jueves, 03 de julio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nebulosas Moleculares Gigantes

Autor por Emilio Silvera    ~    Archivo Clasificado en Nebulosas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Boletines

Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares. Las NMGs (Nebulosas moleculares gigantes) consisten mayoritariamente  en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio (He, 25%), partículas de polvo 1%, Hidrógeno atómico neutro (H I, menos del 1%) y un rico cóctel de moléculas interestelares (menos  del 0,1 %).

 

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

Arriba podemos contemplar la grandiosa Nebulosa Molecular Orión. Nuestra Galaxia contiene más de 3 000 NMGs, estando las más masivas situadas cerca de la radiofuente Sagitario B2 en el Centro Galáctico. Comprenden la mitad de la masa de toda la materia interestelar, aunque ocupan menos del 1% de su volumen. La densidad de gas promedio es de unas pocas miles de moléculas por cm3.

 

Las Nebulosas Moleculares Gigantes se encuentran mayoritariamente en los Brazos Espirales de las galaxias de disco, y son el lugar de mayor nacimiento de estrellas masivas. Este tipo de Nebulosas perduran durante más de 30 millones de años, tiempo durante el cual, sólo una pequeña fracción de su masa es convertida en estrellas. La Nebulosa Molecular Gigante más próxima a nosotros se encuentra en Orión, y está asociada a la Nebulosa de Orión que más arriba podéis ver con sus claros y llamativos colores rojo, azulado y el espeso marrón oscuro molecular, todo ello, adornado por estrellas que brillan ionizando extensas regiones con sus potentes radiaciones ultravioletas.

 

 

Arriba una imagen de  NGC 7822 que se asemeja a una gran boca abierta llena de estrellas nuevas. Dentro de la nebulosa, bordes brillantes y formas oscuras se destacan en este paisaje colorido. Oxígeno atómico, hidrógeno y azufre en tonos azul, verde y rojo. Aquí se forman estrellas de manera continuada y van transformando el lugar con los fuertes vientos solares y la radiación de estrellas masivas. Con un diametro de 60 años-luz, la Nebulosa perdura en el espacio interestelar como si de un laboratorio natural se tratara, creando nuevos objetos y transformando la materia. Ahí se mezclan los gases Hidrógeno, Helio, Carbono, Nitrógeno, Oxígeno y otras pequeñas porciones de otros elementos que, forman moléculas que, a veces, alcanzar el nivel necesario para convertirse en los ladrillos necesarios para la vida.

 

Estrellas y pilares de polvo en NGC 7822 desde el WISE

NGC 7822 parece llena de estrellas jóvenes y calientes y de pilares de gas y de polvo.

   Hermosa Nube Molecular en la Constelación de Cefeo donde ya se han creado cientos de miles de estrellas. Las Nebulosas son el producto residual de las estrellas gigantes y masivas cuando llegan al final de sus vidas y explotan en Súper-Novas, las capas exteriores de la estrella salen eyectadas hacia el espacio interestelar para formar la Nebulosa mientras que, la parte principal de la masa, implosiona, es decir, se contrae sobre sí misma bajo el peso de su propia masa para formar una estrella de neutrones o un agujero negro.

 

Nubes moleculares gigantes : Blog de Emilio Silvera V.

Moléculas precursoras de la vida

 

Glicina - Wikipedia, la enciclopedia libre

La glicina (Gly, G) es uno de los aminoácidos que forman las proteínas de los seres vivos. En el código genético está codificada como GGT, GGC, GGA o GGG. Es el aminoácido más pequeño y el único no quiral de los 20 aminoácidos presentes en la célula. Su fórmula química es NH2CH2COOH y su masa es 75,07.

La glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

 

“Se van a utilizar y cómo se ordenan para fabricar una proteína se encuentra almacenada en nuestro ADN. Allí está guardado ese mismo ordenamiento y el largo total que va a tener cada proteína. Pero la manera en que se guarda la información en el ADN es bastante diferente, porque sus “ladrillos”, en lugar de ser aminoácidos, son conocidos como nucleótidos, y son bastante diferentes entre sí.”

Ayer en otro trabajo os decía que los átomos se confabulan para formar el sistema complejo de la Vida ¿Será verdad?

Descubren objetos de masa planetaria en Orión. Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glico-aldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

 

Sistemas planetarios formándose en Orión |

El Telescopio Espacial Hubble debidamente programado detecta en la Nebulosa de Orión la formación de lo que se cree son nuevos sistemas planetarios.

Cerca de la Constelación del Cinturón de Orión, cerca de una región rica en formación de nuevas estrellas, se han localizado s varios focos de lo que se cree formaciones de nuevos sistemas planetarios.

En la imagen de arriba se destacan los mosaicos de diversos núcleos protoplanetarios en formación, y, dentro de algunos miles ¿o millones) de años, serán nuevos S.P. y nuevos mundos (también de nuevas formas de vida?

Se observa que unos de esos discos están más alejados que otros de su estrella más cercana, lo que nos hace pensar que cuando sean verdaderos planetas, si están situados en la zona habitable… ¡La Vida estará servida!

Emilio Silvera Vázquez

 

¿El Origen del Universo? ¿Cómo puedo saberlo yo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

No hay ninguna descripción de la foto disponible.

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí desde siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.

 

Imagen cabecera Estamos interconectados: somos partículas estelares

 

Somos parte del Universo (¿estaremos ente unas de las que piensan?, todo lo que somos surgió después de que las estrellas, estuvieran fusionando, durante diez mil millones de años,  los materiales de los que estamos hechos. Desde entonces, estamos conectados al Universo inmenso mediante los hilos invisibles de la Gravedad y el electromagnetismo, y, como estamos conformados por átomos, también en nosotros están presentes las fuerza nucleares débiles y fuerte.

 

Tendrá Memoria el Universo? : Blog de Emilio Silvera V.

A veces mirando la inmensidad estrellada de la noche, me he preguntado: ¿Sabía el Universo que íbamos a venir?

Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no trataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinámica para poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos habitados que, como la Tierra, tienen otras criaturas que también, ellas se preguntan por el principio y el final para poder conocer sus destinos.

 

Surgió el universo de una fluctuación del vacío?Cómo pudo surgir de la nada el Big Bang?

 

Algunos nos dicen que el Universo surgió de la “Nada” y, está claro que la Nada no puede existir y, si surgió es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿Qué duda nos puede caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.

 

El Big Bang y la Creación. Grupo Ciencia, Razón y Fe (CRYF). Universidad de  Navarra

Cada persona imagina las cosas de una manera, ¿Qué mundo sería este si todos pensáramos iguales?

No obstante tales reservas, unos pocos científicos trataron de investigar la cuestión de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, como dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el trabajo realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubrir algo familiar en las mismas fuentes de la creación.

 

 

Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron desde un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, hacia dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y  junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.

 

 

Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años durante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el horno nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha estado evolucionando para que ahora, nosotros, podamos preguntas, por el origen del universo.

 

Científicos crean una 'máquina cuántica' capaz de recrear el fin del  universo

Un equipo de investigadores ha usado una “máquina cuántica” para estudiar un catastrófico suceso espacial que podría cambiar la estructura del universo por completo.

“Una teoría de la física cuántica de hace 50 años sugiere que el universo podría estar atrapado en el llamado falso vacío, un entorno aparentemente estable, y que estar a punto de pasar a un vacío verdadero que lo haría aún más estable. Ahora, un equipo internacional de científicos acaba de publicar un estudio en la prestigiosa revista Nature en el que simulan lo que sucedería en caso de producirse este cambio. La mala noticia es que provocaría una modificación radical de la estructura del universo que tendría efectos catastróficos. La buena es que es probable que se produzca a lo largo de un periodo que podría abarcar millones de años.”

Fuente: Noticias en El Confidencial.

 

Estamos tratando de recrear la creación : Blog de Emilio Silvera V.

 

¿Tratamos de re-crear la Creación? No resultará al final de todos estos intentos, que seremos los responsables de nuestra propia destrucción? La ansiedad por saber y la enorme ignorancia que arrastramos con nosotros… ¡Algún día nos dará un gran susto!

Me ha venido a la memoria una noticia que leí, no hace tanto tiempo, en un Boletín de la RSEF, se refería a nuevas y ambiciosas iniciativas en el campo de la Física para tratar de recrear los primeros instantes del Universo, y, sobre todo, de desvelar los secretos que esconde la materia que, según parece y a pesar de los muchos avances conseguidos… ¡Aún no conocemos!

La Noticia, del año pasado,  decía:

 

Origen del universo: se cumplen diez años de la “Partícula de Dios”

“Europa construirá un acelerador tres veces mayor que el LHC.  Aunque el LHC seguirá funcionando por lo menos durante dos décadas más, Europa ya empieza a pensar en su sucesor: un enorme colisionador con una circunferencia de 100 km (frente a los 27 del LHC) y capaz de alcanzar una energía de 100 TeV, siete veces superior a los 14 TeV a los que puede llegar, como máximo, el LHC. Tras alcanzar el hito de detectar el bosón de Higgs, el LHC está apagado para llevar a cabo tareas de mantenimiento y no volverá a funcionar hasta 2015. El Modelo Estándar incluye a todos los componentes fundamentales de la materia ordinaria pero no dice nada de la materia oscura ni de la energía oscura. “Tenemos muchas esperanzas de que cuando el LHC funcione el año que viene a su máximo nivel de energía podamos tener un primer atisbo de lo que es la materia oscura. Y a partir de ahí determinar los objetivos del próximo gran colisionador”, dice Heuer, Director del CERN.”

Ya estamos en 2.025, y el LHC ha comenzado sus preparativos a mayor energía para tratar de buscar esa dichosa materia oscura de la que todo el mundo habla y de la que nadie sabe decir, a ciencia cierta, de qué está hecha, cómo surgió, por qué no emite radiación y sí gravedad…

Está bien que no dejemos de avanzar y sigamos buscando aquello que desconocemos. La Naturaleza esconde muchos secretos que tratamos de desvelar  y, la hipotética “materia oscura” podría ser uno de ellos. Hablamos y hablamos sobre algo que no sabemos si en realidad será. Tampoco sabemos de que pueda estar conformada, de dónde surgió y por qué, y,  si emite o genera fuerza gravitatoria por qué no emite radiación. En fin, un misterio que sería bueno resolver. Está claro que algo debe haber, una especie de sustancia cósmica que impregna todo el Espacio, es la única manera de explicarse como pudieron formarse las galaxias.

¡100 TeV! ¡100 Km de diámetro!

 

Europa planea la construcción de un «monstruoso» acelerador de partículas  más largo que el canal de Panamá

 

Si cuando se acercaba la hora de puesta en marcha del LHC salieron múltiples organizaciones planteando protestas de todo tipo, incluso alguna se atrevió a decir que el Acelerador tenía tanta energía que crearía un agujero negro que se tragaría a la Tierra. ¿Qué dirán ahora del fututo Acelerador? Seguramente, habrá mucha más algarabía, protestas y un sin fin de manifestaciones de todo tipo. Sin embargo, el futuro… ¡Es imparable!

Los científicos han imaginado y han puesto sobre la mesa para su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.

La Génesis de vacío: El problema central de la cosmología es explicar como algo surge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el Espacio y el Tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sutil. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero esta concepción siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.

 

 

El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. Desde el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.

 

http://francisthemulenews.files.wordpress.com/2008/02/dibujo26ene2008a.jpg

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

 

Energía del vacío: crear electricidad de la nada, ¿es posible?

 

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.

 

http://farm5.static.flickr.com/4025/4516869871_1cd24e4f97.jpg

 

En un nuevo estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas condiciones específicas pero razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.

Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, desde entonces, funciona de manera autónoma como un nuevo universo de los muchos que son en el más complejo Metaverso.

 

El origen del Universo… ¿Cómo puedo saberlo Yo? : Blog de Emilio Silvera V.

 

Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud para convertirse en fluctuaciones significativas a nivel cosmológico.

En el Modelo corriente del big bang que actualmente prevalece y que, de momento, todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó para crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:

 

figaf.png

Y muchas más que hacen que el universo sea tal como lo podemos contemplar

Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal como lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas como transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.

6.006 De La Tierra A La Luna Stock Photos, High-Res Pictures, and Images -  Getty Images | Julio verne

 

Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado desde una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.

 

 

El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esta inmensidad y, precisamente, nos ha tocado desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?

Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?

Emilio Silvera Vázquez

Siempre hay más de lo que podemos “ver”

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber: ¡Ese viaje interminable!    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El blog Ausente: LA EXTRAÑA Y GIGANTESCA AVE SOBRE BARCELONA

Cuando por primera vez supe de la existencia en el lejano pasado de estos increíbles animales, el asombro y la maravilla me visitaron,  y, mis pensamientos viajaron por el país de la fantasía, imaginando lo qu hubiera pasado con nuestra especie si hubiera sido coetánea de ellos.

Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés. Nuestra curiosidad nos llama a desentrañar los misterios y secretos que tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar ocurriendo ahora, o, en el futuro pudieran suceder, ya que, de alguna manera, todas ellas tienen que ver con nosotros.

 

 

Brazos de la Vía Láctea - Wikipedia, la enciclopedia libre

El Brazo de Orión -El Sistema solar se encuentra situado en su interior

El Cinturón de Gould es un sector del Brazo de Orión. El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista, en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión, jamás.

 

Nubes moleculares en Cinturón de Gould
El Cinturón de Gould


El anillo recibe su nombre en honor a Benjamin Gould, quien lo identificó en 1879 en Uranometría Argentina. Se trata de un fragmentado anillo de unos 3.000 años luz de diámetro. Contiene brillantes estrellas jóvenes tipo O y B y se aloja dentro del Brazo Local de la Vía Láctea.  Nuestro Sol parece estar casi en el centro del Cinturón. El Cinturón de Gould es un vasto anillo de activas guarderías estelares, jóvenes estrellas y nubes moleculares que rodea al Sistema Solar.

 

j1

“En cada ser humano concurren, al menos, 59 elementos de la tabla periódica. Apenas nos preguntamos como cada uno de estos elementos, con sus distintas propiedades físicas y químicas, se han formado y unido para hacer posible que, por ejemplo, átomos de carbononitrógeno e hidrógeno (entre otros) sean capaces de pulsar unas teclas de un ordenador para escribir estas líneas, mientras otras de hierro distribuyen las cantidades necesarias de oxígeno por todo el cuerpo para ser capaces de seguir manteniendo un organismo con vida.”

 

1. ¿Qué somos? ¿Un conjunto de células? | CT2 - Tema 1.1: Somos lo que  comemos. Las personas y la salud: ¿Qué somos? ¿Somos lo que comemos?

Se ha discutido, argumentado y teorizado sobre la vida durante siglos, quizás milenios. Lo que conocemos como vida es ni más ni menos que una estructura formada de átomos que se han organizado y que lograron crear mecanismos que les permiten mantener esa organización. Decir que los átomos “se han organizado” es una locura. En el mundo material no hay nada más básico que un átomo, y algo tan básico no es capaz de hacer algo tan complejo como “organizarse”.

¿O sí?

 

Célula animal: qué es, partes y funciones - Resumen con esquemas

    Una célula es un sistema muy complejo (célula animal)

La realidad es que sí. Los átomos, en cumplimiento de leyes físicas simples, se organizan en estructuras. La más sencilla es una molécula, que puede estar formada por algunos átomos, pero se llega a estructuras bastante complejas y ordenadas, como los cristales y fibras

 

naturales y maravillosas formas como las  BuckyballsBuckyballs es el nombre coloquial utilizado para describir un fullereno. Los avances logrados por la Humanidad, son tan grandes que, estando a nuestro alrededor, no somos conscientes de su verdadero alcance.

 

Nanotubos, ¿qué fue de ellos?, el espacio donde cabe lo imposible |  Ambiente Plástico

Nanomateriales aplicados a dispositivos electrónicos y los tres tipos de geometrías de nanotubos de carbono. 

En los últimos años, la ciencia de materiales ha registrado un avance revolucionario que promete transformar la trayectoria de múltiples industrias: los nanotubos de carbono.

 

Esta película de nanotubos de carbono ofrece flexibilidad y mayor  resistencia que el Kevlar

Potencial inimaginable

 

Descubren fullerenos en una región de formación estelar de Perseo |  Instituto de Astrofísica de Canarias • IAC

Un estudio realizado por la investigadora del IAC Susana Iglesias-Groth detecta moléculas de carbono puro en una de las regiones de formación estelar más próximas al Sistema Solar. Los resultados de este trabajo se han publicado recientemente en la revista Monthly Notices of the Royal Astronomical Society. 

La detección realizada por Iglesias-Groth se basa en la identificación en datos tomados con el satélite Spitzer de la NASA de las transiciones vibracionales en emisión y en el infrarrojo medio de ambos fullerenos, C60 y C70, en los espectros de estrellas con discos protoplanetarios y en espectros  obtenidos en varias ubicaciones interestelares distribuidas en la región IC 348.

 

Historia y evolución de los nanomateriales - Historia de los materiales

Estas estructuras cilíndricas a nanoescala han capturado la atención de investigadores y científicos de todo el mundo debido a sus propiedades únicas y su potencial ilimitado.

Los nanotubos de carbono son tubos huecos formados por átomos de carbono dispuestos en una estructura hexagonal. Su tamaño es extremadamente pequeño, con diámetros del orden de nanómetros, y su longitud proporcionalmente mayor los convierten en estructuras increíblemente versátiles.

Su descubrimiento en la década de 1990 por los científicos Sumio Iijima y Donald S. Bethune ha llevado a una explosión de investigación y desarrollo en este campo.

 

Gravedad y mecánica cuántica confluyen respetando a Einstein - Infobae

“Físicos del UCL (University College London) han presentado una teoría radical que unifica consistentemente gravedad y mecánica cuántica preservando el concepto de espacio-tiempo de Einstein. La física moderna se basa en dos pilares: por un lado, la teoría cuántica, que gobierna las partículas más pequeñas del universo, y por el otro, la teoría de la relatividad general de Einstein, que explica la gravedad mediante la curvatura del espacio-tiempo. Pero estas dos teorías están en contradicción y una reconciliación ha sido difícil de alcanzar durante más de un siglo. La suposición predominante ha sido que la teoría de la gravedad de Einstein debe modificarse o “cuantizarse” para que encaje dentro de la teoría cuántica. Este es el enfoque de dos candidatos destacados para una teoría cuántica de la gravedad, la teoría de cuerdas y la gravedad cuántica de bucles. Pero una nueva teoría, desarrollada por el profesor Jonathan Oppenheim y presentada en un nuevo artículo en Physical Review X, desafía ese consenso y adopta un enfoque alternativo al sugerir que el espacio-tiempo puede ser clásico, es decir, no está gobernado por la teoría cuántica en absoluto. En lugar de modificar el espacio-tiempo, la teoría -denominada “teoría poscuántica de la gravedad clásica”- modifica la teoría cuántica y predice una ruptura intrínseca de la previsibilidad mediada por el propio espacio-tiempo.”

Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.

 

 

Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética. No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Pero sigamos.

 

Claro que nada de esto se aproxima al nivel de organización que implica la vida. Recordemos ahora la parte de la frase sobre los átomos que dice “lograron crear mecanismos”, lo cual jamás puede ser cierto… al menos no en la forma directa que uno se imagina al primer momento. Un virus, por ejemplo, es una especie de “máquina” capaz de propagarse. No de reproducirse, al menos no en el sentido que se le da a la palabra en biología, pero sí de activar un mecanismo que permite obtener copias de sí mismo.

Niveles de organización abióticos:

  • Nivel subatómico.
  • Nivel atómico.
  • Nivel molecular.
  • Macromoléculas.
  • Complejos supramoleculares.
  • Orgánulos celulares.

Siguen:

Niveles de organización bióticos:

  • Nivel celular.
  • Células procariotas.
  • Células eucariotas.
  • Nivel pluricelular.

Que conllevan:

  • Tejidos.
  • Órganos.
  • Sistemas.
  • Aparatos.

Ácido desoxirribonucleico - Wikipedia, la enciclopedia libre

Se ha reseñado una pequeña relación de lo mucho que está implicado en la conformación de la vida, lo que los átomos “han tenido que discurrir” para llegar tan lejos, y, no hemos querido entrar en el ARN y el ADN, o, en las Neuronas del cerebro…

 

El cerebro y nuestra alimentación | Frutos Secos Manzanares

¿Cómo se podrían haber puesto de acuerdo los átomos para formar la “máquina” más perfecta del Universo?

 

Coronavirus: por qué no todos los virus son malos para nuestra salud - BBC  News Mundo

 

https://youtu.be/1E9WKiqEIFw

Los virus infectan tanto células como bacterias porque no pueden multiplicarse por sí mismos. Al hacerlo, usan las moléculas y enzimas de su desafortunado hospedero para replicar su genoma y construir sus cápsulas virales, las cuales son muy parecidas a unas sondas espaciales pero que, en este caso, sólo transportan ADN o ARN con el único fin de repetir el ciclo en otra víctima.

Antes de seguir quiero hacer una salvedad: todo lo que diga encontrará alguien para discutirlo. Los conceptos básicos que se aplican a la vida aún no están del todo definidos. Por ejemplo, sé que hay corrientes de pensamiento para las cuales lo virus no son seres vivos. De acuerdo, sólo es cuestión de definiciones, y no es necesario —ni posible— discutirlas aquí. Yo prefiero incluir a los virus en este análisis porque son algo así como el primer nivel de estructura a discutir (sí, sé que existen estructuras menores, pero no con tanta entidad).

 

 

Siguiendo en la línea que venía, la cuestión es que parece haber una barrera entre el nivel de organización que pueden alcanzar los átomos por leyes simples de la física y la estructura que presenta la vida. ¿Es esto cierto? Da para discutir mucho, pero creo, en base a muchas líneas de investigación y descubrimientos que se vienen presentando, que no. La estructuración de la vida es gradual. De un evento físico no surge una célula ni, mucho menos, un ratón, pero la realidad es que cada uno de los pasos intermedios que llevan desde un amasijo de átomos a una de estas formas de vida son dados por fenómenos que tienen que ver con la física, la química y… la propia orientación de lo que es la vida. Digamos que la vida, una vez aparecida, crea un entorno de leyes propias que impulsan su desarrollo. ¿Cómo y por qué se crean estas leyes, en base a qué voluntad? Ninguna. (Y aquí surgirán de nuevo las discusiones.) Simplemente, no puede existir la vida sin esas leyes. El hecho de que estemos en un planeta que tenga vida por doquier, y muy desarrollada, es porque la vida, cuando existe, sigue estas reglas que le permiten desarrollarse, y si no las sigue desaparece. Es como decir que hay leyes físicas, leyes básicas del universo, que han sido puestas especialmente para la vida. De hecho, considerando la vida una forma de la materia, creo que es así. Es decir, la vida —cumpliendo los requisitos— sería algo inevitable en el Universo…

 

                                                                      
                           Kepler-16b, un mundo que orbita dos soles (NASA).

Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus. Otros mundos, más parecidos a nuestra Tierra, ¿por qué no tendrían formas de vida? Lo lógico es pensar que sí, que albergue la vida más o menos inteligente y conforme se haya producido su evolución.

Me estoy extendiendo fuera del tema. No pretendo estudiarlo filosóficamente, sino usar un poco de lógica para llegar a una respuesta para una pregunta que se hacen los científicos, y que nos hacemos todos, excepto aquellos que quieren creer en entidades superiores que se ocuparon de ello (lo cual es, simplemente, pasar el problema a otro nivel, sin resolverlo): ¿Cómo es que la vida evolucionó desde átomos, moléculas, células, seres simples, a una especie como la nuestra, tan tremendamente compleja y capaz de, como lo estoy haciendo yo, reflexionar sobre sí misma, transmitirlo y, además, cambiar el mundo como lo estamos cambiando?

La Sociedad Nuclear Española premia una tesis doctoral desarrollada en la US

El Geo-reactor Tokamak

Lo estamos cambiando de muchas maneras.  Estuve pensando que, si se prueba que es cierta, esta teoría de los geo-reactores planetarios se debe aplicar a todos los cuerpos planetarios del universo. Estoy seguro de que ustedes deben conocer la ecuación de Drake que intenta estimar el número de inteligencias que podrían existir en el universo, algo que se tiene en gran consideración en el SETI. ¿Se debería agregar un nuevo valor a esta fórmula que represente el tiempo esperado de vida del geo-reactor en un planeta tipo Tierra? Quizá en el núcleo de los planetas que forman ese escudo magnético a su alrededor, esté el secreto del surgir de la vida en ellos.

 

Núcleo Exploración del Entorno Natural MM B CLASE N° 11

Se desconocen aún el 86 por ciento de las Especies de la ...

Todos tienen vida

 

This animation illustrates cell division through Mitosis.

En aquella primera Célula replicante empezó todo… ¡Después  la evolución hacia las especies!

 

Yo creo en una cosa, y esto puede desatar miles de discusiones: llegar desde materiales básicos a la creación del Ser humano se basó en juntar los materiales (átomos), tener las leyes físicas actuando y a la casualidad (o azar). ¿Qué quiero decir con “casualidad”? Que la existencia de la vida está ligada a un sorteo permanente. Que hay una enormidad de cosas que son necesarias para que pueda haber vida (es innegable que se han dado en este planeta) y para que pueda continuar una vez producida. Que fue necesario un transcurso determinado de hechos y situaciones para que los microorganismos aparecieran, se propagaran, compitieran y se fueran haciendo más y más complejos. Que se debieron dar infinidad de circunstancias para que estos organismos se convirtieran en estructuras multicelulares y para que estas estructuras se organizaran en órganos ubicados dentro de seres complejos. Y que se necesitaron enormidad de coincidencias y hechos casuales para que las condiciones llevaran a algunos de estos seres terrestres, vertebrados, pequeños mamíferos (por los cuales durante una enormidad de tiempo ningún juez cósmico hubiese apostado), a evolucionar para convertirse en los animales que más influimos en este mundo: nosotros.

 

La cantidad de circunstancias, situaciones y condiciones en juego es enorme. En un libro muy interesante de Carl Sagan, anterior a Cosmos, llamado Vida inteligente en el Cosmos (junto a I. S. Shklovskii), se plantea muy bien este tema. Se puede encontrar allí una enumeración de las condiciones que requiere la vida y una especie como la nuestra para existir. Desde las características de nuestra galaxia, su edad, composición, situación, forma; a las de nuestro Sol, su sistema de planetas, la ubicación de la Tierra, su tamaño, su rotación, su inclinación, su composición, los vecinos que tiene… y mucho más.

 

Aproximación a la naturaleza de la mente humana

De ahí surge lo que llamamos Mente

Llegar a esta red compleja que es nuestra mente, ha costado, más de diez mil millones de años, el tiempo que necesitaron las estrellas para fabricar esos elementos de los que estamos hechos. El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos. Pero sigamos.

Yo voy a agregar algunas cosas que me parecen significativas, que han surgido de los últimos descubrimientos y observaciones. Enumero algunas, aunque ya verán que hay más. Extinciones y cambios físicos producidos por impactos de asteroides; influencia de estrellas cercanas, fijas y viajeras; el “clima” interestelar; el “clima” galáctico; las circunstancias que han sufrido los otros planetas; nuestras circunstancias, nada comunes…

Extinciones

PodemosGetafe.es | PodemosGetafe.esExtinción masiva - Wikipedia, la enciclopedia libreAlerta, llega la sexta extinción | Baleares | elmundo.es

Han sido cinco las grandes extinciones por motivos diversos

Grandes rocas errantes pululan por el Sistema Solar. Los asteroides no son ni cosa del pasado ni riesgos de muy baja probabilidad. Hay pruebas muy concretas sobre diversos impactos de consideración sobre nuestro mundo. Encima, hasta parecen tener una regularidad.  No es sólo que tenemos la suerte de que en los últimos 10 millones de años no haya caído un gran asteroide en la Tierra, lo que nos hubiese hecho desaparecer incluso antes de que apareciéramos, sino que tenemos la suerte de que antes de eso sí cayeron de esos asteroides, y de que cambiaran las cosas a nuestro favor. ¿Estaríamos aquí si no hubiese impactado un cuerpo de unos 10 km de diámetro en el Caribe, más precisamente sobre el borde de la península de Yucatán, y hubiese producido una hecatombe para quienes reinaban en el mundo en esa época, los dinosaurios? ¿Quién puede saberlo? ¿Y si no hubiesen ocurrido las extinciones anteriores, fueran por las causas que fueran, estaríamos aquí? Quizás un día se sepa lo suficiente como para simular en computadoras una ecología planetaria entera y ver qué hubiera pasado. Será muy interesante.

Los asteroides cayeron, es un hecho. Y forman parte de las condiciones necesarias —algunos discutirán que no— para que estemos aquí… Veamos algunas nuevas informaciones:

 

  Los Amonites fueron contemporáneos de los Dinosaurios. Los amonites eran una de las clases de moluscos cefalópodos que existieron en las eras del Devónico hasta el Cretácico. Hay de diferentes tipologías según la profundidad en la que estaban inmersos, dependiente las distintas zonas de todo el mundo. Al ser un fósil, poco se puede saber de las partes blandas de este organismo marino, suponiéndose que fueron similares a los actuales nautilos, cuyo cuerpo constaba de una corona de tentáculos en la cabeza que asoman por la abertura de la llamada concha. El fósil encontrado en las cercanías de El Chaltén pertenecería al cretácico inferior del estrato llamado Río MAYER, con una antigüedad de unos 500 millones de años.

 

La fauna marina se recuperó un millón de años después de la 'gran extinción'

 

Hace 380 millones de años se produjo una importante extinción entre los animales que poblaban el mar, en especial de los amonites, unos moluscos emparentados con los pulpos y calamares pero cubiertos con una concha espiralada y de tamaños a veces gigantescos. Nunco se supo por qué fue. Ahora surgen pistas de que esta mortalidad estuvo relacionada —igual que hace 65 millones de años, en el momento en que los dinosaurios dominaban nuestro mundo— con el impacto de un cuerpo extraterrestre.

Algunos geólogos dicen que hace unos 380 millones de años, un asteroide llegado desde el espacio golpeó contra la Tierra. Creen que el impacto eliminó una importante fracción de los seres vivos. Esta idea puede fortalecer la discutida conexión entre las extinciones masivas y los impactos. Hasta ahora, el único candidato para hacer esta relación era el meteoro que habría causado el exterminio de los dinosaurios, caído en la península de Yucatán, en México.

 

La mayor extinción masiva duró diez veces más en tierra que en el agua

 

Brooks Ellwood, de Louisiana State University en Baton Rouge, Estados Unidos, dice que los signos de una antigua catástrofe coinciden con la desaparición de muchas especies animales. “Esto no quiere decir que el impacto en sí mismo haya matado a los animales; la sugerencia es que tuvo algo que ver.” Y agregó que hoy, aunque no se puedan encontrar rastros del cráter de una roca del espacio, se puede saber dónde ha caído.

Otros investigadores coinciden en que hubo un impacto más o menos en esa época, pero creen que la evidencia de que produjo una extinción masiva es muy débil. Claro que, tal valoración no está avalada por hechos y, si tenemos en cuenta el tiempos transcurrido desde los hechos, buscar pruebas materiales…no es nada fácil

 

 

El equipo de Ellwood descubrió rocas en Marruecos que fueron enterradas alrededor de 380 millones de años atrás bajo una capa de sedimento que parece formada por restos de una explosión cataclísmica. El sedimento tiene propiedades magnéticas inusuales y contiene granos de cuarzo que parecen haber experimentado tensiones extremas.

Más o menos para esa época se produjo la desaparición del registro fósil de alrededor del 40% de los grupos de animales marinos.

El geólogo Paul Wignall, de la Leeds University, Reino Unido, dice que hay una fuerte evidencia del impacto. Si se lo pudiese relacionar con una extinción masiva sería un gran hallazgo. Si fuera cierto, el potencial letal de los impactos crecería enormemente.

 

La Gran Mortandad: descubren la causa detrás de la peor catástrofe jamás  ocurrida en la Tierra

 

Pero no está claro cuántas desapariciones se produjeron en la época del impacto. Wignall dice que la mortalidad puede haber sido mucho menor que lo que sugiere el equipo de Ellwood. Él piensa que los paleontólogos deberían buscar las pistas que les den una mejor imagen de lo que pasó en aquella época.

El paleontólogo Norman MacLeod, que estudia las extinciones masivas en el Natural History Museum de Londres, coincide en que aunque 40% es el valor correcto para aquel período de la historia de la Tierra, no es una extinción masiva, sino parte de una serie de sucesos mucha más extensa. MacLeod duda de que las extinciones masivas sean resultado de intervenciones extraterrestres. “Los impactos son un fenómeno bastante común”, dice. “Pero no coinciden significativamente con los picos de extinción.”

Las galaxias vecinas

 

              Nuestro vecindario galáctico 

Nuestro vecindario galáctico es muy humilde. Nada de supergigantes o exóticas estrellas de neutrones. La mayoría de estrellas vecinas -unas 41- son simples enanas rojas (estrellas de tipo espectral M), las estrellas más comunes del Universo. Cinco son estrellas de tipo K, dos de tipo solar (tipo G, Alfa Centauri  A y Tau  Ceti), una de tipo F (Procyon) y una de tipo A (Sirio). Los tipos espectrales se ordenan según la secuencia OBAFGKM, siendo las estrellas más calientes (y grandes) las de tipo O y las más pequeñas y frías las de tipo M (siempre y cuando estén en la secuencia principal, claro). Además tenemos tres enanas blancas y tres candidatas a enanas marrones. Como vemos, no nos podemos quejar. Hay toda una multitud de posibles objetivos para nuestra primera misión interestelar. ¿Cuál elegir?

El llamado Grupo Local de galaxias al que pertenecemos es, afortunadamente, una agrupación muy poco poblada, sino podríamos ser, en cualquier momento (o haber sido aún antes de existir como especie) destruidos en catástrofes cósmicas como las que ocurren en los grupos con gran población de galaxias. Los astrónomos comprenden cada vez más el porqué de las formas de las galaxias, y parece que muchas (incluso la nuestra) han sufrido impactos contra otras para llegar a tener la figura que tienen. Gracias al telescopio espacial Hubble se están viendo en los últimos tiempos muy buenas imágenes de colisiones entre galaxias.

El “clima” interestelar

 

La Nube Interestelar Local se encuentra dentro de una estructura mayor: la Burbuja Local. La Burbuja Local es una acumulación de materia aún mayor, procedente de la explosión de una o varias supernovas que estallaron hace entre dos y cuatro millones de años. Pero aunque estemos atravesando ahora mismo la Nube Interestelar y la Burbuja locales, nuestra materia no procede de ellas. Sólo estamos pasando por ahí en este momento de la historia del universo. Entramos hace unos cinco millones de años, y saldremos dentro de otros tantos. Nuestro sistema solar –y la materia que contiene, incluyéndonos a ti y a mí– se formó mucho antes que eso, hace más de 4.500 millones de años.

Nuestra Burbuja Local forma a su vez parte del Cinturón de Gould.  El Cinturón de Gould es ya una estructura mucho más compleja y mayor. Es un anillo parcial de estrellas, de unos 3.000 años luz de extensión. ¿Recuerdas aquella nave espacial tan rápida que utilizamos antes? Pues con ella, tardaríamos 12.800.000 años en atravesarlo por completo. Vaya, esto empieza a ser mucho tiempo.

Vivimos dentro de una burbuja. El planeta, el Sistema Solar, nuestro grupo local. El estallido de una supernova ha dejado un resto fósil en nuestro entorno: creó una enorme burbuja en el medio interestelar y nosotros nos encontramos dentro de ella. Los astrónomos la llaman “Burbuja local”. Tiene forma de maní, mide unos trescientos años luz de longitud y está prácticamente vacía. El gas dentro de la burbuja es muy tenue (0,001 átomos por centímetro cúbico) y muy caliente (un millón de grados), es decir, mil veces menos denso y entre cien y cien mil veces más caliente que el medio interestelar ordinario. Esta situación tiene influencia sobre nosotros, porque estamos inmersos dentro. ¿Qué pasaría si nos hubiese tocado estar dentro de una burbuja de gases ardientes resultantes de una explosión más reciente o de otro suceso catastrófico? ¿O si estuviésemos en una zona mucho más fría del espacio? No estaríamos aquí.

El “clima” galáctico

 

El enigmático viaje del Sistema Solar: ¿Qué ocurrió cuando cruzó la región  estelar de Orión

 

La galaxia en que vivimos podría tener una mayor influencia en nuestro clima que lo que se pensaba hasta ahora. Un reciente estudio, controvertido aún, asegura que el impacto de los rayos cósmicos sobre nuestro clima puede ser mayor que el del efecto invernadero que produce el dióxido de carbono.

Según uno de los autores de este estudio, el físico Nir Shaviv de la Universidad Hebrea de Jerusalén, en Israel, el dióxido de carbono no es tan “mal muchacho” como dice la gente. Shaviv y el climatólogo Ján Veizer de la Universidad Ruhr, de Alemania, estiman que el clima terrestre, que exhibe subas y bajas de temperatura global que al graficarse forman una figura de dientes de sierra, está relacionado con los brazos espirales de nuestra galaxia. Cada 150 millones de años, el planeta se enfría a causa del impacto de rayos cósmicos, cuando pasa por ciertas regiones de la galaxia con diferente cantidad de polvo interestelar.

                                Los rayos de todo tipo se nos vienen encima desde todos los rincones del Universo, y, algunos no llegan a la superficie de nuestro planeta gracias al escudo protector que salvaguarda nuestra integridad física.

 

 

Los rayos cósmicos provenientes de las estrellas moribundas que hay en los brazos de la Vía Láctea, ricos en polvo, incrementan la cantidad de partículas cargadas en nuestra atmósfera. Hay algunas evidencias de que esto ayuda a la formación de nubes bajas, que enfrían la Tierra.

Shaviv y Veizer crearon un modelo matemático del impacto de rayos cósmicos en nuestra atmósfera. Compararon sus predicciones con las estimaciones de otros investigadores sobre las temperaturas globales y los niveles de dióxido de carbono a lo largo de los últimos 500 millones de años, y llegaron a la conclusión de que los rayos cósmicos por sí solos pueden ser causa del 75% de los cambios del clima global durante ese período y que menos de la mitad del calentamiento global que se observa desde el comienzo del siglo veinte es debido al efecto invernadero.

 

Por qué está cambiando el clima? ¿Qué es el efecto invernadero?

La teoría, como es normal en la ciencia, no es del todo aceptada. Los expertos en clima mundial están a la expectativa, considerando que algunas de las conexiones que se han establecido son débiles. Se debe tener en cuenta, dicen los paleontólogos, que se trata de una correlación entre la temperatura, que es inferida de los registros sedimentarios, de la cantidad de dióxido de carbono, que se deduce del análisis de conchas marinas fosilizadas, y de la cantidad de rayos cósmicos, que se calculan a partir de los meteoritos. Las tres técnicas están abiertas a interpretaciones. Además, uno de los períodos fríos de la reconstrucción matemática es, en la realidad, una época que los geólogos consideran caliente. De todos modos, también hay muchos otros que están muy interesados e intrigados.

 

La radiación cósmica: Por qué no debería ser motivo de preocupación | OIEA

 

La variabilidad solar afecta la cantidad de rayos cósmicos que impactan a nuestro planeta. El Sol produce radiaciones similares a los rayos cósmicos, especialmente en el período más caliente, llamado máximo solar (maximum), de su ciclo de 11 años. Estudios anteriores no pudieron separar el impacto climático de esta radiación, de los rayos cósmicos que llegan desde la galaxia y de la mayor radiación calórica que llega desde el Sol.

Los otros planetas y la Luna

 

No hace mucho, se anunció el hallazgo de un sistema planetario que podría ser similar al nuestro. En realidad no se ha logrado aún una observación tan directa que permita afirmarlo, sino que se deduce como posibilidad. Este sistema presenta un planeta gaseoso gigante similar a nuestro Júpiter, ubicado a una distancia orbital similar a la que tiene Júpiter en nuestro sistema. El sol es parecido al nuestro, lo que deja lugar a que haya allí planetas ubicados en las órbitas interiores, dentro de la franja de habitabilidad en la que la radiación solar es suficiente para sostener la vida y no es excesiva como para impedirla. Si nuestro sistema no tuviese las características que posee, la vida en la Tierra tendría problemas. Por ejemplo, podría haber planetas, planetoides o grandes asteroides (de hecho algo hay) que giraran en planos diferentes y con órbitas excéntricas y deformes. Cuerpos así podrían producir variaciones cíclicas que hicieran imposible —o difícil— la vida. Venus parece haber sufrido un impacto que le cambió el sentido de rotación sobre sí mismo. Es posible que este impacto también haya desbaratado su atmósfera y su clima. Podría habernos pasado a nosotros, y de hecho parecería que nos ocurrió, sólo que fue durante el génesis del sistema planetario y además (otra gran casualidad y premio cósmico) nos dejó a la Luna, excelente compañera para facilitar la vida.

 

           ¿Características especiales de nuestro mundo?

 

Según una teoría del geofísico J. Marvin Herndon, la Tierra es una gigantesca planta natural de generación nuclear. Nosotros vivimos en su delgada coraza, mientras a algo más de 6.000 kilómetros bajo nuestros pies se quema por la fisión nuclear una bola de uranio de unos ocho kilómetros de diámetro, produciendo un intenso calor que hace hervir el metal del núcleo, lo que produce el campo magnético terrestre y alimenta los volcanes y los movimientos de las placas continentales.

La cosa no acaba aquí: si el calor del reactor es el que produce la circulación de hierro fundido (por convección) que genera el campo magnético-terrestre, entonces los planetas que no tienen su reactor natural no tendrían un campo magnético (magnetósfera) que los proteja de las radiaciones de su sol —como Marte y la Luna— lo que hace que difícilmente puedan sostener vida.

Pero ésta es sólo una teoría. Lo que es más cierto es que nuestro mundo y su luna forman un sistema muy particular, mucho más estable que si se tratara de un planeta solitario. Gracias a esto —a nuestra Luna— tenemos un clima más o menos estable, conservamos la atmósfera que tenemos y la velocidad y el ángulo de nuestro giro son los que son. Si no estuviese la Luna, el planeta se vería sujeto a cambios en su eje de rotación muy graves para los seres vivos.

Emilio Silvera Vázquez

La Ciencia no tiene todas las respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

33.700+ Piramides Egipto Fotografías de stock, fotos e imágenes libres de derechos - iStock | Muralla china, Torre eiffel, Taj mahal

¿Cómo pudieron mover aquellos inmensos bloques?

 

Como no tenemos las respuestas… ¡Imaginamos!

Seres gigantescos que manejaban los bloques como si de canicas se tratara.

¡Como somos!

 

La mujer en la Ciencia ha tenido su importancia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

         Marie Curie

La Asamblea general de las Naciones Unidas, ha declarado el día 8 de Marzo de 2.011 el Año Internacional de la Química, coincidiendo con el centenario de la concesión del Premio Nobel otorgado a Marie Curie –Marja Sklodowska- por sus aportes a la Química.

Sin embargo, se aprovechó el tirón mediático de esta célebre científica, y, el valor simbólico de su buena imagen popular, no olvidemos que es poseedora de dos Premios Nobel, por una de las personas más importes que, dedicadas a la Ciencia, se puede decir que, pasó y dedicó su vida a la investigación, haciendo posible, de alguna manera, que hoy, nosotros podamos vivir mejor gracias a sus contribuciones científicas.

Así que, los responsables, creyeron conveniente, aprovechar aquel momento para celebrar también, en el Año 2.011, el Año Internacional de la Mujer Científica, lo que, por otra parte, es muy de justicia, ya que, queramos o no, en éste (como en otros ámbitos) tenemos a la mujer un poco postergadas y, ya va siendo hora de que se le reconozcan los mismos (en algunos casos más) méritos que a las hombres.

 

Cuando publiqué este trabajo por vez primera, decía:

“En ese año Internacional de la mujer científica, entre otros muchos, se publicó éste reportaje de Laura Martínez Alarcón queriendo hacerles un homenaje a unas cuantas mujeres científicas como representación de todas las demás.”

 

Laura Martínez Alarcón

Laura Martínez

 

Cuando hablamos de ciencia, ¿a cuántas mujeres podríamos citar? Seguro que a nuestra memoria vendrá inmediatamente el nombre de Marie Curie, pero ¿y después? Siempre pensamos en Albert Einstein o Charles Darwin cuando de ciencia se trata; sin embargo, seguimos ignorando los logros de muchas mujeres que, a lo largo de la historia, han dedicado su vida a estos menesteres.

Hoy, que estamos celebrando el Día Internacional de la Mujer, queremos recordar a 10 mujeres que se han destacado en la ciencia.

1. Hipatia de Alejandría

 

Hipatia de Alejandría

 Hipatia de Alejandría, matemática, astrónoma, filósofa neoplatónica y símbolo de la sabiduría antigua.

Fue la primera mujer en realizar una contribución fundamental al desarrollo de las matemáticas, una verdadera precursora y, hasta mártir, como mujer de ciencias. Nació en el año 370 D. C. en Alejandría y falleció en el 416, cuando sus trabajos en filosofía, física y astronomía fueron considerados como una herejía por un amplio grupo de cristianos que la asesinaron brutalmente. Su imagen se considera un símbolo de la defensa de las ciencias contra la irracionalidad y la estupidez de las embestidas religiosas, siempre carentes del más mínimo sentido. En 2009, el director de cine Alejandro Amenábar realizó la película “Ágora” en memoria de Hipatia.

2. Sophie Germain.

 

Resultado de imagen de Sophie Germain

Fue una matemática autodidacta, nacida en París en las últimas décadas del Siglo de las Luces (1776-1831). Sus primeros trabajos en Teoría de Números los conocemos a través de su correspondencia con C. F. Gauss, con el que mantenía oculta su identidad bajo el pseudónimo de Monsieur Le Blanc. El teorema que lleva su nombre fue el resultado más importante desde 1753 hasta 1840 para demostrar el último teorema de Fermat. Posteriormente, sus investigaciones se orientaron a la teoría de la elasticidad y en 1816 consiguió el Premio Extraordinario de las Ciencias Matemáticas que la Academia de Ciencias de París otorgaba al mejor estudio que explicara mediante una teoría matemática el comportamiento de las superficies elásticas. En los últimos años de su corta vida, escribió un ensayo sobre filosofía de la ciencia que Augusto Comte citó y elogió en su obra.

3. Augusta Ada Byron (Condesa de Lovelace).

 

Ada Lovelace.jpg

 

Mejor conocida como Ada Lovelace fue una brillante matemática inglesa. Nació en Londres en el año 1815 y falleció en 1852. Absolutamente adelantada a su tiempo, podría decirse que fue la primera científica de la computación de la historia, la primera programadora del mundo. Ella descubrió que mediante una serie de símbolos y normas matemáticas era posible calcular una importante serie de números, ella previó las capacidades que una máquina (más tarde sería la computadora) tenía para el desarrollo de los cálculos numéricos. Como curiosidad y por si su apellido te suena, ella fue la hija de uno de los poetas más grandes en la historia de la literatura universal, por supuesto: el magnífico Lord Byron.

4.  Amalie Emmy Noether.

 

Resultado de imagen de Amalie Emmy NoetherEmmy Noether, mujer, judía y matemática. Tres obstáculos que su persistencia y genialidad superaron - Acalanda Magazine Cultura y Ciencia Gratuita. Disfruta de los mejores autores y de la mejor literatura del

 

Podría considerarse como la mujer más importante en la historia de las matemáticas y, de hecho, así la consideraba Albert Einstein. Nació en Erlangen (Alemania), en 1882 y falleció en 1935 en Estados Unidos, luego de ser expulsada por los nazis unos años antes. La figura de Noether ocupa un imprescindible lugar en el ámbito de las matemáticas, especialmente en la física teórica y el álgebra abstracta, con grandes avances en cuanto a las teorías de anillos, grupos y campos. A lo largo de su vida realizó unas 40 publicaciones realmente ejemplares.

5. Lise Meitner.

 

Resultado de imagen de lise meitner y otto hahnCientíficas que hicieron historia: Lise Meitner, la madre de la energía nuclear y la bomba atómica - Revista fusionasturias.com

 

Lise Meitner and Otto Hahn at the Kaiser Wilhelm Institute for Chemistry in Berlin (1928Lise Meitner and Otto Hahn at the Kaiser Wilhelm Institute for Chemistry in Berlin 1928.)

Nació en la Viena del Imperio Austrohúngaro, hoy Austria, en 1878 y falleció en 1968. Fue una extraordinaria física con un amplio desarrollo en el campo de la radioactividad y la física nuclear. Aunque fue parte fundamental del equipo que descubrió la fisión nuclear, solo su colega Otto Hahn obtuvo el reconocimiento. Años más tarde, el meitnerio (elemento químico de valor atómico 109) fue nombrado así en su honor.

6. Marie Curie.

Resultado de imagen de marie curie radiactividadMarie Curie, la madre de la física moderna

 

La radiactividad. En 1897 Marie Curie se dispuso a preparar su tesis doctoral. El tema escogido era tan apasionante como difícil: las radiaciones de …

Química y física de origen polaco, Marie Salomea Skodowska Curie dedicó su vida entera a la radioactividad y fue la máxima pionera en este ámbito. Ella nació en 1867 y murió en 1934; es la primera persona en conseguir dos premios Nóbel para los cuales literalmente dio su vida, de hecho, hoy, muchas décadas después de su muerte, sus papeles son tan radiactivos que no pueden manejarse sin un equipo especial. Su legado y sus conocimientos en física y química impulsaron grandes avances.

7. Barbara McClintock.

 

Barbara McClintock | SEBBM

Barbara McClintock in the laboratory at Cold Spring Harbor, New York, March 26,

Nació en Hartford (Estados Unidos) en 1902 y falleció en 1992, dejando un importante descubrimiento en el campo de la genética. Ella se especializó en la citogenética y obtuvo un doctorado en botánica en 1927. A pesar de que durante mucho tiempo, injustamente sus trabajos no fueron tomados en cuenta, 30 años más tarde se le otorgó el premio Nóbel por su excepcional e increíblemente adelantada investigación para su época: teoría de los genes saltarines, revelando el hecho de que los genes eran capaces de saltar entre diferentes cromosomas. Hoy, este es un concepto esencial en genética.

8. Jocelyn Bell.

Imagen relacionada

Se trata de la astrofísica británica que descubrió la primera radioseñal de un púlsar. Nació en el año 1943, en Belfast (Irlanda del Norte) y su descubrimiento fue parte de su propia tesis. Sin embargo, el reconocimiento sobre este hallazgo fue para Antony Hewish, su tutor, a quien se le otorgó el premio Nobel de Física en 1974. Este injusto acto, que aunque como ya vimos no es nada nuevo, fue cuestionado durante años, siendo hasta hoy un tema de controversia.

9. Rosalind Franklin.

 

Resultado de imagen de Rosalind FranklinResultado de imagen de Rosalind Franklin

 

Nació en 1920 en Londres y falleció en 1958. Fue biofísica y cristalógrafa, y tuvo una participación crucial en la comprensión de la estructura del ADN, ámbito en el que dejó grandes contribuciones. Como suele ocurrir en la comunidad científica, uno de sus más grandes trabajos, la observación de la estructura del ADN mediante imágenes tomadas con rayos X, no le fue reconocido. Por el contrario, el crédito y el premio Nóbel en Medicina se lo llevaron Watson (quien más tarde fue cuestionado por sus polémicas declaraciones racistas y homofóbicas) y Crick.

10. Jane Goodall.

 

Resultado de imagen de Jane GoodallJane Goodall: Biography, Animal Scienctist, Chimpanzees

 

Nació en Londres, Inglaterra, en el año 1934. Ha dedicado toda su vida al estudio de los chimpancés. Jane ha realizado profundas y fructíferas investigaciones científicas sobre el comportamiento, el uso de herramientas y los modos de vida de estos primates. En 2003, sus trabajos fueron reconocidos por la comunidad científica con el Premio Príncipe de Asturias de Investigación Científica y Técnica.

 

Resultado de imagen de La mujer científica

 

Es una verdadera pena que, la verdadera contribución de la mujer científica a la Ciencia, sea poco conocida. Mujeres que han destacado en muchas de las disciplinas científicas que son importantes para la Humanidad, son totalmente desconocidas, y, el caso de la Curie, es excepcional.

Es justo que consideremos llegado el momento de otorgar a las mujeres de la Ciencia la categoría que, por méritos propios, se han ganado a lo largo de la Historia, y, no olvidemos que en la actualidad, no son pocas mujeres las que están al frente de la vanguardia en muchas de esas disciplinas que son punteras en el mundo, y, la Química o la Astronomía, pueden ser un buen ejemplo de ello. La Astronomía en España está al frente de grandes científicas Astrofísicas como Montserrat Villar o Ana Ulla entre otras muchas, y, también en otras disciplinas destacan mujeres de nuestro tiempo que han llegado a la Física, la Medicina y otras áreas de la Ciencia con una fuerza inusitada.

 

Archivo:Lynn Margulis.jpg

Lynn Margulis nació en 1938 en la ciudad de Chicago. Inició sus estudios de secundaria en el instituto público Hyde Park a lado de South Park y cuando fue trasladada por sus padres a la elitista Escuela Laboratorio de la Universidad de Chicago, regresó por su cuenta al instituto con sus antiguos amigos, lugar al que ella pensó que pertenecía. De esa época recuerda con agrado a su profesora de español, la señora Kniazza.

A los 16 años fue aceptada en el programa de adelantados de la Universidad de Chicago donde se licenció a los 20 años, adquiriendo según ella «un título, un marido (Carl Sagan) y un más duradero escepticismo crítico». Margulis diría de su paso por la Universidad de Chicago:

Allí la ciencia facilitaba el planteamiento de las cuestiones profundas en las que la filosofía y la ciencia se unen: ¿Qué somos? ¿De qué estamos hechos nosotros y el universo? ¿De dónde venimos? ¿Cómo funcionamos? No dudo de que debo la elección de una carrera científica a la genialidad de esta educación «idiosincrásica».

 

Resultado de imagen de los descubrimientos de Lynn Marguli

En 1958 continuó su formación en la Universidad de Wisconsin como alumna de un máster y profesora ayudante. Estudió biología celular y genética: genética general y genética de poblaciones. De su profesor de estas dos últimas, James F. Crow, diría:

“Cambió mi vida. Cuando dejé la Universidad de Chicago sabía que quería estudiar genética, pero después de las clases de Crow supe que sólo quería estudiar genética”.

 

Margulis, Planeta Simbiótico
Imagen relacionada

Desde un principio se sintió atraída por el mundo de las bacterias, que en aquel entonces ella indica que eran consideradas solo en su dimensión de gérmenes de carácter patógeno y sin interés en la esfera del evolucionismo. Margulis investigó en trabajos ignorados y olvidados para apoyar su primera intuición sobre la importancia del mundo microbiano en la evolución. Ella misma, en sus diferentes trabajos, nos guía en lo que fue su investigación y los antecedentes de sus aportaciones. Siempre ha mostrado una especial disposición a valorar estos antecedentes, desde su recuerdo hacia la señora Kniazza, su profesora de español en el instituto; pasando por el recuerdo de sus profesores de universidad y lo que para ella significaron; y terminando por una extensa referencia de los trabajos de aquellos científicos que ella rescató del olvido para apoyar su pensamiento evolucionista.

 

Investidura de Margulis como doctora honoris causa por la UAM, junto a Peter David Townsend(izda.), el rector Raúl Villar y Eugenio Morales Agacino.

Se interesó por los trabajos de Ruth Sager, Francis Ryan y Gino Pontecorvo. Estos trabajos la llevan a la que ella considera obra maestra: The Cell in Developement and Heredity (La célula en el desarrollo y la herencia), escrita por E. B. Wilson en 1928. Toda esta obra relacionada con las bacterias está relacionada a su vez con los trabajos de L. E. Wallin, Konstantin Mereschkowski y A. S. Famintsyn, en los que se plantea la hipótesis de que las partes no nucleadas de las células eucariotas eran formas evolucionadas de otras bacterias de vida libre. Desde entonces su trabajo se ha centrado en desarrollar esa hipótesis que la condujo a formular su teoría de la endosimbiosis seriada, y posteriormente su visión del papel de la simbiogénesis en la evolución.

 

Imagen relacionada

Sus aportaciones a la biología y el evolucionismo son múltiples: ha descrito paso a paso y con concreción el origen de las células eucariotas (la SET, que considera su mejor trabajo); junto a K. V. Schwartz ha clasificado la vida en la tierra en cinco reinos agrupados en dos grandes grupos: bacterias y eucariotas; formuló su teoría sobre la simbiogénesis y la importancia de esta en la evolución; apoyó desde el primer momento la hipótesis de Gaia del químico James E. Lovelock, contribuyendo a ella desde la biología e intentando que adquiriera categoría de teoría; y ha realizado una suma de trabajos concretos sobre organismos bacterianos y formas de vida simbióticas, entre otras. Actualmente trabaja profundizando en el estudio de diferentes espiroquetas y su posible protagonismo en procesos simbiogenéticos.

Ella trae una influencia espectacular porque trae la mezcla de biología con humanidades. Ella es del linaje de estos científicos: Galileo Galilei, Copérnico y Newton. Es una científica que trae ideas radicales, pero que el tiempo y la historia demuestran que son correctas.

Dimaris Acosta Mercado, catedrática de Biología de la Universidad de Puerto Rico.

Teoría de la endosimbiosis seriada (SET)

Artículo principal: Endosimbiosis seriada

 

La teoría de la endosimbiosis seriada (SET) describe el origen de las células eucariotas como consecuencia de sucesivas incorporaciones simbiogenéticas de diferentes células procariotas. Margulis considera que esta teoría, en la que define ese proceso con una serie de interacciones simbióticas, es su mejor trabajo.

Tras quince intentos fracasados de publicar sus trabajos sobre el origen de las células eucariotas,en 1966 logró que la revista Journal of Theoretical Biology la aceptara y finalmente publicara a finales de 1967 su artículo Origin of Mitosing Cells (gracias, según ella misma dice, al especial interés del que fuera su editor James F. DaNelly). Max Taylor, profesor de la Universidad de la Columbia Británica especializado en protistas, fue quien la bautizó con el acrónimo SET (Serial Endosymbiosis Theory).

Endosymbiosis- Definition, 5 Examples, Theory, Significances

Margulis continuó trabajando en su teoría sobre el origen de las células eucariotas y lo que en principio fue un artículo adquirió las dimensiones de un libro. Nuevamente fracasó en sus intentos de publicar (la que entonces era su editorial, Academia Press, tras mantener el manuscrito retenido durante cinco meses le envió una carta donde le comunicaban su rechazo sin más explicaciones). Tras más de un año de intentos el libro fue publicado por Yale University Press.

El paso de procariotas a eucariotas significó el gran salto en complejidad de la vida y uno de los más importantes de su evolución. Sin este paso, sin la complejidad que adquirieron las células eucariotas, sin la división de trabajo entre membranas y orgánulos presente en estas células, no habrían sido posibles ulteriores pasos como la aparición de los pluricelulares. La vida, probablemente, se habría limitado a constituirse en un conglomerado de bacterias. De hecho, los cuatro reinos restantes procedemos de ese salto cualitativo. El éxito de estas células eucariotas posibilitó las posteriores radiaciones adaptativas de la vida que han desembocado en la gran variedad de especies que existe en la actualidad.

 

ADN, Cromosomas y Genes - YouTube

La idea fundamental es que los genes adicionales que aparecen en el citoplasma de las células animales, vegetales y otras células nucleadas no son «genes desnudos», sino que más bien tienen su origen en genes bacterianos. Estos genes son el legado palpable de un pasado violento, competitivo y formador de treguas. Las bacterias que hace mucho tiempo fueron parcialmente devoradas, y quedaron atrapadas dentro de los cuerpos de otras, se convirtieron en orgánulos. Las bacterias verdes que fotosintetizan y producen oxígeno, las llamadas cianobacterias, todavía existen en los estanques y arroyos, en los lodos y sobre las playas. Sus parientes cohabitan con innumerables organismos de mayor tamaño: todas las plantas y todas las algas. […] Me gusta presumir de que nosotros, mis estudiantes, mis colegas y yo, hemos ganado tres de las cuatro batallas de la teoría de la endosimbiosis seriada (SET). Ahora podemos identificar tres de los cuatro socios que subyacen al origen de la individualidad celular. Los científicos interesados en este asunto están ahora de acuerdo en que la sustancia base de las células, el nucleocitoplasma, descendió de las arqueobacterias; en concreto, la mayor parte del metabolismo constructor de proteínas procede de las bacterias termoacidófilas (“parecidas a las del género Thermoplasma»). Las mitocondrias respiradoras de oxígeno de nuestras células y otras células nucleadas evolucionaron a partir de simbiontes bacterianos ahora llamados «bacterias púrpura» o «proteobacterias». Los cloroplastos y otros plástidos de algas y plantas fueron en su tiempo cianobacterias fotosintéticas de vida libre.

 

Lynn Margulis: la vida desde la cooperación microbiana | Vidas científicas | Mujeres con cienciaLa mujer en la Ciencia ha tenido su importancia : Blog de Emilio Silvera V.

Margulis, Una revolución en la Evolución, cap.: Individualidad por incorporación.

En los años 1960 este paso no constituía ningún problema de comprensión, el neodarwinismo se había ya consolidado y desde este paradigma, este paso se habría dado mediante pequeños cambios adaptativos producto de mutaciones aleatorias (errores en la replicación del ADN) que la selección natural se habría encargado de fijar. También, en aquel tiempo, el evolucionismo, liderado principalmente por zoólogos, ponía su énfasis especialmente en el reino animal, las bacterias pasaban desapercibidas para ese campo de la ciencia y eran tratadas casi exclusivamente como agentes patógenos, estudiadas desde el campo de la medicina.

Con anterioridad a Margulis, principalmente a finales del siglo XIX, principios del XX, diferentes científicos intuyeron y llegaron a proponer que el paso de procariotas a eucariotas era el resultado de interacciones simbióticas. Propuestas que fueron desestimadas, incluso ridiculizadas, y que costó perder el prestigio profesional a sus proponentes. Estos trabajos permanecieron olvidados hasta que Margulis, intuyendo igualmente el origen simbiótico de las eucariotas, los rescató y se apoyó en ellos para formular su teoría simbiogenética.

 

En torno al darwinismo: el bueno, el feo, el malo… y el posmoderno - RdL – Revista de Libros

La propuesta simbiogenética de Margulis chocaba (y aún hoy en día choca, aunque se haya aceptado como un hecho puntual) con el paradigma neo-darwiniano: la fusión de organismos y la plasmación de esa fusión en el ADN del individuo resultante, choca con la tesis neo-darwiniana de que la evolución de los organismos y la aparición de nuevas especies tiene su origen en errores en la replicación del ADN (mutaciones aleatorias). También, la propuesta de Margulis, con las bacterias como agentes activos en un paso tan importante de la evolución, resultó exótica para el evolucionismo de la época, para el que las bacterias habían pasado desapercibidas. Margulis, para apoyar su hipótesis, reunió «gran número de hechos morfológicos, bioquímicos y paleontológicos» propios y de otros científicos.

El escepticismo y el rechazo inicial que suscitó la posibilidad de que las células eucariotas hubiesen evolucionado por simbio-génesis, tuvieron que modificarse, dando paso a la parcial aceptación de la teoría ya que aún hoy se encuentran entre nosotros los descendientes de aquellas primigenias bacterias que protagonizaron la simbiosis.

 

Lynn Margulis - Mito | Revista CulturalLynn Margulis: Ser mujer y cambiar el mundo. – +DiverGénTE

 

Margulis se vio gratamente sorprendida cuando durante los años 1970 su teoría bautizada con el acrónimo SET comenzó a despertar el interés del mundo académico, apareciendo trabajos de investigadores y estudiantes de doctorado que desarrollaban aspectos de su teoría. La endosimbiosis seriada fue apoyada por Rayen, Schnepf & Brown y Taylor; siendo muy atacada por otros autores, sobre todo por Alsopp, Raff & Mahler y por Bogorad.

Desde entonces, la SET se ha ido abriendo camino hasta hoy, que se considera probada la incorporación de tres de los cuatro simbiontes, o si se quiere, dos de los tres pasos propuestos por Margulis (la incorporación de las espiroquetas no se considera probada).

 

Lynn Margulis, una vida dedicada a la evoluciónEntendiendo la Evolución IV. Margulis y la simbiogénesis | La Ciencia y sus Demonios

Afortunadamente, gracias a la genial bióloga estadounidense Lynn Margulis, hoy tenemos la solución a este desconcertante enigma: una explicación científica mucho más sensata, lúcida y creativa que la que se ha empeñado en sostener la ortodoxia neodarwinista durante los últimos 35 años, pese a tener la solución, publicada por Margulis en 1967, literalmente delante de sus narices. La ortodoxia se ha resistido con uñas y dientes —en gran medida sigue resistiéndose— a aceptar la teoría de Margulis por el sencillo hecho de que no encaja con sus prejuicios darwinistas. Pero si usted logra liberarse de ese lastre irracional y anticientífico, verá inmediatamente que la idea de Margulis no sólo es la correcta, sino que está dotada de un luminoso poder explicativo. El modelo de Margulis sobre el origen de la célula eucariota no es gradual, pero no le hace ninguna falta para ser factible. Implica un suceso brusco y altamente creativo, pero también enteramente materialista, ciego y mecánico.

Teoría de la simbiogénesis

 

Resultado de imagen de Simbiogénesis y Teoría de la simbiogénesisResultado de imagen de Simbiogénesis y Teoría de la simbiogénesis

Artículos principales: Simbiogénesis y Teoría de la simbiogénesis

La biología evolutiva se centra, desde sus inicios, en el estudio de animales y plantas, a los cuales se considera actores de las innovaciones que han conducido a los máximos niveles de complejidad y especialización. Para Lynn Margulis estos organismos de una superior complejidad son comunidades de individuos menos complejos capaces de sobrevivir.

Margulis formula que son las bacterias, hasta el momento solo de interés para la bacteriología médica, las artífices de esta complejidad y de los actuales refinamientos de los diferentes organismos. A una visión de animales, plantas y, en general, de todos los pluricelulares como seres individuales, contrapone la visión de comunidades de células auto-organizadas, otorgando a dichas células la máxima potencialidad evolutiva. Las considera el motor de la evolución.

 

Resultado de imagen de Simbiogénesis y Teoría de la simbiogénesis

 

Margulis, que se caracteriza por buscar y valorar los antecedentes de sus trabajos, en lugar de diluir estos antecedentes acuñando nuevos términos, procura usar aquellos que ya usaran los autores de estos trabajos anteriores. Este es el caso del término «simbio-génesis» (Konstantin Mereschkowski, 1855-1921), que ella rescata y con el que define el núcleo central de su propuesta para la biología evolutiva.

Considera que, al igual que las células eucariotas (origen de protistas, animales, hongos y plantas) tienen su origen en la simbiogénesis, la mayoría de las adquisiciones de caracteres de los pluricelulares son producto de la incorporación simbiótica de, principalmente, bacterias de vida libre. Resta valor a las mutaciones aleatorias considerándolas sobrevaloradas por el neodarwinismo y plantea una nueva visión de la evolución por incorporación genética. Los organismos tenderíamos a organizarnos en consorcios:

 

Simbiogénesis

La simbio-génesis reúne a individuos diferentes para crear entidades más grandes y complejas. Las formas de vida simbio-genéticas son incluso más improbables que sus inverosímiles «progenitores». Los «individuos» permanentemente se fusionan y regulan su reproducción. Generan nuevas poblaciones que se convierten en individuos simbióticos multi-unitarios nuevos, los cuales se convierten en «nuevos individuos» en niveles más amplios e inclusivos de integración.

Sería muy largo continuar exponiendo aquí todo el inmenso trabajo que hizo esta científica.
Fuentes múltiples.
Como hoy es día de la mujer y me gustaría destacar sus méritos, me paro a pensar y …
En este punto, me paro a pensar en la mujer cuando nos preguntan y decimos: “No mi mujer no trabaja, se limita a llevar la casa!.
El trabajo invisible de las mujeres - El GeneracionalAma de CasaLa mujer que trabaja dedica el doble de tiempo que el hombre a las tareas del hogar - InfobaeMujeres: de amas de casa a amantes del hogar - Revista ViveMediaset renombra el target “Amas de Casa”Las amas de casa: mujeres invisiblesHoy es el Día de las Amas de Casa en ArgentinaLo que las amas de casa aportan - Martha Debayle
Para terminar…
Mujer, saludo, y, abrazar, hombre de negocios, marido, como, él, vuelve, hogar, de, trabajo | Foto Premium
Nos reciben amorosas al regreso del trabajo y… ¡Mucho más!
¿Qué haríamos sin ellas?
¿No son auténticas heroínas¿
¿Cómo podríamos pagarle?
¿Seríamos capaces de suplirlas?
En fin amigos, según mi parecer, la mujer le da mil vueltas al hombre, es más inteligente de manera natural, tiene más intuición en los detalles de la vida cotidiana, ha sido callada y prudente para cederle al hombre esa “supuesta” primacía que, en realidad no existe.
!
¡Feliz día de la mujer!
En estos momentos me viene a la memoria mi santa Madre, que se ganó la gloria cuidando a su marido y a sus cuatro hijos  allá por los años cuarenta, en medio de los precarios medios existentes y las muchas carencias que trajo la Grerra Civil de maldito recurso.
El la dirección de abajo, un anciano de  muchas experiencias, nos deja claro el papel de la mujer y lo que muchos consideran que es. ¡Merluzos!
En este punto, no sería un hombre justo si olvidara (no ya felicitar), dar las gracias a mi querida esposa que, con los cuatro hijos que hemos tenido, y, además trabajando al mismo tiempo que Yo, ha sido capaz de realizar todas esas obligaciones de la esposa, ama de casa y madre… ¿Cómo lo hizo?  Por más vueltas que le doy no encuentro la respuesta. ¿De dónde sacó el Tiempo? Lo cierto es que, hemos llegado hasta aquí, los chicos son mayores y los dos varones (gracias a ella), saben y están preparados para echar una mano en todos ámbitos a sus parejas. Por mi parte, un poco merluzo en ese sentido, ayudé lo que pude, aunque ahora no dejo de pensar que podía haber sido algo más, ya que, más hace el que quiere que el puede. Sin embargo, no siempre somos conscientes de la verdadera realidad, y, a v4eces, cuando nos damos cuenta… ¡Suele ser muy tarde!
Si algunos jóvenes están leyendo este mensaje… Que tomen la debida nota y se vuelquen en colaborar con su pareja, ellas no son de hierro y no pocas veces somos muy desconsiderados y no reconocemos la inmensa labor que hacen en nuestro beneficio, no es la aportación del hombre la que habría que destacar, ya que, simplemente cumple con su obligación, sino que debemos a reflexionar en lo que la mujer aporta y… ¡Con diferencia mucho más que nosotros!
Además es la que nos da la descendencia.
https://youtu.be/UDgacuK42gA
Publica: Emilio Silvera Vázquez