jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De lo pequeño a lo grande

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo: Todo Energía    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Sabemos de átomos infinitesimales y de cúmulos de galaxias de inmensidades de materia. Sin embargo, ambos, lo pequeño y lo grande, finalmente resultan ser la misma cosa: Quarks y Leptones. El asombro y el vértigo que siente el ser humano ante lo más grande y lo más pequeño generan en él una curiosidad inexplicable. Esa curiosidad le lleva a preguntarse por aquello que sobrepasa los límites del mundo que conoce a través de los sentidos.

Sabemos que las distancias y tamaños en el Universo son tan grandes que superan nuestra capacidad de comprenderlos y, así, una noche estrellada nos empequeñece.   Curiosamente, en el extremo opuesto, pensar en lo más pequeño no nos hace sentirnos grandes. El mundo de los objetos diminutos parece que no existe porque no lo vemos, y sólo cuando se construyeron los primeros microscopios se pudo descubrir un mundo fascinante, poblado de células, bacterias, virus, moléculas e incluso átomos… El mundo invisible es tan infinito y fascinante como el Universo y aunque, por el hecho de no poder verlo, nos cueste imaginarlo y comprenderlo, es un reto acercarnos a la grandeza de lo pequeño.

                                                                                                                                                    el mundo de lo pequeño

                                                           Las galaxias: el mundo de lo grande

El Universo nos fascina, nos cautiva, nos empequeñece a escalas increíbles… Observar el inmenso espacio que nos rodea, gracias a los avances tecnológicos que nos “acercan” esos objetos, mueve al ser humano a buscar respuestas a las preguntas más elementales desde un punto de vista filosófico, pero también nos lleva por el camino del descubrimiento científico. Un caminar constante hacia el conocimiento que no habría sido posible sin herramientas como los telescopios.

Los nucleótidos (moléculas formadas por un azúcar y un grupo consistente en un átomo de fósforo con cuatro átomos de oxígeno, además de otro grupo llamado “base”) son los componentes esenciales de los ácidos nucleicos (ADN y ARN). El esquema es similar al de las proteínas, donde diferentes ácidos nucleicos son formados por nucleótidos con diferentes azúcares y distintas bases, pudiendo crearse largas cadenas moleculares a partir de moléculas bastante simples.

En el ADN, el azúcar del bloque básico de construcción es la desoxirribosa, lo que le da el nombre de ácido desoxirribonucleico, existiendo sólo cuatro tipos de grupo base asociados a él: Adenina, Timina, Guanina y Citosina. Además, la molécula de ADN está formada por una doble cadena, donde los azúcares y los fosfatos se unen entre sí a lo largo de cada cadena, como si fueran los laterales de una escalera, mientras que las respectivas bases sirven de unión entre ambas, a modo de peldaños, permitiendo únicamente dos opciones de enlace: Adenina con Timina o Guanina con Citosina, constituyendo dicha secuencia el código genético en el que se organiza el funcionamiento celular.

http://1.bp.blogspot.com/_J5dt1YIwtGo/TJe2hXWm2cI/AAAAAAAAACk/xHOOwzNBYmE/s1600/hbonds.gif

Las grandes moléculas de los sistemas vivos tienen una estructura modular mantenida mediante enlaces covalentes y formada esencialmente por tan sólo seis elementos químicos: Carbono, Hidrógeno, Nitrógeno, Oxígeno, Fósforo y Azufre.

Los azúcares (moléculas formadas en torno a un anillo de carbono, oxígeno e hidrógeno) son los bloques de construcción básicos de los carbohidratos. Los almidones y la celulosa están compuestos por cadenas de azúcares (glucosa), siendo utilizados los primeros como almacenamiento de energía y la celulosa como estructura de las paredes celulares vegetales. Las diferencias entre ambas moléculas son tan sutiles como pequeñas variaciones en los enlaces intermoleculares, pero el resultado es tan diferente que nuestro organismo, por ejemplo, puede digerir el almidón y no la celulosa.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Un núcleo atómico cualquiera está constituído básicamente por protones y neutrones. Sin embargo, por que algunos átomos (o isótopos) son estables como el 12C6 y otros como el 14C6 no son estables y sufren decaimiento radioactivo para estabilizarse.

En el núcleo de un átomo existen fuerzas (fuerzas nucleares) que mantienen los protones y neutrones ligados. Estas fuerzas deben ser suficientemente grandes para contrabalancear las repulsiones eléctricas resultantes de la carga positiva de los protones.

Una vez que los neutrones no poseen carga eléctrica. Esto debe ocurrir para explicar la existencia de núcleos atómicos estables. Generalmente se considera que un núcleo atómico es estable, cuando la relación neutrón-protón es igual a la carga del electrón negativa que compensa la positiva del protón y lo estabiliza.

No siempre podemos ver lo que está en el interior de la materia, de las cosas y de nosotros, y, cuando lo podemos contemplar, el asombro se apodera de nuestras mentes al ver la intrincada complejidad que subyace en lo más profundo que no siempre sabemos comprender.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

    Es como visitar otro universo que está dentro de nosotros

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.


EL ATOMO DE CARBONO: Por que es importante el átomo de carbono? El carbono es el elemento alrededor de el cual ha evolucionado la química de la vida. El carbono tiene cuatro electrones de valencia en su capa mas externa, cada uno de los cuales puede parearse con los de otros átomos que puedan completar sus capas electrónicas compartiendo electrones para formar enlaces covalentes. Algunos de estos elementos son el nitrógeno, el hidrógeno y el oxigeno. Pero la característica mas admirable del átomo de carbono, que lo diferencia de los demás elementos y que confirma su papel fundamental en el origen y evolución de la vida, es su capacidad de compartir pares de electrones con otros átomos de carbono para formar enlaces covalentes carbono-carbono. Este fenómeno es el cimiento de la química orgánica. Las proteínas, por ejemplo, corresponden a una sola de esa gran variedad de estructuras formadas mediante el anterior mecanismo.

Si bien sabemos con certeza que los quarks y electrones son más pequeños que 10-18 metros, es posible que ellos no tengan volumen. También es posible que los quarks y electrones no sean fundamentales sino que estén compuestos de partículas más fundamentales. (Vaya! ¿Ésto nunca terminará?)

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Que sepamos, junto con los electrones y neutrinos, son las partículas más pequeñas que existen pero…¿quién sabe?

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

http://4.bp.blogspot.com/_bklXfzOevd0/S9rSbm1R2RI/AAAAAAAAADU/lZgB4r6SSAA/s1600/spp.jpg

Sabíais que… ¿Los supercúmulos son grandes agrupaciones de pequeños cúmulos de galaxias, y se encuentran entre las estructuras más grandes del Universo? ¿Que la existencia de supercúmulos indica que las galaxias en nuestro Universo no están uniformemente distribuidas? ¿Que los supercúmulos varían en tamaño, hasta unos 108 años luz? ¿Que entremezclados entre ellos hay grandes espacios vacíos en los cuales existen pocas galaxias? ¿Que frecuentemente son subdivididos en grupos de cúmulos llamados nubes de galaxias? Sin embargo, toda esa imensidad, está hecha de pequeñas cositas que se llaman Quarks y Leptones.

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad. Si pudiéramos llegar hasta el momento mismo del Big Bang, ¿Qué nos impediría ir un poco más allá y ver de donde surgió todo?

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

Emilio Silvera


  1. Grande o pequeño…¡todo la misma cosa: Quarks y Leptones! : Blog de Emilio Silvera V., el 11 de diciembre del 2012 a las 6:06

    […] mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que […]

  2. Toda la materia está hecha de Quarks y Leptones : Blog de Emilio Silvera V., el 9 de noviembre del 2013 a las 8:16

    […] mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que […]

 

  1. 1
    David
    el 7 de diciembre del 2012 a las 20:10

    Como podríamos detectar señales de fuera de nuestro universo:

    – Para dimensiones mayores a 10 exp + 35 metros… Dimensión de Nuestro Universo
    – Para dimensiones más pequeñas a 10 exp – 35 metros…Dimension de Planck  

    http://matryoshka-dimension.blogspot.com.es/

    Responder
Cerrar respuesta

Responde a David



Comentario:

XHTML

Subscribe without commenting