sábado, 17 de abril del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un simple recuerdo para Max Planck

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Siempre me llamó la atención y se ganó mi admiración el físico alemán Max Planck (1858-1947), responsable, entre otros muchos logros, de la ley de radiación de Planck que, da la distribución de energía radiada por un cuerpo negro. Introdujo en Física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua.

Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este trabajo para a su vez, presentar el suyo propio sobre el efecto fotoeléctrico donde la energía máxima cinética del fotoelectrón, Em’ esta dada por la ecuación que lleva su nombre:

Planck publicó en 1900, un artículo sobre la radiación de cuerpo negro que, sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisemberg, Schrördinger, Dirac, Feymann, etc.

Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de la física.

Pongamos un par de ejemplos de su ingenio:

1) Longitud de Planck:  vale 10-35 metros

Esta escala de longitud (veinte (20) ordenes de magnitud menor que el tamaño del protón 10-15 m.) es a la que la descripción clásica de la gravedad cesa de ser válida y deber ser tenida en cuenta la mecánica cuántica.

En la formula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

Leer más

El nucleo atomico de Rutherford

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la Naturaleza y, la innegable batalla mantenida, a lo largo de la historia, por los científicos para descubrirlos.

Hacia 1900 se sabía que el átomo no era una partícula simple e indivisible-invisible, como predijo Demócrito, pues contenía, por lo menos, un corpúsculo subatómico: el electrón, cuyo descubridor fue J.J.Thomson, el cual supuso que los electrones se arracimaban con uvas en el cuerpo principal del átomo de carga positiva.

Poco tiempo después resultó evidente que existían otras partículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas.

Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra, detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó “rayos alfa”, y denominó “rayos beta” a la emisión de electrones.

Los electrones volantes constitutivos de esta última radiación son, individualmente, “partículas beta”. Así mismo, se descubrió que los rayos alfa estaban formados por partículas, que fueron llamadas “partículas alfa”. Como ya sabemos, “alfa” y “beta” son las primeras letras del alfabeto griego y se escriben con los gráficos a y ß.

Entretanto, el químico francés Paul Verich Villard descubría una tercera forma de emisión radiactiva, a la que dio el nombre de “rayos gamma”, es decir, la tercera letra del alfabeto griego . Pronto se identificó como una radiación análoga a los rayos x, aunque de menor longitud de onda.

Mediante sus experimentos, Rutherford comprobó que un campo magnético desviaba las partículas alfa con mucho menos fuerza que las partículas beta. Por añadidura, las desviaba en dirección opuesta. La cual significaba que la partícula alfa tenía una carga positiva, es decir, contraria a la negativa del electrón. La intensidad de tal desviación permitió calcular que la partícula alfa tenía como mínimo, una masa dos veces mayor que la del hidrogenión cuya carga positiva era la más pequeña conocida hasta entonces.

Leer más