sábado, 20 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas que te gustaría saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Y los neutrinos? ¿sabes algo de ellos?

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados.

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Sin embargo, atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa; son pura energía que viaja siempre por el espacio a la velocidad de la luz. En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula, pero no hay evidencia concluyente para eso.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico, de la manera siguiente:

Neutrón desintegrado: n → p + e + ve

Protón desintegrado: p → n + e+ + ve

Un ejemplo de esto es la desintegración del carbono-14.

Así fue como se dio a conocer al mundo la existencia de neutrinos.

El mencionar la desintegración me ha traído a la memoria otros materiales que también se desintegran de manera natural y que son materiales fértiles, o que sin serlo, se pueden transformar en otros que sí lo son.

Al hablar de material fértil me estoy refiriendo a núclidos que pueden absorber neutrones para formar material fisible. El uranio-238, por ejemplo, absorbe un neutrón para formar uranio-239, que se desintegra en plutonio-239. Este es el tipo de conversión que la imaginación del hombre hace que ocurra en un reactor reproductor.

Lo explicaré con más detalles:

El uranio-235 es un combustible práctico, es decir, los neutrones lentos son capaces de hacer que el uranio-235 se fisione, o lo que es lo mismo, se rompan sus átomos en dos, produciendo neutrones lentos, que a su vez inducen otras fisiones atómicas. El uranio-233 y el plutonio-239 son también combustibles nucleares prácticos por las mismas razones.

Desgraciadamente, el uranio-233 y el plutonio-239 no existen en estado natural sino en trazas mínimas, y el uranio-235, aunque existe en cantidades apreciables, no deja de ser raro. En cualquier muestra de uranio natural, sólo siete de cada mil átomos son de uranio-235, el resto es uranio-238.

El uranio-238, la variedad común de uranio, no es un combustible nuclear práctico. Así que, el uranio que más abunda en la naturaleza no sirve como combustible nuclear. Podemos conseguir que se fisione, pero sólo con neutrones rápidos. Los átomos de uranio-238 que se rompen en dos, producen neutrones lentos, que no bastan para producir o inducir nuevas fisiones.  El uranio-238 cabría compararlo a la madera húmeda: es posible hacer que arda, pero acabará por apagarse.

Supongamos, sin embargo, que se separa el uranio-235 del uranio-238 (trabajo más bien difícil) y que se utiliza aquel para hacer funcionar un reactor nuclear. Los átomos de uranio-235 que forman el combustible del reactor se fisionan y esparcen miríadas de neutrones lentos en todas direcciones. Si el reactor está rodeado por una capa de uranio ordinario (que en su mayor parte es uranio-238), los neutrones que van a parar allí son absorbidos por el uranio-238 y, aunque no pueden hacer que el uranio-238 se fisione, sí pueden provocar otros cambios que finalmente, producirán plutonio-239. Separando este plutonio-239 del uranio (tarea muy fácil), puede ser utilizado como combustible nuclear practico para la fisión.

De esta manera, el reactor nuclear genera nuevo combustible a partir de un material (uranio-238) que no lo es. Este es el motivo de que al reactor nuclear que hace posible la transformación se le llame “reactor generador”.

Un reactor generador bien diseñado puede producir más plutonio-239 que el uranio-234 consumido para ello. De este modo, las reservas totales de uranio de la Tierra (y no sólo las de uranio-235) se convierten en potenciales de combustible nuclear.

El torio, tal como se da en la naturaleza, consiste todo él en torio-232, que al igual que el uranio-238, no es un combustible nuclear práctico, porque requiere neutrones rápidos para fisionarse. Pero si se coloca torio-232 alrededor de un reactor nuclear, sus átomos absorberán los neutrones y, sin experimentar fisión alguna, se convertirán en átomos de uranio-233. Como el uranio-233 es un combustible práctico que se puede separar fácilmente del torio, el resultado es otra variedad del reactor generador, que convierte las reservas de torio en un combustible nuclear en potencia.

La cantidad total de uranio y de torio que hay en la Tierra es unas 800 veces mayor que las reservas de uranio-235, lo que significa que el buen uso de los reactores generadores podría multiplicar por 800 la oferta potencia de energía extraída de plantas de fisión nuclear.

En este punto, sin dejar de elogiar la inteligencia del hombre que ha sabido encontrar la manera de transformar una materia inservible en otra practica, hay que decir que la energía de fisión nuclear genera también muchos problemas.

Como estará comprobando al lector de este trabajo, el autor ha querido esta vez diversificar los temas y plasmar una variedad múltiple que facilite el conocimiento de distintas cosas que ocurren en la naturaleza, o que la mano del hombre hace que ocurran, y todas estas cuestiones tratadas aquí van encaminadas a resolver preguntas que en alguna ocasión nos hemos podido hacer, tales como:

¿Por qué al calentar un metal se pone primero rojo, luego naranja, después amarillo, pero a continuación blanco en lugar de seguir el espectro y ponerse verde?

Cualquier objeto, a cualquier energía superior al cero absoluto, radia ondas electromagnéticas. Si su temperatura es muy baja, emite sólo ondas de radio largas, muy pobres en energías. Al aumentar la temperatura, radia una cantidad mayor de ondas, pero también empieza a radiar ondas de radio más cortas (y más energéticas). Si la temperatura sigue subiendo, empiezan a radiarse microondas aún más energéticas y después radiaciones infrarrojas.

Esto no quiere decir que a una temperatura dada sólo se emitan ondas de radio largas, un poco más arriba sólo ondas de radio cortas, luego sólo microondas y después sólo infrarrojos. En realidad, se emite toda la gama de radiaciones, pero siempre hay una radiación máxima, es decir, una gama de longitudes de onda que son las más radiadas, flanqueadas por cantidades menores en el lado de las energías bajas y por cantidades todavía más pequeñas en el de las altas.

Cuando un objeto alcanza la temperatura del cuerpo humano (37°C), el máximo de radiación se encuentra en los infrarrojos largos. El cuerpo humano también radia ondas de radio, pero las longitudes de ondas más cortas y más energéticas son siempre las más fáciles de detectar por ser los más potentes.

Cuando la temperatura alcanza aproximadamente los 600°C, el máximo de radiación se halla en el infrarrojo corto. Pero a estas alturas la pequeña cantidad de radiación que se halla en el lado de las energías altas adquiere una importancia especial, porque entra ya en la región de la luz visible roja. El objeto reluce entonces con un rojo intenso.

Este rojo constituye sólo un pequeño porcentaje de la radiación total, pero como da la casualidad de que nuestro ojo lo percibe, le otorgamos toda nuestra atención y decimos que el objeto está al “rojo vivo”.

Si la temperatura sigue subiendo, el máximo de radiación continúa desplazándose hacia las longitudes de ondas cortas y cada vez se emite más luz visible de longitudes cada vez menores. Aunque el objeto radia más luz roja, se van agregando poco a poco luz anaranjada y luz amarilla en cantidades menores pero significativas. Al llegar a los 1.000°C la mezcla de colores la percibimos como naranja, y a los 2.000°C como amarilla. Lo cual no significa que a los 1.000°C sólo se radie luz naranja y a los 2.000°C sólo se radie luz amarilla, porque si fuese así, habría efectivamente que esperar que lo siguiente fuese “color verde”. Lo que en realidad vemos son mezclas de colores.

Al llegar a los 6.000°C (la temperatura superficial del Sol), el máximo de radiación está en el amarillo visible y lo que llega a nuestros ojos son grandes cantidades de luz visible, desde el violeta hasta el rojo. La incidencia simultánea de toda la gama de luz visible sobre nuestra retina nos da la sensación de blanco, y de ahí el color del Sol.

Los objetos más calientes aún que el Sol radian todas las longitudes de ondas de luz visible y en cantidades todavía mayores, pero el máximo de radiación se desplaza al azul, de modo que la mezcla se desequilibra y el blanco adquiere un tinte azulado.

Toda esta travesía se produce para objetos calientes que emiten “espectros continuos”, es decir, que radian luz en la forma de una ancha banda de longitudes de ondas. Ciertas sustancias en condiciones adecuadas, radian sólo luz de determinadas longitudes de onda. El nitrato de bario radia luz verde cuando se calienta, y con ese fin se lo utiliza en los fuegos de artificio,  “calor verde”, podríamos decir.

¡Qué bonito es saber!

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting