamente. El efecto es similar al de dos ondas que se superponen cuando dos piedras son lanzadas a un lago.


…ambientada en el vacío…

Y ahora, retrocedamos un poco más en este asunto del misterio que nos ocupa. Gracias a la tecnología láser, la física ha podido comprobar el extremo poder de la luz. Los láseres pueden hacer que las partículas virtuales se vuelvan reales. Pero, primero, aclaremos conceptos…

Las “Partículas virtuales”son partículas fundamentales que están constantemente surgiendo aparentemente de la nada y permanecen en el espacio-tiempo la friolera de una milésima de trillonésima de segundo –una cantidad que se forma poniendo una veintena de ceros a la derecha de la coma—. A pesar de denominarse “virtuales”, sus efectos son muy reales: la constante agitación de este burbujeo cuántico de partículas hace que el vacío tenga energía. Y esto es algo que afecta a la realidad, pues en ésta las fuerzas de atracción y repulsión dependen de la masa, y la masa no es sino energía expresada en unidades diferentes: E=mc².

Partículas virtuales que surgen de la NADA. Claro que, en la NADA no hay…¡Nada!

En el uso corriente la palabra vacío significa espacio vacío, espacio del que se ha extraído todo el aire, vapor de agua u otro material. Eso es también lo que significa para un físico experimental que trabaja con tubos de vacío y bombas de vacío. Pero para un físico teórico, el término vacío tiene muchas más connotaciones. Significa una especie de fondo en el que tiene lugar el resto de la física. El vacío representa un potencial para todas las cosas que pueden suceder en ese fondo. Significa una lista de todas las partículas elementales tanto como de las constantes de la Naturaleza que se pondrían de manifiesto mediante experimentos en dicho vacío. En resumen, significa un ambiente en el que las leyes de la física toman una forma particular. Un vacío diferente significa leyes de la física diferentes; cada punto en el paisaje representa un conjunto de leyes que son, con toda probabilidad, muy diferentes de las nuestras pero que son, en cualquier caso, posibilidades consistentes. El modelo estándar es meramente un punto en el paisaje de posibilidades.


La energía del vacío es, por tanto, la suma total de las energías de todas las partículas posibles. Es la llamada “energía oscura” que hace que el universo se expanda, haciendo frente a la atracción de la gravedad, y que proporciona alrededor del 80% de la materia-energía al universo –un 26% es “materia oscura”, y sólo un 4% es la materia conocida hasta el momento—.

Pero, ¿cómo una partícula virtual se convierte en real? Es decir, ¿cómo queda “atrapada” en el espacio-tiempo de forma más estable?

¡Los fotones de Yang-Mills adquieren su masa y el principio gauge se sigue cumpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente pensó que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs había sido puesto ahí “a propósito” y la “partícula de Higgs, en sí misma, no era una “partícula gauge

La Teoría de la Sipersimetría establece que, por cada partícula de materia, nace una gemela de antimateria. La antimateria es igual que la materia, pero con carga opuesta. Por ejemplo, el electrón tiene carga negativa, y su partícula de antimateria, el positrón, positiva. Materia y antimateria se aniquilan mutuamente pero, por algún motivo aún no aclarado, la simetría se rompió en algún momento, surgiendo más materia que antimateria, de ahí que nuestro universo, materia, pueda existir.

Pero hay algo más en todo esto. Y para ello, la luz es la clave.

Controlar los estados cuánticos macroscópicos de osciladores micromecánicos no es fácil; hacerlo con luz (fotones) requiere el acoplamiento coherente entre …

Una de los modelos teóricos elaborados para superar la visión de la gravedad de Einstein indica que los fotones de los rayos gamma de alta energía viajarían algo más despacio que los de baja energía, lo que viola el axioma del sabio alemán acerca de que toda radiación electromagnética, desde las ondas radio hasta los rayos gamma, viajan en el vacío a la misma velocidad (la de la luz). Sin embargo, no ha sido verificado mediante experimento, con lo cual, Einstein sigue teniendo razón.

protagonizada por la “luz” como la propia …

Ya en los años 30, los físicos predijeron que un campo eléctrico muy fuerte, que no es sino un espacio alterado por la actividad de un montón de fotones coordinados, podría impulsar a las partículas virtuales con carga opuesta en diferentes direcciones, impidiendo que la materia y la antimateria se aniquilen.

Según el efecto de creación de pares,   un fotón con energía suficiente, lo que equivale a tener el doble de la energía que posee un electrón en reposo, da lugar a una pareja de electrón y positrón.

Aunque esto ya se consiguió en los años 90 a pequeña escala, gracias al desarrollo de la tecnología láser los científicos creen que estarán cerca de conseguir crear materia “en serie” mediante este proceso en unos pocos años.

Sabemos desde 1932, que un fotón gama con suficiente energía, puede formar un par de antipartículas, al interactuar con un átomo masivo, como el plomo. Pero el problema no termina, sino que, el electrón formado por un rayo gama, no interactúa con este tipo de fotón (gama), sino uno de luz visible,

Por otra parte, una vez que existen las partículas, los fotones interactúan sin cesar con ellas, siendo absorbidos y emitidos por las mismas de manera ininterrumpida.

Y de ello nace el movimiento gracias al cual todo existe en el espacio-tiempo. Sin movimiento, nuestra realidad desaparecería.

La carencia de masa de un fotón está ligada a su movimiento. Para que un cuerpo alcance la velocidad de la luz, su masa ha de ser cero. Y, como Einstein explicó en su día, la luz se mueve siempre a la velocidad de la luz. Si pretendemos que un fotón se pare, en lugar de ralentizarse observaremos que desaparece. Y, como se ha dicho al principio, si estos “fotones saltarines”  desaparecieran, toda la materia dejaría de existir.

Su esencia es el movimiento y su misión, según parece, hacer girar la rueda de la existencia.

Ello es así debido al impacto de los fotones sobre las partículas elementales. La energía transmitida por un fotón es inversamente proporcional a su longitud de onda. Cuanto menos longitud de onda, más energía. Así, un fotón de luz visible tiene la energía suficiente para hacer reaccionar a un bastón de la retina. Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Más allá, los rayos gamma pueden romper protones y neutrones

Y ahora, vayamos al meollo de la cuestión e indaguemos en la cita con que se iniciaba este artículo: ¿qué hace que los electrones absorban y emitan fotones? Esto, en otros términos, vendría a ser lo mismo que preguntarnos: ¿por qué existe nuestro universo?

…con un misterio: el 137…

¿Qué determina el momento exacto en que un electrón emite un fotón? La física cuántica dice que nada lo hace, pues la Naturaleza es caprichosa en sus niveles más elementales. Aunque no es caótica en extremo, sólo probabilística.

A diferencia de la física newtoniana, la mecánica cuántica nunca predice el futuro en función del pasado. En su lugar, ofrece reglas muy precisas para computar la probabilidad de varios resultados alternativos de un experimento.

Y la probabilidad de que un electrón emita o absorba un fotón es la constante de estructura fina. El valor de esa constante es 1/137.

En otras palabras, sólo un afortunado electrón de cada 137 emite un fotón. Este es el significado de alfa: es la probabilidad de que un electrón, cuando se mueve a lo largo de su trayectoria, emita caprichosamente un fotón.

El inverso de la constante de estructura fina es 137. Desde su descubrimiento, éste número ha traído de cabeza a los grandes científicos.

   \alpha^{-1} =   137.035 999 710 (96)

 

No puedo recordar si fue  Richard Feynman o León Lederman, quien sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?

… es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

“Lo más notable de este notable número es su adimensionalidad. La velocidad de la luz es de unos 300.000 kilómetros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.”

(Leon Ledderman, La partícula divina)

Uno de los padres de la mecánica cuántica, Wolfgang Pauli, se obsesionó tanto con este número que dijo que, de poder hacerle una pregunta a Dios, sería esta: “¿Por qué 137?”

Gracias a su gran amistad con Carl G. Jung, Pauli conoció el mundo “alternativo” de los estudios sobre la psique y accedió a la tradición esotérica que ha acompañado al hombre desde el principio de los tiempos. Es así como supo que 137 se aproxima al valor correspondiente al ángulo áureo. Esto es, la versión circular del número áureo  o φ (phi).

Sin fotones… ¡El Universo sería inestable, sería otro universo diferente!

En realidad, el ángulo de oro es, más o menos, 137,5º, y está presente en todo proceso natural donde se dé una combinación de espirales. Así, por ejemplo, las hojas de una planta surgen a lo largo del tallo cada 137,5º, pues así se logra la mayor eficiencia de espacio y de captación de la luz solar, ya que únicamente con éste ángulo es posible evitar que ninguna hoja obstaculice a las demás en la toma de luz sin que existan espacios muertos o vacíos.

Esta semejanza entre los valores de la constante de estructura fina y el ángulo áureo llevó a la doctora Raji Heyrovska  a buscar el ángulo áureo en el universo atómico (véase versión en español de su estudio).

Que esto sea así no debería extrañarnos, pues si el número áureo es una constante en toda la Naturaleza, su versión angular es la apropiada para estar presente en el universo cuántico, donde, recordemos, los elementos básicos de la realidad se reducen a funciones de onda.

…y un final místico.

Los fotones no tienen masa ni carga eléctrica. Sin embargo, pueden “extraer” del vacío partículas con masa y carga, tanto negativa como positiva.

Más allá de la matería y la energía, del tiempo y del espacio, el concepto de función de onda nos introduce en una realidad abstracta de donde surge todo.Y si, como hemos dicho, a menor longitud de onda mayor energía, también es posible afirmar que, en eso que David Bohm llamaba “orden implicado”, cuanto menor es la longitud de una onda cuántica, mayor es la presencia de masa en el espacio-tiempo.

Para la física, las matemáticas se han mostrado como la realidad que subyace a la materia. Todo se puede reducir a números, entidades que forman y organizan el espacio-tiempo. En este nivel de realidad, ni la materia ni la energía existen como tales, sino que demuestran ser el resultado de la interacción de entidades abstractas.

En esta pasión por los números, no podemos evitar recordar la versión cabalística de la filosofía perenne. Para la Kabbalah, lo divino responde a la “Nada”, ya que lo trascendente no puede ser aprehendido desde nuestra posición en el mundo finito.

En el momento de la Creación, la luz infinita se habría divido, quedando encerrada en conductos que, al romperse, producen la materia y, en definitiva, la fractura de la unidad primordial de la luz.

Esta materia o qelippot, en el sentido de “conchas” o caparazones que “encierran” la luz y rompen la harmonía unitaria de la luz, es el origen del mundo, de su finitud y causa del mal en la realidad no-divina. El mundo creado es así una fractura de la harmonía de la luz que crea la diferenciación y la tensión entre unas cosas y otras: este es el origen del mal, de la falta de harmonía que debe recuperarse en el curso de la historia.


La Kabbalah enseña, según esto, el camino para desarrollar la Vasija interior donde recibir la Luz, la cual, según va llenando dicha vasija, nos acerca a la unidad del Espíritu. Es así que la Luz, al tiempo que “absorbida” por el alma, puede ser “proyectada” en el mundo mediante los actos del hombre trascendido.

Que la luz ha sido usada por todos los movimientos espirituales para referirse a lo divino es algo que a nadie se le escapa. La imagen que la Kabbalah ofrece aquí no es muy diferente de la que podríamos encontrar en textos rosacruces o en escritos orientales, entre otros.

Sin embargo, si esta vez he preferido usar el hermetismo hebreo es, como he mencionado, por su pasión hacia los números. Y es que el valor numérico para el término hebreo de “kabbalah” (cuya traducción es “recepción”) es…

como muchos ya sabrán…

Efectivamente…

137.

Ciencia y tradición hermética unidas por un número que, en ambas, define la interacción entre luz y materia.

Cosas…

Luz que, también en ambos casos, procede de la Nada.

Decía Jung que el espacio y el tiempo son conceptos hipostasiados, fenómenos que hemos decidido convertir en reales. La física teórica y la consolidación de la mecánica cuántica han dejado claro, a lo largo de las últimas décadas, que toda esta realidad por la que combatimos, matamos, morimos, odiamos, repudiamos, humillamos, codiciamos, envidiamos o ansiamos consiste, simplemente, en Nada.

Nada…

Una ilusión de la psique por la que renunciamos a indagar en el misterio de la Vida y nuestra experiencia momentánea en el espacio-tiempo se convierte en un vagar ausentes, asumiendo que todo es un sinsentido.

A veces, en momentos de bajón, me pregunto si no será por eso por lo que, casi cien años después, nos siguen diciendo que la física cuántica es muy complicada para que lleguemos a entenderla…

Lo más triste, sin embargo, es que lo aceptamos…

Todo esto lo he leido o aprendido de gente que son más sabias que yo, ideas que tienen sus fuentes en trabajos realizados con la misión y el propósito de desvelar los secretos de la Naturaleza para saber, como es el Universo.

Lo conseguiremos alguna ve?

emilio silvera