domingo, 26 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿El origen del Universo? ¡Cómo puedo saberlo yo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el nuevo universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar lsas positivas de los protones y, de esa manera, se pudieron univer para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de todo eso, los mundos y la vida. Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.

 

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no tratataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinñamica poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos habitados que, como la Tierra, tienen otras criaturas que tambien, ellas se preguntan por el principio y el final para poder conocer sus destinos.

Algunos nos dicen que el Universo surgió de la “Nada” y, está claro que la Nada no existir y, si surgió es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos puede caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.

No obstante tales reservas, unos pocos científicos trataron de investigar la cuestion de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, como dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubir algo familiar en las mismas fuentes de la creación.

Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, hacia dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y  junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.

Una estrella que se en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el horno nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha evolucionando para que ahora, nosotros, podamos preguntas, por el origen del universo.

Los científicos han imaginado y han puesto sobre la mesa su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.

La Génesis de vacío: El problema central de la cosmología es explicar como algo msurge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sitíl. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero concepsión siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.

El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.

http://francisthemulenews.files.wordpress.com/2008/02/dibujo26ene2008a.jpg

Las ondas fluctúan de aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.

http://farm5.static.flickr.com/4025/4516869871_1cd24e4f97.jpg

En un nuevo estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas específicas pero razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.

Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, entonces, funciona de manera autónoma como un nuevo universo de los muchos que son en el más complejo Metaverso.

Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud convertirse en fluctuaciones significativas a nivel cosmológico.

En el Modelo corriente del big bang que actualmente prevalece y que, de momento, todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:

Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas como transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.

La Tierra con la luna

Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.

El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de inmensidad y, precisamente, nos ha tocado desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?

Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?

emilio silvera

Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Lagrange points2.svg

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.

Los puntos de Lagrange, denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, sólo afectado por la gravedad,  puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna.  Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente. Una definición más precisa pero técnica es que los puntos de Lagrange son las soluciones estacionarias del problema de los tres cuerpos.

File:L2 rendering.jpg

                    Diagrama del sistema Sol-Tierra, que muestra el punto L2, más alejado que la órbita lunar.

James Webb

El telescopio que vendrá a suplir al viejo Hubble. Un dato curioso sobre este telescopio es que no estará situado en la órbita terrestre, se situará en el punto de Lagranje L2.  Los puntos de Lagrange son las posiciones donde la gravedad del Sol y la Tierra se equilibran, de manera que un objeto puede permanecer estable, sin salir despedido hacia el espacio profundo. El James Webb se ha situado en esta posición es aislarlo de la contaminación que existe en la órbita terrestre.

   Con sus grandes espejos nos llevará hasta las primeras galaxias que se formaron en el Universo

El James Webb Space Telescope o JWST durante mucho tiempo ha sido promocionado como el reemplazo el telescopio espacial Hubble. El telescopio está considerado como uno de los proyectos más ambiciosos de la ciencia espacial emprendido. A pesar del enorme desafío, el telescopio se está acercando a la terminación. El telescopio ha servido como un aula técnico sobre las complejidades involucrada con un proyecto tan complejo. También ha servido desarrollar nuevas tecnologías que son utilizadas por los ciudadanos promedio en sus vidas cotidianas.

En nuestro Universo todo resulta ser el equilibrio de dos fuerzas contrapuestas que se igualan y se equilibran para alcanzar la estabilidad que es requerida para que todo exista en ese nivel de normalidad que hace de nuestro universo el que podemos observar y, los fenómenos que se producen, los cambios, siempre van encaminados a eso, a conseguir ese equilibrio que observamos.

Galaxias y supercúmulos de galaxias que deben su inmensidad a pequeños objetos que se unen para formar átomos de los que están hechos todos los cuerpos del universo por muy grandes que puedan ser. ¡Todo lo grande está hecho de cositas pequeñas! Quarks y Leptones.

Fuerzas positivas y negaticas hacen que el núcleo de los átomos sea estable y las galaxias están sujetas por la Gravedad que mantiene las estrellas juntas y que no dejan que la expansión las pueda deshacer. El el níucleo de los átomos están los protones cargados con fuerzas positivas que atraen el mismo de electrones que orbitan a su alrededor, y, al estar cargados con fuerzas negativas que se equilibran con las de los protones, el átomo es muy estable.

Cuando hablamos de equilibrio lo estamos haciendo del en el que un sistema tiene su energía distribuida de la manera estadísticamente más probable, un estado del sistema en el que las fuerzas, influencia, reacciones, etc., se compensan las unas a las otras de manera que no se permiten cambios y prevalece la estabilidad.

                      Equilibrio estático en tres dimensiones

Un cuerpo se encuentra en equilibrio estático si las resultantes de todas las fuerzas y todos los pares que actúan en él son ambas cero; se si halla en reposo, estará ciertamente no acelerado. Un cuerpo de ese tipo en el reposo se encuentra en equilibrio estable si después de un ligero desplazamiento vuelve a su posición original. Existen diversas variantes que no merece la pena mencionar aquí para no hacer aburrido el .

También existe el equilibrio térmico y se dice que un cuerpo está en equilibrio térmico si no hay ningún intercambio de calor dentro de él o entre e´y sus alrededores. Un sistema se encuentra en equilibrio térmico cuando cuando una reacción y su inversa está teniendo lugar a la misma velocidad. Estos son ejemplos de equilibrios dinámicos, en los que la actividad en un sentido está compensada por la actividad en el sentido inverso. De el equilibrio o estabilidad creado por fuerzas contrapuestas.

La energía se equipara segín una teoría de propuesta por Ludwig Boltzmann y fundamentada teóricamente por James Clerk Maxwell, en virtud de la cual la energía de las moléculas de un gas en una muestra grande en equilibrio tçermico está dividida por igual entre todos los grados de libertad disponibles, siendo la energía media de cada grado de libertad kT/2, donde k es la constante de Boltzmann y T es la temperatura termodinámica. La proposición no es en general cierta si los efectos cuánticos son importantes, frecuentemente es una buena aproximación.

File:SymmetryOfLifeFormsOnEarth.jpg

El cuadro nos muestra una Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

Claro que si hablamos de simetrías, nos podríamos perder un un laberinto de clases y formas: esférica, cilíndrica, reflectiva, traslacional, helicoidal, de rotación, de ampliación, bilateral, radial… (muchas otras). si nos referimos de manera simple a lo que es o entendemos por una simetria, nos estaremos refiriendo al conjunto de invariancias de un sistema.

Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado. La simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y rotaciones de las moléculas y las transformaciones de las redes cristalinas.

Entre las figuras que aquí podemos contemplar, están esas dos figuras nuestras familiares que al unirse logran formar la mayor de las simetrías. Es la Unidad de lo desigual que, al juntarse, se completa y alcanza la “perfección”… ¿imperfecta?

Las dos fuerzas contrapuestas en los seres vivos inteligentes de nuestro mundo, está precisamente en nosotros mismos: El hombre y la Mujer, juntos, forman un sólo ente de equilibrio perfecto que nos lleva al más alto nivel de simetría y belleza, y, tal equilibrio y conjunción, posible el milagro de la replicación.

Dibujo20130330 atrap result - cpt invariance - new limit

“La Trampa de Antihidrógeno (ATRAP) es un pequeño experimento en el CERN cuyo objetivo es comparar la antimateria con la materia, en concreto, átomos de antihidrógeno (formados por un antiprotón y un positrón, o antielectrón) con átomos de hidrógeno (formados por un protón y un electrón). Acaban de publicar la medida más precisa del momento magnético del antiprotón, 2,792847356(23) veces el magnetón nuclear, que coincide con el del protón en al mentos cinco partes por millón (0,0005%), una nueva medida (directa) de la invarianza CPT”

(Francis (th)E mule Science’s News).

Existen simetrías más generales y abstractas como la invariancia CPT y las simetrías asociadas a las teorías gauge (tendríamos que mirar en simetrías rotas y supersimetría ampliar el concepto en su más amplio espectro y concepción de lo que la simetría es. En el Universo, las simetrías están por todas partes: Estrellas, mundos, galaxias…

emilio silvera

Buscando la Gravedad cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”. Lo cierto es que, para que las dos teorías, cuántica y relativista se reúnan sin que surjan los dichosos infinitos, se tiene que plantear dentro de una teoría de dimensiones extra. Esas teorías de más dimensiones, requieren de complejas formulaciones que no todos, podemos entender.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para verlas?

         Ni vemos la longitud de Planck ni las dimensiones extra

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

         Nuestro es tridimensional y no podemos ver otro más allá… ¡si existe!

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que tanto se habla.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacicones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.

¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada pero, nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.

El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

Los del LHC dicen haber encontrado el Bosón de Higgs pero, no he podido leer ni oir, alguna explicación clara y precisa de cómo le dá masa a las demás partículas. Espero que, el Nobel se justifique y que expongan con detalle lo que pasa en los llamados “océanos de Higgs” por el que las partículas circulan para adquirir sus masas que les “proporciona” el recien “hallado” bosón.

¿Cómo llegamos aquí? Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más

apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W-, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

               No dejamos de experimentar para saber ccómo es nuestro mundo, la Naturaleza, el Universo que nos acoge

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W-, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Roger Penrose es uno de los nuevos humanistas del siglo que se ha interesado por los problemas de las matemáticas, de la física, de la biología, de la psicología y de la filosofía. Siguiendo el modelo de Popper de los tres mundos, ha trabajado sobre la flecha del mundo 1 de la física, al mundo 2 de la conciencia, y del mundo 3 de las matemáticas, al mundo 1.

En esta última dirección ha publicado numerosos libros y artículos, donde aborda la asignatura pendiente de la unificación de la mecánica cuántica y la teoría del campo gravitatorio. El camino que ha seguido Penrose es encontrar una base común a ambas.

Para ello ha introducido dos modelos: los “spin networks” y los “twistors”, el primero discreto, con una métrica intrínseca, no relativista, previo al concepto de espacio, el segundo continuo, con una métrica extrínseca, relativista e inmerso en un espacio-tiempo dado.

 Claro que son varias las corrientes que quieren abrirse camino hacia otras físicas nuevas.

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.

De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.

En cuanto a nuestra comprensión del universo a gran escala (supercúmulos de galaxias, ondas gravitacionales, posibles estrellas de Quarks-Gluones… el propio Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado. El Tiempo y la Entropía tienen mucho que decir en todo eso y, por el camino hacia el conocimiento pleno, tendremos que comprender, de manera completa y exacta que es la Luz, la Gravedad y… ¡tántas cosas!

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el movimiento de las galaxias o la expansión del espacio mismo, la posible existencia de otros universos…

emilio silvera