domingo, 05 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Llegaremos a saber! Del mundo… ¡y de nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber del mundo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://juancarrion.files.wordpress.com/2010/05/feynman.jpg

 

Richard Feynman

 

“Siempre me ha intrigado que, cuando se trata de aplicar las leyes tal como las entendemos actualmente, una computadora necesite hacer un número infinito de operaciones lógicas para efectuar cálculos relativos a lo que sucede en cualquier zona insignificante del tiempo. ¿Cómo puede suceder todo eso en un espacio diminuto? ¿Por qué se necesita una cantidad infinita de operaciones lógicas para averiguar lo que va a pasar en un fragmento diminuto de espacio-tiempo? A menudo he formulado la hipótesis de que en última instancia la física no necesitará una expresión matemática, ya que al fin se descubrirá la maquinaria y las leyes llegagarán a ser sencillas, como un juego de ajedrez con todas sus aparentes complejidades.”

"Planeta Tierra"

El mundo que nos rodea es más complejo de lo que parece, pero al tener y comprender los significados de los conceptos físicos, nos permite redescubrir, inventar e interpretar el funcionamiento de las cosas. Precisamente por ser nuestro entorno como es, nos obliga a tener que tratar de comprenderlo. Nadie puede subsistir en un lugar que no comprende y, cuando se domina y sabemos cómo adaptarnos al medio, la vida, además de más sencilla, también será más duradera. Mucho nos costó llegar a comprender tal cosa.

Claro que, el mundo que nos rodea parece ser un lugar complicado (siempre nos resultará complicado lo que no sabemos entender). Aunque hay algunas verdades sencillas que parecen eternas: El Sol que se pone y se levanta siempre por los mismos lugares, la noche y el día que nos trae cuando se esconde y cuando aparece, y, nuestras vidas, que a pesar de las modernas tecnologías, siguen estando todavía, con demasiada frecuencia, a merced de los complicados procesos naturales que producen cambios drásticos y repentinos que no podemos ni predecir.

Muchas son las fases por las que tuvieron que pasar los elementos químicos que, junto a la materia prebiótica, dieron lugar, finalmente, al surgir de la Vida en nuestro Planeta, la Tierra. En la formación que finalmente podemos contemplar de la Tierra no intervinieron únicamente los procesos cósmicos. Los animales, las plantas y los microorganismos influyeron de manera decisiva en las estructuras planetarias durante el curso de la historia de nuestro Planeta. Sin ellos no exitiría una atmósfera con oxígeno, ni islas de coral, ni tierras fértiles, ni materias primas como el petróleo o el carbón. Y, por supuesto, también nosotros dejamos sentir nuestra huella en la superficie de la Tierra que, en muchas ocasiones a lo largo de nuestra historia, hemos podido devastar por nuestra enorme inconsciencia.

       Lo cierto es, que no sabemos de dónde venimos

Hemos llegado a conseguir que, en la segunda década del siglo XXII,  los avances de nuestro saber estén situados en un nivel espectacular y le puedan dar una respuesta consistente a todas las cosas sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica han podido explicar el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras que el descubrimiento de la estructura del ADN y el modo en que este se copia de una generación a otra hizo que la propia vida, así como la evolución parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad en del mundo a nivel humano -al nivel de la vida-. La cuestión más interesante de todas, la que plantea que la vida puede haber surgido a partir de la materia “inerte” ha seguido sin tener una respuesta.

http://1.bp.blogspot.com/_h7wQ7HPptZM/TBVJr9-SaDI/AAAAAAAAAI8/By2AZunwryI/s1600/magia.bmp

 

¿Dónde empieza y termina la realidad?

 

No debemos extrañarnos que sea precisamente a escala humana donde se den las características más complejas del Universo, las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que hay en el Universo (salvo posibles y similares formas de vida de cuya existencia no tenemos una certeza y sí una (lógica) sospecha). La razón es que a escala más reducida, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos u otros seres vivos. Y, el climax de la complejidad aparece cuando una mente llega a poder generar ideas y es consciente de Ser.

cristales-del-alma

Hay un plano superior de la mente que sobrepasa lo estrictamente material, es un nivel más alto, inmaterial, que se sale del cuerpo, que no está limitado por las condiciones físicas, que está en otro Universo que vemos sólo en nuestras mentes y que no es posible tocar.  Allí residen los pensamientos, se forjan los sentimientos, conviven las ideas y nace lo mejor, y, lamentablemente, lo peor de nosotros. Lo cierto es que, al menos hasta el momento, no hemos sabido comprender lo que la mente es. Ahí residen los sueños y está encerrado el pasado, se registra el presente y se presiente el futuro.

Nosotros, como ocurre en las Galaxias que se sirven de la explosión supernova para renovarse y producir, a partir del material que eyecta al espacio circundante a la explosión, nuevas estrellas y mundos, de la misma manera, a través de la explosión del Amor, también podemos reproducirnos e impedir que, la Entropía se salga con la suya. Los mecanismos de la Narturaleza están ahí para preservar nuestra especie que, a pesar de todo… ¿Sigue aquí!

Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que el ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla cuando se pierde el equilibrio de las fuerzas que intervienen en la estabilidad. Esta es la razón por la que la Ciencia puede decir más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas y los mundos que, del propio comportamiento de las personas y sobre el modo en el que se comportan.

Al menos de momento, no resulta posible saber el por qué nuestros pensamientos eligen los caminos que nos conducen a maneras de comportamiento que no siempre sabemos explicar. Sí, pocas dudas nos pueden caber ya, somos sistemas complejos (muy, muy complejos diría yo) que, habiendo brotado a la existencia a partir de los mecanismos y ritmos que imponen las fuerzas y constantes del Universo, podemos ser la muestra “perfecta” de una evolución bioquímica que se ha dado en la materia “inerte” bajo una serie de condiciones que, por otra parte, hacen imparable el surgir de la vida y de su evolución.

Se habla (muchas veces lo hemos podido escuchar)  del Orden que surge del Caos. Antes de la revolución cinetífica del siglo XVII, el mundo parecía estar regido por el caos (entendiendo la palabra al margen del mundo científico de hoy). En absoluto se sugería que hubieran leyes sencillas y ordenadas que pudieran sustentar la confusión reinante en el mundo.

Mucho antes de todo aquello, las Civilizaciones hablaban de un dios o de dioses para poder explicar lo que no entendían. Allí donde se percibía el orden del Universo, este orden se atribuía a una respuesta que daban los objetos físicos a una necesidad de que se preservara la armonía y el orden siempre que fuera posible y, se suponía que las órbitas de los planetas y la del Sol alrededor de la Tierra, estaba en el centro de todo, que era el centro de simetría del universo, y por tanto, el lugar más deseable en el que cualquiera se podría encontrar.

Modelo de universo de aristóteles

Los planetas describían pequeños círculos (epiciclos) cuyo centro se desplazaba sobre un círculo mayor (deferente) alrededor de la Tierra. Ptolomeo empleó más de ochenta círculos, entre deferentes y epiciclos, para describir el movimiento de los astros alrededor de la Tierra. Esta se suponía inmóvil y situada en el centro del universo (modelo geocéntrico). La razón fundamental para admitir la inmovilidad de la Tierra era la ausencia de movimiento de las estrellas fijas, que suponían habría sido advertido por la modificación del ángulo con que estas se observaban desde la Tierra. No sabían que las estrellas estaban mucho más lejos de lo que ellos creían.

Esta visión geocéntrica del mundo se mantuvo casi dos mil años, hasta que Copérnico la modificó con su modelo heliocéntrico. El heliocentrismo tuvo ya precursores, como Heráclides (388-315 a. C.), discípulo de Platón, que sugirió la rotación de Mercurio y Venus en torno al Sol (para explicar por qué estos planetas siempre se veían cerca del Sol) y Aristarco, que sugirió que las posiciones de los astros se explicarían más fácilmente si algunos planetas giraran alrededor del Sol. Le extrañaba, además, que el Sol, que era mucho mayor que la Tierra, girara alrededor de ella.

El filósofo Aristarco de Samos (un adelantado a su tiempo), sugirió que era la Tierra la que giraba alrededor del Sol. Nadie le prestó atención a su predicción intuitiva y, muchos años después, llegó Copérnico a llevarse los honores. Estos ejemplos ilustran una diferencia absolutamente crucial entre la ciencia de los antiguos y la de los tiempos posteriores a Galileo.

Galileo Galilei visto por Justus Sustermans painted en 1636. Wikipedia.

Es justo reconocerle a Galileo el mérito de haber sido el primero en apuntar al cielo con un Telescopio y, más aún, el primero en imponer el método científico que aún hoy perdura: El experimento y la investigación. Fue una combinación del descubrimiento de las órbitas elípticas por parte de Kepler, y de las teorías de Galileo sobre la aceleración y el método científico, lo que preparó el camino para el mayor descubrimiento científico del siglo XVII, y quizá de todos los siglos: la ley de la Gravitación Universal de Isaacc Newton.

Independientemente de cuales fueran las técnicas matemáticas que utilizara Newton de manera privada en la década de 1680, en Los Principia demostró, utilizando procedimientos que sus contemporáneos conocían, que para que los planetas describieran órbitas elípticas alrededor del Sol (y, por consiguiente, para que las observaciones concordaran con la teoría), la Gravedad debía cumplir una Ley en la que apareciera la proporcionalidad inversa del cuadrado de la distancia. Concretamente, la fuerza de atracción entre dos masas situadas a una cierta distancia.

http://1.bp.blogspot.com/_9qZScR42z3g/TNIS0bfD_gI/AAAAAAAAL74/cuZ7Dw1b5QY/s1600/Amanecer.jpg

Todos los cuerpos en el espacio están unidos por los hilos invisibles de la Gravedad

Todos (seguramente) habreis oido hablar del problema de los tres cuerpos al que no se sabía dar una solución. Y, así continuó, sin tener una solución hasta finales del siglo XVIII, cuando el matemático francés Pierre Laplace (1749-1827) aparentemente puso orden en el Sistema Solar. Calculó mediante laboriosos procedimientos de correcciones sucesivas y paso a paso, las órbitas de Júpiter y Saturno, que son los planetas más grandes del Sistema Solar y ejercen la máxima influencia gravitatoria el uno sobre el otro, y cada uno de ellos sobre los planetas menores, despúes de la que ejerce el Sol.

Júpiter y Saturno

Laplace descubrió que la órbita de Júpiter se está expandiendo de forma lenta, mientras que la de Sarturno se está reduciendo -justo el tipo de efecto que intuía Newton y al que no supo dar ninguna explicación, lo dejaba en manos de Dios- Pero Laplace vio que estas modificaciones están ligadas a un cambio rítmico en la influencia gravitatoria que ejercen ambos planetas el uno sobre el otro, y que dicho cambio se produce  porque Saturno describe dos órbitas alrededor del Sol mientras que Júpiter recorre su órbita cinco veces. Esto significa que los dos planetas gigantes se encuentran a distancia mínima uno del otro cada cincuenta y nueve años.

Utilizando las leyes de Newton y la técnica de correcciones reiteradas paso a paso, Laplace calculó que el efecto producido por todo esto era la inversión de cambios globales observados  en las órbitas de los dos planetas cada 929 años -despúes de 929 durante los cuales la órbita de Júpiter se expande, mientras la de Saturno se contrae, hay otro intervalo de 929 años durante el cual la órbita de Júpiter se contrae, mientras que la de Saturno se expande, y así sucesivamente-. Laplace pensó que así se había restablecido el orden del Sistema Solar.

¡Qué cosas! ¿Cómo pudo la mente humana profundizar tanto con tan poco?

Pero comentemos un poco sobre el inicio de todo, es decir, sobre la fuente en la que se fundieron los materiales necesarios para la Vida en el corazón de las estrellas que, al final de sus vidas, implosionan y explosionan con la violencia que sólo la Naturaleza sabe desatar para que, grandes regiones del espacio queden sembradas con esos materiales que, miles de millones de años más tarde, hacen posible que la vida surja en mundos que, como la Tierra, tengan las adecuadas condiciones para ello.
La explosión de supernova provoca la expulsión de las capas externas de la estrella por medio de poderosas ondas de choque, enriqueciendo el espacio que la rodea con elementos pesados. Los restos eventualmente componen nubes de polvo y gas. Cuando el frente de onda de la explosión alcanza otras nubes de gas y polvo cercanas, las comprime y puede desencadenar la formación de nuevas nebulosas que originan, después de cierto tiempo, nuevos sistemas estelares (quizá con planetas, al estar las nebulosas enriquecidas con los elementos procedentes de la explosión).
Desde algunos lugares de la Tierra podemos contemplar parte de la Vía Láctea y sólo podemos imaginar parte de su contenido… ¡tántos mundos! y, posiblemente… ¡tántas formas de vida! Ahí cúmulos y míriadas de estrellas surgen en las Nebulosas para fabricar los materiales complejos que hacen posible, muchos miles de millones de años después… ¡La Vida!

Como otras tantas veces os he contado, en una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe ¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente.

 ¿Qué hizo posible que a partir de la materia “inerte” se den la conciencia y la inteligencia? ¿Qué hace posible que existan la conciencia y la inteligencia?, porque aunque sepamos multitud de cosas de los lugares más recónditos del universo, aún sabemos muy poco de lo que hay dentro de nuestras cabezas, y esas dos cosas: Inteligencia y conciencia, son las que nos hacen ser lo que somos. Como decía el sabio:


“Creo que cuando sepamos comprender la Naturaleza, entonces, sabremos también sobre nosotros que, de alguna manera, somos parte del misterio que tratamos de desvelar. La Naturaleza somos también todos los seres vivos que están acompañados de infinidad de objetos materiales situados en otras fases del camino. La materia “inerte” simplemente es un estadio que está a la espera de su evolución hacia algo superior.


                                                                                      ¿La Vida sin Carbono?

 

 

 

La manera exponencial de nuestros avances en el conocimiento científico, hará posible que en algún momento de las próximas décadas o en el siglo que viene, podamos descubrir el primer planeta albergando vida. Pero seguramente será “parecida” a la nuestra; basada en enlaces de Carbono y agua como medio. Pero; ¿podría existir un tipode vida completamente diferente? ¿la reconoceremos cuando la veamos? ¿podría evolucionar hasta desarrollar inteligencia? La Naturaleza, hasta donde la conocemos, sigue siempre los mismos caminos, los más sencillos para conseguir sus objetivos y, si la vida aquí en la Tierra está basada en el Carbono…

Foto

En las imágenes nos dicen que estamos conformados por objetos infinitesimales (Quarks y Leptones) que conforman la materia que podemos ver, y, por otra parte, se nos muestra “la mano de la Naturaleza” que, a partir del polvo de estrellas, hace posible que tan maravilla pudiera suceder.  ¡Desde la materia inerte hasta los pendsamientos!

Nos tenemos que asombrar primero y maravillarnos después, cuando al recorrer los pasos de la historia de la vida, podemos constatar todas esas cuestiones.  Ahora sabemos que el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos.

El misterio es demasiado profundo para nosotros, seres casi “recien llegados” a este vasto universo, mucho nos queda por saber, nuestra evolución tiene que recorrer muchos caminos aún inexplorados.  Desde las moléculas más sencillas, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe un largo recorrido que nos llevó…

¡desde la materia “inerte” hasta los pensamientos!

emilio silvera

La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber: ¡Ese viaje interminable!    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

                                                     Este gráfico de arriba me recuerda el “efecto frenado” de Ramón Marquez

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

Split Screens

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011—.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

emilio silvera

Fuente: León Lederman

¿Será el Universo como creemos que es?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como pregona la filosofía, nada es como se ve a primera vista, todo depende del punto de vista desde el que miremos las cosas, o,  de la perspectiva que podamos tener de ellas conforme a las herramientas que tengamos a nuestra disposición, incluida la intelectual. Nosotros, que estudiamos el Universo y no lo sabemos todo de él, ya pensamos en la posible existencia de otros universos.

                  Si es que existen, ¿cómo serían esos otros universos? ¿dejarían un margen para alguna forma de vida? y, de ser así, ¿cómo serían?

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta ese momento no es verdadero.”

Douglas Adams

¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?

 

Por mucho que queramos alterar, algunas situaciones siempre serán invariantes

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno.

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el Neptunio, Plutonio, Americio, Curio, Berquelio, Californio, Einstenio, Fermio…etc.,  pero son los llamados transuránidos y son artificiales.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!

Las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano.  El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal.

 

 

                 Todo dependerá de cual sea el valor de la densidad de materia.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón.
  • La razón ente densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la formación de estrellas, planetas y… ¡vida!

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica”

 

Gráfico: Sólo en el modelo de Universo que se expande cerca de la divisoria crítica (en el centro) se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos.

El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

 

La Densidad Crítica del Universo, es decir, toda la masa que contiene, determinará en qué Universo estamos: Cerrado, Abierto, Plano.

La fuerza de la Gravedad está presente por todo el Universo. Es la responsable de formar nuevas estrellas en las Nebulosas, de tener nuestros pies pegados a la superficie del planeta, de mantener unidos los planetas al Sol, las estrellas en las galaxias, las galaxias en los cúmulos y los cúmulos en los super-cúmulos.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado anteriormente para comprender que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Historia del Universo.

El equipo del WMAP ha informado de la primera detección directa de la pre-estelar de helio, proporcionando una prueba importante para la predicción del Big Bang

 Una de las predicciones clave del modelo del big bang caliente es que la mayoría del helio en el universo fue sintetizado en el universo primitivo caliente sólo unos minutos después del Big Bang. Anteriormente, los cosmólogos estudiaron viejas estrellas para inferir la abundancia de helio antes de que hubiera estrellas. Los datos de WMAP, en combinación con la menor escala de datos de los experimentos de ACBAR y cuádruples, muestran los efectos del helio en los patrones de microondas en el cielo, lo que indica la presencia de helio mucho antes de las primeras estrellas.

Composición del Universo

Sobre la composición del Universo, algunos han llegado a decir: “Podemos concretar de manera muy exacta con resultados fiables de los últimos análisis de los datos enviados por WMAP que, estos resultados, muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a escala que coincide con las predicciones de los modelos inflacionarios más generales.” (¿)

 

Munca he estado de acuerdo con este reparto. Es inadmisible que, se le otorgue el mayor índice a una materia que no hemos visto, no sabemos lo que es, ni tenemos idea de cómo se generó, o con qué clase de partículas está conformada, o, …muchas más incognitas que continúan sin tener una respuesta y, sin embargo, ahí estamos erre que erre con la dichosa “materia oscura” que debe entenderse como: ¡No tenemos ni idea del por qué, las galaxias se alejan las unas de las otras a la velocidad que lo hacen y que no es coincidente con la materia que vemos!

Así y según los cosmólogos, el universo (se supone) estaría compuesto de un 4 por 100 de materia bariónica, un 23 por 100 de materia oscura no bariónica y un 73 por 100 de energía oscura. Además, los datos dan una edad para el universo que está en 13’7 ± 0’2 ×109 años, y un tiempo de 379 ± 8×103 años para el instante en que se liberó la radiación cósmica de fondo. Otro resultado importante es que las primeras estrellas se formaron sólo 200 millones de años después del Big Bang, mucho antes de lo que se pensaba hasta ahora.

Claro que, todo eso, ¡se supone!

emilio silvera

Nuestro lugar en el Universo…¿cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear restrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

 

William Thomson (Lord Kelvin)


En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

emilio silvera

Observar la Naturaleza… da resultados

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las coincidencias deben ser vigiladas y, cuando se dan, buscar el origen de las mismas nos puede llevar a desvelar secretos profundamente escondidos en la Naturaleza. Ya hemos hablado aquí alguna vez de la coincidencia de Grandes Números entre Constantes de la Naturaleza y lo que de ello opinaba aquel personaje extraño que, lo mismo se sentía cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida.

Robert Dicke era su nombre y tenía los intereses científicos más amplios y diversos que imaginarse pueda, el decía que al final del camino todos los conocimientos convergen en un solo punto, el saber.

 

[proyeccion_estereografica.GIF]

 

 

Así de curioso, ya podéis imaginar que fue uno de los que, de inmediato se puso manos a la obra para comprobar la idea de la constante gravitatoria variable de Dirac que podía ser sometida a una gran cantidad de pruebas observacionales, utilizando los datos de la geología, la paleontología, la astronomía, la física de laboratorio y cualquier otro que pudiera dar una pista sobre ello.  No estaba motivado por el deseo de explicar los Grandes Números.  Hacía mediados de la década de los 60 hubo una motivación adicional para desarrollar una extensión de la teoría de la gravedad de Einstein que incluye una G variable.  En efecto, durante un tiempo pareció que las predicciones de Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía encuentra la forma ligeramente achatada del Sol.

Robert Dicke, y su estudiante de investigación Carl Brans, en 1.961, demostraron que si se permitía una variación de G con el tiempo, entonces podía elegirse un ritmo de cambio para tener un valor que coincidiera con las observaciones de la órbita de Mercurio.  Lamentablemente, se descubrió que todo esto era una pérdida de tiempo.  El desacuerdo con la teoría de Einstein a inexactitudes de nuestros intentos de medir el diámetro del Sol que hacían que este pareciera tener una forma de órbita diferente a la real.  Con su turbulenta superficie, en aquel tiempo, no era fácil medir el tamaño del Sol.  Así que, una vez resuelto este problema en 1.977, desapareció la necesidad de una G variable para conciliar la observación con la teoría.

De todas las maneras, lo anterior no quita importancia al trabajo realizado por Dicke que preparó una revisión importante de las evidencias geofísicas, paleontológicas y astronómicas a favor de posibles variaciones  de las constantes físicas tradicionales.  Hizo la interesante observación de explicar los “Grandes Números” de Eddington y Dirac bajo el apunte de que, allí tenía que subyacer algún aspecto biológico que de momento no éramos capaces de ver.

 

La hipótesis de un gran número de Dirac (LNH) se refiere a una observación hecha por Paul Dirac en 1937 coeficientes relativos de las escalas de tamaño en el Universo a la de las escalas vigentes. Las proporciones constituyen muy grandes números adimensionales: en 40 órdenes de magnitud en la época cosmológica actual. Según la hipótesis de Dirac, la aparente equivalencia de estas proporciones no puede ser una mera coincidencia, sino que podría implicar una cosmología con estas características inusuales:

  • La fuerza de la gravedad, representado por la constante gravitacional , es inversamente proporcional a la edad del universo: G \ propto 1 / t \,;
  • La masa del universo es proporcional al cuadrado de la edad del universo: M \ propto t ^ 2.

“El problema del gran tamaño de estos números es ahora fácil de explicar…  Hay un único número adimensional grande que tiene su origen estático.  Este es el número de partículas del Universo.  La edad del Universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… [porque cambio en los valores de grandes números] impedirían la existencia del hombre para considerar el problema”.

La evolución del Universo, sus transiciones de fases, la construcción natural de elementos pesados y más complejos en el seno de las estrellas y en las explosiones supernovas, todo ello, nos llevó a que la materia pudiera adquirir la capacidad químico biológica necesaria para la vida.

Sigamos con el personaje. Cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los Grandes Números de Dirac, en una breve carta que se publicó en la revista Nature.  Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono,  nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal.  (El argumento se aplica con la misma fuerza o cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio.)  Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio,  de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.

           El polvo de las estrellas, ahí se guarda el secreto de la vida y de la energía del Universo

Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la Naturaleza sean:

 

t(estrellas) ≈ (Gmpr 2/ћc)-1 ћ/mprc2 ≈ 1040 ×10-23 segundos≈ 10.000 millones de años (se necesita ese tiempo de evolución en las estrellas para que, la vida, pueda aparecer en el Universo). No esperaríamos estar observando el Universo en tiempos significativamente mayores que t (estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto.  Tampoco seríamos capaces de ver el Universo en tiempos muchas menores que t (estrellas) porque no podríamos existir. No había estrellas ni elementos pesados como el carbono.  Parece que estamos amarrados por los hechos de la vida biológica para mirar el Universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t (estrellas) desde el Big Bang.

 

 

 

El Universo supo crear a sus propios observadores para que, adquiriéran los conocimientos necesarios y contaran sus virtudes, sus secretos y sus inmensas maravillas. Así pues, el valor que del Gran Número nos dio Dirac N(t) no es en absoluto aleatorio.  Debe tener un valor próximo al que toma N(t) cuando t esta cercano el valor t (estrella). Todo lo que la coincidencia de Dirac dice es que vivimos en un tiempo de la Historia Cósmica posterior a la formación de las estrellas y anterior a su muerte. Esto no es sorprendente.  Dicke nos está diciendo que no podríamos dejar de observar la coincidencia de Dirac: es un requisito para que exista vida como la nuestra.

           Las estrellas lo hizo posible

De esta forma Dicke nos vino a decir que:

“Para que el Universo del Big Bang contenga las ladrillos básicos necesarios para la evolución posterior de la complejidad biológica-química debe tener una edad al menos tan larga, como el tiempo que se necesita para las reacciones nucleares en las estrellas produzcan esos elaborados elementos.”

Esto significa que el Universo observable debe tener al menos más de diez mil millones de años y por ello, puesto que se está expandiendo, debe tener un tamaño de al menos más de diez mil millones de años luz.  No podríamos existir en un Universo que fuera significativamente más pequeño.

Por mucho que miremos, creo que no podremos ver  el final del Universo. No hay final y, la misma imagen de arriba nos habla del infinito.

Un argumento hermosamente simple con respecto a la inevitabilidad del gran tamaño del Universo para nosotros aparece por primera vez en el texto de las Conferencias Bampton impartidas por el teólogo de Oxford Eric Mascall.  Fueron publicadas en 1956 y el autor atribuye la idea básica a Gerad Whitrow.

Estimulado por las sugerencias Whitrow, escribe:

“Si tenemos tendencia a sentirnos intimidados sólo por el tamaño del Universo, está bien recordar que en algunas teorías cosmológicas existe una conexión directa entre la cantidad de materia en el Universo y las condiciones en cualquier porción limitada del mismo, de modo que en efecto puede ser necesario que el Universo, tenga el enorme tamaño y la enorme complejidad que la astronomía moderna ha revelado para que la Tierra sea un posible habitad para seres vivos.”

Esta simple observación puede ampliarse para ofrecernos una comprensión profunda de los sutiles lazos que existen entre aspectos superficialmente diferentes del Universo que vemos a nuestro alrededor y las propiedades

Claro que, los procesos de la alquimia estelar necesita tiempo: miles de millones de años de tiempo.  Y debido a que nuestro Universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida.  Un Universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión- y no había producido esos elementos básicos para la vida.

                        ¡Qué importante es, este átomo para nosotros!

El Universo tiene la curiosa propiedad de hacer que los seres vivos piensen que sus inusuales propiedades son poco propicias para la vida,  para la existencia de vida,  cuando de hecho, es todo lo contrario, las propiedades del Universo son esenciales para la vida.   Lo que ocurre es que en el fondo tenemos miedo, nos sentimos muy pequeños ante la enorme extensión y tamaño del Universo que nos acoge.

Sabemos aún muy poco sobre sus misterios, nuestras capacidades son limitadas y al nivel de nuestra tecnología actual estamos soportando el peso de una gran ignorancia sobre muchas cuestiones que necesitamos conocer.  Con sus miles de millones de Galaxias y sus cientos de miles de millones de estrellas, si niveláramos todo el material del Universo para conseguir un mar uniforme de materia, nos daríamos cuenta de lo poco que existe de cualquier cosa.  La media de  materia del Universo está en aproximadamente 1 átomo por cada metro cúbico de espacio.  Ningún laboratorio de la Tierra podría producir un vacío artificial que fuera remotamente parecido al vació del espacio estelar.  El vacío más perfecto que hoy podemos alcanzar en un laboratorio terrestre contiene aproximadamente mil millones de átomos por m3.

                                                La densidad de materia en el Universo es muy pequeña

Esta nueva manera de mirar el Universo nos da nuevas ideas, no todo el espacio son agujeros negros, estrellas de neutrones, Galaxias y desconocidos planetas; la verdad es que casi todo el Universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes ( su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son condiciones necesarias para que existan observadores inteligentes como nosotros.  No debería sorprendernos la vida extraterrestre, si existe, pudiera ser tan rara y lejana para nosotros como en realidad nos ocurre aquí mismo en la Tierra, donde compartimos habitad con otros seres vivos con los que hemos sido incapaces de comunicarnos, a pesar de que esas formas de vida, como la nuestra, están basada también en el carbono.  No tenemos el conocimiento necesario como para poder descartar otras formas de vida inteligente basada en otros elementos, como por ejemplo, el silicio, aunque por mi parte, tal eventualidad me parezca extraña.

emilio silvera