martes, 23 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo es nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El universo real está en función de la densidad crítica que es la densidad media de materia requerida para que la gravedad detenga la expansión del universo. Un universo con una densidad muy baja se expandirá para siempre, mientras que uno con densidad muy alta colapsara finalmente. Un universo con exactamente la densidad crítica, alrededor de 10-29g/cm3, es descrito por el modelo de universo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. Pero la densidad media de materia que puede ser observada directamente en nuestro universo no representa la cantidad necesaria para generar la fuerza de gravedad que se observa en la velocidad de alejamiento de las galaxias, que necesita mucha más materia que la observada para generar esta fuerza gravitatoria, lo que nos da una prueba irrefutable de que ahí fuera, en el espacio entre galaxias, está oculta esa otra materia invisible, la “materia oscura”, que nadie sabe lo que es, cómo se genera o de qué esta hecha. Así que, cuando seamos capaces de abrir esa puerta cerrada ante nuestras narices, podremos por fin saber la clase de universo que vivimos; si es plano, si es abierto e infinito, o si es un universo que, por su contenido enorme de materia es curvo y cerrado.

Pero la respuesta a la pregunta, aún sin saber exactamente cuál es la densidad crítica del universo, sí podemos contestarla en dos vertientes, en la seguridad de que al menos una de las dos es la verdadera.

El destino final será:

a)  Si el universo es abierto y se expande para siempre, cada vez se hará más frio, las galaxias se alejarán las unas de las otras, la entropía hará desaparecer la energía y el frio será tal que la temperatura alcanzará el cero absoluto, -273ºK.  La vida no podrá estar presente.

Leer más

El Nacimiento de la Mecánica Cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Necesitaremos paciencia, mucha curiosidad que satisfacer y estar dispuesto a realizar el trabajo necesario. Cuando en 1.900, Max Planck, el físico alemán escribió un artículo sobre la radiación de cuerpo negro que él decía emitirse en paquetes discretos, no continuos, a los que llamó “cuantos”, nadie fue capaz de suponer que allí estaba la semilla de lo que más tarde se conocería como la Teoría de la Mecánica Cuántica que describía a la perfección el sistema matemático que nos descubrió el universo del átomo, de lo muy pequeño, infinitesimal. Por los años de 1.925 y 1.926, Edwin Schrödinger, Werner Heisemberg y otros muchos desarrollaron esta teoría que derribó las barreras de creencias firmes durante siglos.

“Quienquiera que no se sienta conmocionado por la teoría cuántica no la comprende”

Niels Bohr

Aquello fue una auténtica revolución:

1.  Las fuerzas son creadas por el intercambio de paquetes discretos de energía denominados cuantos.

En contraste con la imagen geométrica de Einstein para una “fuerza”, en la teoría cuántica la luz iba a ser dividida en fragmentos minúsculos. Estos paquetes de luz fueron llamados fotones, y se comportaban de forma muy parecida a partículas puntuales. Cuando dos electrones chocan, se repelen mutuamente, no a causa de la curvatura del espacio, sino debido a que intercambian un paquete de energía, el fotón.

Leer más

Sobre las Implicaciones de la Relatividad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  aF > 0,3 a½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Leer más