martes, 26 de enero del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que sabemos no parece suficiente

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la parte exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra parte, la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor parte del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

[stephan_quinteto_2009_hubble.jpg]

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

rayos_cosmicos.jpg

    Una de las fuentes productoras de rayos cósmicos es el Sol

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

http://4.bp.blogspot.com/-flEk3ifYkVI/T5crO29uW2I/AAAAAAAAANo/SjVtQ0AtTTs/s1600/particle_poster_big.jpg

 

Los físicos de más edad dejan volar a menudo sus pensamientos hacia aquellos tiempos gloriosos en los que, durante mucho tiempo, ha sido la era de los grandes descubrimientos de la primera mitad del siglo XX: La mecánica cuántica, la relatividad especial y general, la electrodinámica cuántica y los descubrimientos de las primeras partículas elementales.

El Zoo de las partículas llegó a ser tan exótico y numeroso que, Entico Fermi dejó caer aquella famosa frase: “Si tengo que saber de memoria el nombre de todas las partículas que existen,  hubiera sido  botánico”.

File:ChicagoPileTeam.png

 

Fermi (abajo a la izquierda), Szilárd (segundo desde la derecha abajo), y el resto del equipo de la pila atómica.

 

Claro que, días gloriosos también lo fueron en la década de los 70 cuando fueron colocadas en su sitio muchas piezas del gran puzzle de las interacciones débil, electromagnética y fuerte. El descubrimiento en 1974 de la J/Ψ fue el clímax. Antes de que este se produjera, aún quedaba alguna duda de que la teoría de la interacción débil fuera correcta y se consideraba la teoría de la intertacción fuerte simplemente como una idealización de algo que podría muy bien ser más complicado e insondable.

Pero, pasado algún tiempo, los experimentos llevaron a la convicción de que ambas teorías eran correctas, incluso en sus detalles. Según continuaban los experimentos las sorpresas iban en aumento a medida que surgían detalles más precisos de lo que muchos de aquellos físicos habrían esperado. Una cosa estaba muy clara: vivíamos en un mundo que obedecía meticulosamente a las leyes de las matemáticas, y las matemáticas son difíciles, pero se pueden llegar a entender completamente para poder llegar a esos misteriosos secretos que la Naturaleza trata de esconder y nosotros, de desvelar.

Antes os mencionaba la J/Ψ.  Cuando una partícula J/Ψ se desintegra (o decae), por lo general produce un par de muones. Observa atentamente los dos eventos mostrados a continuación. ¿Hay pruebas de pares de muones (trayectorias en rojo) en uno de estos eventos o en ambos? ¿Podría ser cualquiera de estos eventos un candidato para J/Ψ? ¿Es esta evidencia débil o fuerte? ¿Está seguro de tus conclusiones?

Más aún desde que en 2002 se demostrase (“Data Tables for Lorenztz and CPT Ciolatión”),  Ene 2010, arXiv;) que violar la simetría CPT implica cargarse la invariancia (o covariancia) de Lorentz,  Esta invariancia es uno de los pilares que deben cumplir todas las teorías que pretendan tener sentido físico, aunque luego pueda haber casos de ruptura espontánea de la simetría. Pero la teoría viola Lorentz de entrada, no puede ser válida. Esto es un puntal muy fuerte para la teoría CPT.

Hubo que esperar 40 años, hasta los años 80, en que se relacionara directamente a los kaones con la simetría CP y el problema de la bariogénesis en el universo. Es decir, ¿por qué si hay simetrías por todas partes, el universo está constituido de materia y no de materia y antimateria por partes iguales? ¿Por qué el universo no es una aburrida sopa de fotones?

Claro, si en el inicio del universo se hubiera encontrado la misma cantidad de materia que de antimateria, todo se habría aniquilado haciendo que el universo fuera un gas de fotones de lo más aburrido. Nada de lo que existe, existiría. Pero como de hecho existe, hay que encontrarle explicación. Y en eso consiste el problema de la bariogénesis asimétrica.

          La simetría resulta estar por todas partes aunque sea de diferntes colores

Como sea que ocurriera, aunque de hecho hubiera mucha materia y antimateria que se aniquilara, al final la materia venció esta batalla épica que se libró durante la época de Planck. Pero resulta que no es posible modificar nuestro modelo invocando otro campo de Yang . Mills, Las partículas de espín 1 siempre preservan la simetría PC. ¿Podría ser esta la razón por la que la que la simetría PC es tan tenue?.

Motivos para la sorprea surgen todos losa días, por ejemplo, se han detectado nuevas partículas que nacen dentro de las enanas blancas de Helio y, cualquiera de estos días encontraremos estrellas de Quarks y Gluones, es decir, hechas de materia extraña. Lo cierto es que, a la vista de la realidad que vamos descubrimiento continuamente es arriesgado decir… ¡que sabemos!

Podríamos imaginar el efecto que tendría otra partícula de espìn cero, preferiblemente que también sufriera algún tipo de condensación Bose, el resultado sería lo que llamamos la “violación espontánea de PC”. Sin embargo, los modelos resultantes que se obtienen así no son muy populares. Deseamos evitar partículas de espín cero tanto como sea posible, porque añaden muchos parámetros arbitrarios a la interacción. Los modelkos con tales partículas parecen muy artificiales. En si mismo, un argumento de este tipo no es, desde luego, suficiente para escluir una posibilidad, pero ducede que existen alternativas más interesantes.

 

 

Gloshosow            Iliopoulos         Maiani

 

¿Recordaréis que Glashow, Iliopoulos y Maiani habían introducido el quarks encanto para entender la estructura simétrica de la interacción débil? Bien, lo que se propuso fue hacerlo de nuevo. Esta vez necesitamos introducir dos quarks más. Los cuatro primeros habían formado pares ( u y d, c y s), con cargas eléctricas + 2/3 y – 1/3. El nuevo par se tenía que parecer a este, pero los nuevos quark podrían fácilmente ser mucho más pesados. Siendo quarks análogos a los “arriba” y “abajo” se llamaron “cima” (t) y “fondo” (b), respectivamente. Pero a veces las mismas letras se utilizan pa<ra darles nombres más poéticos: “verdad” y “belleza”.

Era inevitablemente necesaria una partícula de espín cero para que la interacción débil tuviera las simetrías que tiene a través del mecanismo de Higgs-Kibble. Esta partícula de Higgs se acopla ahora con los quarks y a los leptones para dotarlos de masa. Pero la misma partícula de Higgs también puede producir transiciones entre varios tipos de quarks. Si no existiera interacción débil en absoluto, los qu quarks podrían permanecer en todas clases de estados estables. Es pues, una conspiración entre la interacción débil  y la interacción de Higgs lo que permite muchos tipos de desintegración de los hadrones extraños y con encanto.

 

 

http://3.bp.blogspot.com/-cT8X-d8wLtI/TxNInv_uemI/AAAAAAAAGKc/omGutn2f7aE/s400/atomo.gif

 

 

Cuanto mayor sea el número de fermiones introducido, más tipos de interacción  puede experimentar el campo de Higgs con esos quarks. Los físicos japoneses Kobayashi y Maskawa escribieron la expresión matemática más general que se puede obtener para las fuerzas. Resultó que uno de los términos de sus ecuaciones no tienen simetría PC, y que ese término sólo aparece si hay, al menos, seis tipos de quarks. Esto hizo que comezaran a buscarse partículas que contuvieran otras especies de quarks.

Podríamos seguir por este camino que hoy he tomado (no muy convencido), sin ver nunca el final de donde podríamos acabar. Hay cuestiones de la Física que me resultan farragosas, espesas, poco diáfanas y que, por mucho que me empeñe, no puedo explicar de manera amena y sencilla que la gente, el posible lector, se involucre en el tema.

Los del LHC hicieron el anuncio de que por fín, habían encontrado el Bosón de Higgs. Sin embargo, no acabo de estar convencido de que ese “famoso bosón” exista en realidad, a veces, el tener que justificar enormes presupuestos y seguir consiguiendo nuevos… La verdad es que, no tengo nada claro muchos de los conceptos y explicaciones que los físicos manejan sobre todo este peliaguado asunto del Bosón de Higgs. Hay veces en la que los físicos, al tratar temas de la mecánica cuántica,  me producen la sensación de ser una especie de magos que, mediante “trucos” ingeniosos apoyados por las matemáticas, nos quieren convencer de cómo es el “mundo”.

¡Ya veremos en qué queda todo esto!

emilio silvera

¡Los Agujeros Negros se forman antes quen las Galaxias!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


14 enero 2011. El sorprendente descubrimiento de un agujero negro supermasivo en una galaxia cercana pequeña ha dado a los astrónomos una nueva y tentadora tentadora perspectiva a la forma en que los agujeros negro y las galaxias pueden haber crecido en la historia temprana del Universo. Encontrar un agujero negro un millón de veces más masivo que el Sol en una galaxia enana que sirve como guardería de estrellas es un poderoso indicio de que los agujeros negros supermasivos se formaron antes de la construcción de las galaxias, señalan los astrónomos.

http://es.sott.net/image/image/s2/54332/full/1295342609_1.jpg

La galaxia, llamada Henize 2-10, está a 30 millones de años luz de la Tierra, se ha estudiado durante años, y se sabe que está formando estrellas muy rápidamente. De forma irregular y de unos 3.000 años luz de diámetro aproximadamente (frente a los 100.000 de nuestra propia Vía Láctea), se asemeja a lo que los científicos creen que fueron algunas de las primeras galaxias que se formaron en el Universo temprano.

“Esta galaxia nos da pistas importantes sobre una fase muy temprana de la evolución de las galaxias que no se ha observado antes,” dijo Amy Reines, candidata a doctorado en la Universidad de Virginia.

Los agujeros negros supermasivos se encuentran en los núcleos de todas las galaxias gigantes. En el Universo cercano, existe una relación directa y constante entre las masas de estos agujeros negros y el núcleo de las galaxias que habitan, lo que lleva a la conclusión de que el crecimiento de ambos está relacionado.

Hace dos años, un equipo internacional de astrónomos descubrió que los agujeros negros en las jóvenes galaxias en el Universo temprano fueron más masivos de lo que esta relación indica. Esto, dijeron, era una poderosa evidencia de que los agujeros negros se desarrollaron antes que las galaxias que los circundan.

Al combinar imágenes ópticas e infrarrojas obtenidas por el Telescopio Espacial Hubble de la NASA, los nuevos datos del Chandra permitieron a los astrónomos buscar agujeros negros en 200 galaxias distantes, de cuando el universo tenía entre 800 millones y 900 millones de años de edad.

“Ahora, hemos encontrado una galaxia enana con un núcleo prácticamente plano, sin embargo, tiene un agujero negro supermasivo. Esto fortalece en gran medida la idea de que los agujeros negros en desarrollan en primer lugar”, dijo Reines.

Reines, junto con Gregory Sivakoff y Kelsey Johnson de la Universidad de Virginia y el Observatorio Nacional de Radioastronomía (NRAO), y Crystal Brogan del NRAO, observaron Henize 02.10 con el Very Large Array Radiotelescope de la National Science Foundation y con el Telescopio Espacial Hubble. Encontraron una región cerca del centro de la galaxia que emite ondas de radio con las características de las emitidos por los chorros de materia expulsados por los agujeros negros supermasivos.

Después buscaron imágenes del observatorio Chandra de Rayos-X que mostraban esa misma región, y que mostraba lo mismo: brillantes zonas de emisiones de rayos gamma y radio. Esta combinación indica un agujero negro activo en el núcleo galáctico.

http://img29.exs.cx/img29/8122/Observatorio_Chandra1.jpg

“No conocemos las suficientes galaxias enanas para saber si todas tienen agujeros negros supermasivos”, dijo Sivakoff.

Si bien el centro de agujero negro hallado en Henize 2-10 tiene aproximadamente la misma masa que los hallados en otras galaxias, estas galaxias tienen forma mucho más regular. Henize 2-10 no sólo difiere en su forma irregular y pequeño tamaño, sino también en que tiene una actividad de formación de estrellas muy intensa y concentra numerosos y muy densos supercúmulos estelares.

“Esta galaxia, probablemente se asemeja a las que habrían existido en las fases más jóvenes del Universo, cuando las galaxias estaban empezando a formarse y chocaban entre sí con frecuencia. Todas sus propiedades, incluyendo el agujero negro supermasivo, nos están dando nuevas e importantes pistas acerca de cómo estos agujeros negros y esas galaxias se formaron en esa etapa”, dijo Johnson.

Los astrónomos presentaron sus conclusiones en la edición online del 9 de enero de la revista Nature , y en la Sociedad Astronómica Americana en reunión en Seattle, WA.

El Observatorio Nacional de Radioastronomía es una instalación de la Fundación Nacional de Ciencia , operada bajo un acuerdo cooperativo por Associated Universities, Inc

FUENTE: http: publicaciones varias.

Caprichos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Orion Arm.JPG

El concepto de vecindad es relativo e indefinido. Su valor puede variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.

Con el empleo de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida entre los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.

Pero mi intención al comenzar este comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:

R LEPORI

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”. R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind. A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono-oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.

Como nos dice más arriba Wilipedia, cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que puede observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. Desde aquel día, el espectáculo celeste se repite periódicamente cada año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.

R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que antes me refería y que han permitido al hombre percibir la magia de los cielos y buscar en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí para deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.

A diferencia del Sol y de las estrellas de su clase, que permanecen estables, el brillo de una gran parte de la población estelar es variable, y en algunos casos su ciclo hace oscilar espectacularmente su intensidad lumínica ante nuestros ojos. En R Leporis, más que sus cambios de brillo, la faceta más hermosa es su tonalidad roja, una de las más intensas que puede observarse en todo el cielo, pero otras variables tienen un ciclo que las hace apagarse y encenderse como si fueran faros en la Vía Láctea. Ese es el caso de Mira, a la que Hevelius llamó “la estrella maravillosa” después de que apareciera en el cielo como por arte de magia.

Mira es el nombre propio que Hevelius le puso a esta estrella, cuya denominación original en el catálogo de Johann Bayer, basado en el alfabeto griego, era Omicrón Ceti, es decir, la estrella omicrón de la constelación de Cetus, la Ballena. Su variabilidad fue descubierta en 1596 por David Fabricius, pero Hevelius se sintió tan atraído por ella que le dedicó un libro, que tituló Historia de la estrella maravillosa. Realmente lo es; el brillo de Mira disminuye hasta la magnitud 11, invisible a ojo desnudo y sólo observable con telescopio como un débil punto de luz, pero al cabo de un tiempo su gigantesca máquina nuclear la hincha vertiginosamente y se convierte en una estrella de segunda magnitud, alcanzando un brillo notable, similar al de la estrella polar. Por eso, cuando está en la parte inferior del ciclo, Mira no puede verse sin ayuda óptica, pero después surge entre las demás estrellas de su constelación, como si se hubiera encendido de repente.

http://upload.wikimedia.org/wikipedia/commons/e/e8/Mira_1997.jpg

Imagen de Mira obtenida con el Telescopio Espacial Hubble

Mira pertenece a la clase espectral M, la misma que Antares y Betelgeuse. Las tres son estrellas muy frías en comparación con el Sol, ya que su temperatura es del orden de los 3000 grados. Sin embargo, Mira, Betelgeuse y Antares son decenas de miles de veces más luminosas que el Sol, puesto que figuran entre las estrellas más grandes conocidas, alcanzando diámetros de unos ochocientos millones de kilómetros, equivalentes a la distancia a la que se halla Júpiter del Sol. Estas tres gigantes, sin embargo, comparten sus atributos relativos a la clase espectral con las estrellas representativas del polo opuesto: las enanas rojas, como la estrella de Barnard y Próxima Centauri. Todas se muestran ante nosotros con el bello color rojizo, pero la gigante Betelgeuse es una estrella inestable a la que los astrónomos consideran una de las mejores candidatas de la Vía Láctea para estallar en cualquier momento en forma de supernova; puede ocurrir mañana o dentro de mil años, pero Betelgeuse está destinada a un final cataclísmico que se observará alguna vez. En cambio Barnard y Próxima, dos diminutos soles rojos, viven en la eternidad, al ser tan frías y pequeñas podrían permanecer en sus condiciones actuales en torno a doscientos mil millones de años, de acuerdo con la teoría aceptada de la evolución estelar para este tipo de bajo consumo de material nuclear.

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la Historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Alguno de estos días, tendremos que hablar de Eta Carinae, otra variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, es probablemente la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida se masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

emilio silvera

En el Centro de la Galaxia

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Existen argumentos más que fundados para creer que, en el Centro de nuestra Galaxia, la Vía Láctea, habita un enorme Agujero Negro que según las observaciones y  medidicones efectuadas, puede tener 4 millones de veces la masa del Sol. Así lo avalan los 16 años de investigación y estudio de 28 estrellas allí situadas y, sobre todo, el comportamiento de la estrella designada con el nombre S2 de cuyo comportamiento al orbitar el Centro Galáctico, se han deducido estos números increibles. Se utilizaron telescopios y cámaras muy sofisticadas que hicieron el siguimiento de S2, y, cuando estaba a 1 dia-luz del Centro, pudieron comprobar de manera muy convincente los resultados de los efectos Gravitatorios que se produjeron en las cercanias de influencia del Agujero Negro Supermasivo que, aunque invisible para nuestros aparatos, no lo es en cuanto a la Gravedad que genera se refiere.

Es un verdadero triunfo técnico el poder conseguir, desde una distancia de 27 000 años-luz, el poder optar a comprobaciones como estas que nos dan las respuestas esperadas de ese lugar que hasta hace relativamente muy poco tiempo nos era totalmente misterioso.

En el centro de la Vía Láctea

Credit: ESO , Stefan Gillessen ( MPE )

Leer más

¿De donde surgió todo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.

metalesalcalinos003

Lepidolita, una de las mayores fuentes del raro rubidio y del cesio. El rubidio también fue descubierto, como el cesio, por los físicos alemanes Robert Wilhem Bunsen y Gustav Robert Kirchhoff en 1861; en este caso por el método espectroscópico. Su nombre proviene del latín “rubidus” (rubio), debido al color de sus líneas en el espectro.

Leer más