viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué tiene el record de velocidad en el Universo? ¡La Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La velocidad de la luz

Está claro que la luz se desplaza a enormes velocidades. Si pulsamos el interruptor apagado de la lámpara de nuestro salón, todo queda a oscuras de manera instantánea. La velocidad del sonido es más lenta; por ejemplo, si vemos a un leñador que está cortando leña en un lugar alejado de nosotros, sólo oiremos los golpes momentos después de que caiga el hacha. Así pues, el sonido tarda cierto tiempo en llegar a nuestros oídos. En realidad es fácil medir la velocidad de su desplazamiento: unos 1.206 Km/h en el aire y a nivel del mar.

Galileo fue el primero en intentar medir la velocidad de la luz. Se colocó en lo alto de una colina, mientras que su ayudante se situaba en otro lugar alto de la colina vecina; luego sacó una linterna encendida. Tan pronto como su ayudante vio la luz, hizo una señal con otra linterna. Galileo repitió el experimento a distancias cada vez mayores, suponiendo que el tiempo requerido por su ayudante para responder mantendría una uniformidad constante, por lo cual, el intervalo entre la señal de su propia linterna y la de su ayudante representaría el tiempo empleado por la luz para recorrer cada distancia. Aunque la idea era lógica, la luz viajaba demasiado aprisa como que Galileo pudiera percibir las sutiles diferencias con un método tan rudimentario.

En 1676, el astrónomo danés Olaus Roemer logró cronometrar la velocidad de la luz a escala de distancias astronómicas. Estudiando los eclipses de Júpiter en sus cuatro grandes satélites, Roemer observó que el intervalo entre eclipses consecutivos era más largo cuando la Tierra se alejaba de Júpiter, y más corto cuando se movía en su órbita hacia dicho astro. Al parecer, la diferencia entre las duraciones del eclipse reflejaba la diferencia de distancias entre la Tierra y Júpiter. Y trataba, pues, de medir la distancia partiendo del tiempo empleado por la luz para trasladarse desde Júpiter hasta la Tierra. Calculando aproximadamente el tamaño de la órbita terrestre y observando la máxima discrepancia en las duraciones del eclipse que, según Roemer, representaba el tiempo que necesitaba la luz para atravesar el eje de la órbita terrestre, dicho astrónomo computó la velocidad de la luz. Su resultado, de 225.000 Km/s, parece excelente si se considera que fue el primer intento, y resultó bastante asombroso como para provocar la incredulidad de sus coetáneos.

Sin embargo, medio siglo después se confirmaron los cálculos de Roemer en un campo completamente distinto. Allá por 1728, el astrónomo británico James Bradley descubrió que las estrellas parecían cambiar de posición con los movimientos terrestres; y no por el paralaje, sino porque la traslación terrestre alrededor del Sol era una fracción mensurable (aunque pequeña) de la velocidad de la luz. La analogía empleada usualmente es la de un hombre que camina con el paraguas abierto bajo un temporal. Aun cuando las gotas caigan verticalmente, el hombre debe inclinar hacia delante el paraguas, porque ha de abrirse paso entre las gotas. Cuanto más acelere su paso, tanto más deberá inclinar el paraguas. De manera semejante, la Tierra avanza entre los ligeros rayos que caen desde las estrellas, y el astrónomo debe inclinar un poco su telescopio y hacerlo en varias direcciones, de acuerdo con los cambios de la trayectoria terrestre (no olvidemos que nuestro planeta Tierra es como una enorme nave espacial que nos lleva en un viaje eterno, alrededor del Sol, a la velocidad de 30 Km/s). Mediante ese devío aparente de los astros (“aberración de la luz”), Bradley pudo evaluar la velocidad de la luz y calcularla con gran precisión. Sus cálculos fueron de 285.000 Km/s, bastante más exactos que los de Roemer, pero aún un 5’5% más bajos.

Poco a poco, con medios tecnológicos más sofisticados y más conocimientos matemáticos, los científicos fueron obteniendo medidas más exactas aún, conforme se fue perfeccionando la idea original de Galileo y sus sucesores.

En 1849, el físico francés Armand-Hippolyte-Louis Fizean ideó un artificio mediante el cual se proyectaba la luz sobre un espejo situado a 8 Km de distancia, que devolvía el reflejo al observador. El tiempo empleado por la luz en su viaje de ida y vuelta no rebasó apenas la 1/20.000 de segundo, pero Fizean logró medirlo colocando una rueda dentada giratoria en la trayectoria del rayo luminoso. Cuando dicha rueda giraba a cierta velocidad, la luz pasaba entre los dientes y se proyectaba contra el siguiente, al ser devuelta por el espejo; así, Fizean, colocando tras la rueda, no pudo verla. Entonces se dio más velocidad a la rueda y el reflejo pasó por la siguiente muesca entre los dientes, sin interacción alguna. De esa forma, regulando y midiendo la velocidad de la rueda giratoria, Fizean pudo calcular el tiempo trascurrido y, por consiguiente, la velocidad a la que se movía el rayo de luz.

Un año más tarde, Jean Foucault (quien realizaría poco después su experimento con los péndulos) precisó más estas medidas empleando un espejo giratorio en vez de una rueda dentada. Entonces se midió el tiempo transcurrido desviando ligeramente el ángulo de reflexión mediante el veloz espejo giratorio. Foucault obtuvo un valor de la velocidad de la luz de 300.883 Km/s. También el físico francés utilizó su método para determinar la velocidad de la luz a través de varios líquidos. Averiguó que era notablemente inferior a la alcanzada en el aire. Esto concordaba con la teoría ondulatoria de Huyghens.

Michelson fue más preciso aún en sus medidas. Este autor, durante cuarenta años largos a partir de 1879, fue aplicando el sistema Fizean-Foucault cada vez con mayor refinamiento, para medir la velocidad de la luz. Cuando se creyó lo suficientemente informado, proyectó la luz a través del vacío, en vez de hacerlo a través del aire, pues éste frena ligeramente su velocidad, y empleó para ello tuberías de acero cuya longitud era superior a 1’5 Km. Según sus medidas, la velocidad de la luz en el vacío era de 299.730 Km/s (sólo un 0’006% más bajo). Demostraría también que todas las longitudes de ondas luminosas viajan a la misma velocidad en el vacío.

En 1.972 un equipo de investigadores bajo la dirección de Kenneth M. Evenson efectuó unas mediciones aún más exactas y vio que la velocidad de la luz era de 299.727’74 Km/s. Una vez se conoció la velocidad de la luz con semejante precisión, se hizo posible usar la luz, o por lo menos formas de ella, para medir distancias.

Aunque para algunos resulte algo tedioso el tema anterior, no he podido resistirme a la tentación de exponerlo; así podrá saber algo más sobre la luz, y habrán conocido a personajes que hicieron posible el que ahora nosotros la conozcamos mejor.

Podría continuar hasta el final de este trabajo hablando de la luz y sus distintas formas o aplicaciones: ondas de luz a través del espacio, de cómo se transmite la luz en el “vacío”, nos llega a través del espacio desde galaxias situadas a miles de millones de años luz; las líneas de fuerzas electromagnéticas de Faraday y Maxwell de campos eléctricos y magnéticos cambiantes (todo ello explicado en un simple conjunto de cuatro ecuaciones, que describían casi todos los fenómenos referentes a esta materia electromagnética), o de los enigmas aún por descubrir (aunque predichos).

En 1931, Dirac, acometiendo el asunto de una forma matemática, llegó a la conclusión de que si los monopolos magnéticos existían (si existía siquiera uno en cualquier parte del universo), sería necesario que todas las cargas eléctricas fuesen múltiplos exactos de una carga más pequeña, como en efecto así es. Y dado que todas las cargas eléctricas son múltiplos exactos de alguna carga más pequeña, ¿no debería, en realidad, existir los monopolos magnéticos?

En 1974, un físico neerlandés (yo lo he mencionado antes en este mismo trabajo), Gerard’t Hooft, y un físico soviético, Alexander Poliakov, mostraron independientemente que podía razonarse, a partir de las grandes teorías unificadas, que los monopolos magnéticos debían así mismo existir, y que debían poseer una masa enorme. Aunque un monopolo magnético sería incluso más pequeño que un protón, debería tener una masa que sería de 10 trillones a 10 cuatrillones mayor que la del protón. Eso equivaldría a la masa de una bacteria comprimida en una diminuta partícula subatómica.

Semejantes partículas sólo podían haberse formado en el momento de la gran explosión (otra vez volvemos al origen). Desde entonces no ha existido la suficientemente alta concentración de energía necesaria para formarla. Esas grandes partículas deberían avanzar a unos 225 Km/s, aproximadamente, y la combinación de una enorme masa y un pequeño tamaño le permitiría deslizarse a través de la materia sin dejar el menor rastro de presencia. Esta propiedad, de hecho, está relacionada directamente con el fracaso obtenido en su búsqueda. Los físicos están tratando de idear un mecanismo capaz de poder detectar con claridad el paso de monopolos magnéticos.

Podríamos decir que un monopolo magnético es una entidad magnética consistente en un polo norte o sur elemental aislado. Ha sido postulado como una enorme fuente de campo magnético en analogía a la forma en que las partículas eléctricamente cargadas producen un campo eléctrico.

Se han diseñado numerosos experimentos ingeniosos para detectar monopolos, pero hasta ahora ninguno ha producido un resultado definitivo. Los monopolos magnéticos son predichos en ciertas teorías gauge con bosones de Higgs. En particular, algunas teorías de gran unificación predicen monopolos muy pesados (con masas del orden de 1016 GeV). Los monopolos magnéticos también son predichos en las teorías de Kaluza-Klein (5 dimensiones) y en teoría de supercuerdas (10 y 26 dimensiones).

Yo no descarto nada, acordaos de los Premios Nóbel de Física de 2.004 que fue repartido entre tres físicos y versaba sus trabajos sobre la libertad asintótica de los Quarks. Pués bien, dicho trabajo databa de 30 años antes y, hasta que no se comprobó su exactitud no fueron reconocidos. Así mismo podría pasar con los monopolos magnéticos de Dirac. ¿Quién sabe? El Universo nos tiene reservadas muchas sorpresas.

emilio silvera

 

  1. 1
    gerardo perez
    el 6 de enero del 2010 a las 23:26

    estimado don Emilio con un cordial saludo te comento que tengo entendido que los monopolos fueron creados poco antes o durante la inflacion, por lo tanto actualmente quedarian pocos o ninguno y solo podrian ser creados en un laboratorio ¿es  correcto lo anterior?., por otro lado hay una teoria (que recomiendo darle una lactura) que niega su existencia, es un libro de fisica en linea gratis “teoria de equivalencia gloval” espero le des una pasadita

    saludos y un fuerte abrazo

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Responder
  2. 2
    emilio silvera
    el 7 de enero del 2010 a las 21:09

    Amigo Gerardo Pérez, para hablarte de los monopolos magnéticos  tendríamos que empezar por el confinamiento permanente de los Quarks y las fuerzas de color pero, meterse ahora en eso, sería demasiado complejo y hasta farragoso.

    El monopolo magnético predicho por Dirac, ahora sabemos que no existe (al menos nunca nadie ha podido ver ninguno ni descubrirlo en los experimentos), se han utilizado en modelos de superconductores que no toleran ni campos eléctricos ni magnéticos pero no se puede hacer lo mismo con un monopolo que cambia el sentido de todo ese entramado superconductor.

    Algún día, me tendré que detener y hablar extensamente de los monopolos magnéticos, de Dirac y de Nielsen, Olesen y Zunino que obtuvieron un modelo para los quarks como un tipo de monopolo magnético que en el espacio sería un superconductor.

    Te prometo que pronto, dejaré un trabajo sobre el tema para que, de manera extensa y completa, te puedas hacer una idea más fidedigna de lo que sería un monopolo magnético y, también te hablaré del número puro y adimensional 137 que guarda los secretos del magnetismo de Maxwell, el electrón (e-), de la constante de Planck (h) y de la Relatividad especial (c).

    De tal manera es así que, si vinieran físicos del 8º planeta del primer Sistema solar de Andrómeda, cuando hiucieran los cálculos que ellos tuvieran para la carga del electrón, para la constante de Planck, h, y, para la velocidad de la luz, c, el resulotado sería el mismo: 137 Número puro y adimesional que, al ser un número de la Naturaleza y no de los hombres, siempre se rige por las leyes unioversales que nadie pueden cambiar.

    Ya te dejaré esos comentarios prometidos.

    Un abrazo amigo.

    Responder
  3. 3
    Crusellas
    el 8 de enero del 2010 a las 1:23

    Hola, Emilio. Yo te animo a que nos hables del famoso “137”, y de la extraña casualidad para que tenga ese valor. De no ser así, no existiría ni la materia ni el Universo ¿puede haber universos con otro valor numérico? Yo la verdad tengo las ideas bastante confusas al respecto.

    Espero ansioso tu explicación.

    Un abrazo.

    Responder
  4. 4
    gerardo perez
    el 8 de enero del 2010 a las 16:26

    Mi muy esimado amigo don Emilio no solo eres sin duda un intelectual y un excelente escritor , sino TODO UN TORERO holeeee. Espero que todo el 2010 nos sigas regalando tu intelecto en tus escritos y comentarios. Un fuerte y caluroso abrazo.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting