viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La teoría cuántica y la Gravedad, dentro de las cuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en Teoría de Supercuerdas    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

               Sí, a veces la Física, parece un Carnaval. Imaginamos universos que… ¿serán posibles?

Las teorías de cuerdas [TC’s] no son una invención nueva, ni mucho menos. La primera TC se inventó a finales de los años sesenta del siglo XX en un intento para encontrar una teoría para describir la interacción fuerte. La idea medular consistía en que partículas como el protón y el neutrón podían ser consideradas como ondas de «notas de una cuerda de violín». La interacción fuerte entre las partículas correspondería a fragmentos de cuerda que se extenderían entre pequeños pedacitos de cuerda, como las telas que forman algunos simpáticos insectos. Para que esta teoría proporcionase el valor observado para la interacción fuerte entre partículas, las cuerdas tendrían que ser semejantes a las de un violín, pero con una tensión de alrededor de unas diez toneladas.

La primera expresión de las TC’s fue desarrollada por Jöel Scherk, de París, y John Schwuarz, del Instituto de Tecnología de California, quienes en el año 1974 publicaron un artículo en el que demostraban que la TC podía describir la fuerza gravitatoria, pero sólo si la tensión en la cuerda se tensiometrara alrededor de un trillón de toneladas métricas. Las predicciones de la teoría de cuerdas serían las mismas que las de la relatividad general a escala de longitudes normales, pero diferirían a distancias muy pequeñas, menores que una trillonésima de un cm. Claro está, que en esos años, no recibieron mucha atención por su trabajo.

Ahora se buscan indicios de la teoría de cuerdas en los grandes aceleradores de partículas donde parece que algunos indicios nos dicen que se va por el buen camino, sin embargo, nuestros aceleradores más potentes necesitarían multiplicar por un número muy elevado su potencia para poder, comprobar la existencia de las cuerda situadas a una distancia de 10-35 m, lugar al que nos será imposible llegar en muchas generaciones. Sin embargo, en las pruebas que podemos llevar a cabo en la actualidad, aparecen indicios de una partlicula de espín 2 que todos asocian con el esquivo Gravitón, y, tal indicio, nos lleva a pensar que, en la teoría de supercuerdad, está implícita una Teoría Cuántica de la Gravedad.

Resultado de imagen de Subyace en la Teoría de cuerdas la relatividad generalImagen relacionada

Los motivos que tuvo la comunidad científica, entonces, para no brindarle la suficiente atención al trabajo de Scherk y Schwuarz, es que, en esos años, se consideraba más viable para describir a la interacción fuerte a la teoría basada en los quarks y los gluones, que parecía ajustarse mucho mejor a las observaciones. Desafortunadamente, Scherk murió en circunstancias trágicas (padecía diabetes y sufrió un coma mientras se encontraba solo en su estudio). Así, Schwuarz se quedó solo, en la defensa de la teoría de cuerdas, pero ahora con un valor tensiométrico de las cuerdas mucho más elevado.

Pero con los quarks, gluones y también los leptones, en la consecución que se buscaba, los físicos entraron en un cuello de botella. Los quarks resultaron muy numerosos y los leptones mantuvieron su número e independencia existencial, con lo cual seguimos con un número sustancialmente alto de partículas elementales (60), lo que hace que la pregunta ¿son estos los objetos más básicos?

Si esos sesenta objetos fuesen los más básicos, entonces también aflora otra pregunta ¿por qué son como son y por qué son tantos? Los físicos quisieran poder decir «salen de esto», o «salen de esto y aquello», mencionar dos principios bien fundamentales y ojalá tan simples que puedan ser explicados a un niño. La respuesta «porque Dios lo quiso así» posiblemente a muchos les cause «lipotimia»,  ya que esa respuesta nos lleva a reconocer nuestra ignorancia y, además, la respuesta que esperamos no pertenece al ámbito de la religión. Por ahora, ¿cuál es la última que puede dar la ciencia?

El cuello de botella incentivó a que se encendiera una luz de esperanza. En 1984 el interés por las cuerdas resucitó de repente. Se desempolvaron las ideas de Kaluza y Klein, como las que estaban inconclusas de Scherk y Schwuarz. Hasta entonces, no se habían hecho progresos sustanciales para explicar los tipos de partículas elementales que observamos, ni tampoco se había logrado establecer que la supergravedad era finita.

El ser humano –en función de su naturaleza– cuando se imagina algo muy pequeño, piensa en un puntito de forma esférica. Los físicos también son seres de este planeta y, para ellos, las partículas elementales son como puntitos en el espacio, puntos matemáticos, sin extensión. Son sesenta misteriosos puntos y la teoría que los describe es una teoría de puntos matemáticos. La idea que sugieren las TC’s es remplazar esos puntos por objetos extensos, pero no como esferitas sino más bien como cuerdas. Mientras los puntos no tienen forma ni estructura, las cuerdas tienen longitud y forma, extremos libres como una coma “,” (cuerda abierta), o cerradas sobre sí misma como un circulito. Si el punto es como una esferita inerte de la punta de un elastiquito, la cuerda es el elástico estirado y con él se pueden hacer círculos y toda clase de figuras. Está lleno de posibilidades.

Muchas son las imágenes que se han elaborado para representar las cuerdas y, como nadie ha visto nunca ninguna, cualquiera de ellas vale para el objetivo de una simple explicación y, las cuerdas que se han imaginado han tomado las más pintorescas conformaciones para que, en cada caso, se adapten al modelo que se expone.

diferencia entre un punto y una coma. Según la teoría de cuerdas importa, y mucho. Por su extensión, a diferencia del punto, la cuerda puede vibrar. Y hacerlo de muchas maneras, cada modo de vibración representando una partícula diferente. Así, una misma cuerda puede dar origen al electrón, al fotón, al gravitón, al neutrino y a todas las demás partículas, según cómo vibre. Por ello, la hemos comparado con la cuerda de un violín, o de una guitarra, si se quiere.

Al dividir la cuerda en dos, tres, cuatro, cinco, o más partes iguales, se generan las notas de la escala musical que conocemos, o técnicamente, los armónicos de la cuerda. En general, el sonido de una cuerda de guitarra o de piano es una mezcla de armónicos. Según la mezcla, la calidad (timbre) del sonido. Si distinguimos el tono de estos instrumentos, es por la «receta» de la mezcla en cada caso, por las diferentes proporciones con que cada armónico entra en el sonido producido. Pero, también es posible hacer que una buena cuerda vibre en uno de esos armónicos en particular, para lo cual hay que tocarla con mucho cuidado. Los concertistas lo saben, y en algunas obras como los conciertos para violín y orquesta, usan este recurso de «armónicos». Así, la naturaleza, con su gran sabiduría y cuidado para hacer las cosas, produciría electrones, fotones, gravitones, haciendo vibrar su materia más elemental, esa única y versátil cuerda, en las diversas (infinitas) formas que la cuerda permite.

Una partícula ocupa un punto del espacio en todo momento. Así, su historia puede representarse mediante una línea en el espaciotiempo que se le conoce como «línea del mundo». Por su parte, una cuerda ocupa una línea en el espacio, en cada instante de tiempo. Por tanto, su historia en el espaciotiempo es una superficie bidimensional llamada la «hoja del mundo». Cualquier punto en una hoja del mundo puede ser descrito mediante dos números: uno especificando el tiempo y el otro la posición del punto sobre la cuerda. Por otra parte, la hoja del mundo es una cuerda abierta como una cinta; sus bordes representan los caminos a través del espaciotiempo (flecha roja) de los extremos o comas de la cuerda (figura 12.05.03.02). La hoja del mundo de una cuerda cerrada es un cilindro o tubo (figura 12.05.03.03); una rebanada transversal del tubo es un círculo, que representa la posición de la cuerda en un momento del tiempo.

No cabe duda que, de ser ciertas las TC’s, el cuello de botella queda bastante simplificado. Pasar de sesenta objetos elementales a una sola coma o circulito es un progreso notable. Entonces, ¿por qué seguir hablando de electrones, fotones, quarks, y las demás?

Resultado de imagen de La Teoría de Cuerdas se simplifica todo

Que aparentemente las cosas se simplifican con las TC’s, no hay duda, pero desafortunadamente en física las cosas no siempre son como parecen. Para que una teoría sea adoptada como la mejor, debe pasar varias pruebas. No basta con que simplifique los esquemas y sea bella. La teoría de las cuerdas está –se puede decir– en pañales y ha venido mostrado distintas facetas permeables. Surgen problemas, y se la deja de lado; se solucionan los problemas y una avalancha de trabajos resucitan la esperanza. En sus menos de treinta años de vida, este vaivén ha ocurrido más de una vez.

Uno de los problemas que más afecta a la cuerda está ligado con su diminuto tamaño. Mientras más pequeño algo, más difícil de ver. Es una situación que se agudiza en la medida que se han ido corrigiendo sus permeabilidades. En sus versiones más recientes, que se llaman supercuerdas, son tan superpequeñas que las esperanzas de ubicarlas a través de un experimento son muy remotas. Sin experimentos no podemos comprobar sus predicciones ni saber si son correctas o no. Exagerando, es como una teoría que afirmara que los angelitos del cielo tienen alitas. ¿Quién la consideraría seriamente?

Imagen relacionada

La propia base conceptual de la teoría comporta problemas. Uno de ellos, es el gran número de dimensiones que se usan para formularla. En algunos casos se habla de 26 o, en el mejor, de 10 dimensiones para una cuerdita: espacio (son 3), tiempo (1) y otras seis (o 22) más, que parecen estar enroscadas e invisibles para nosotros. Por qué aparecieron estas dimensiones adicionales a las cuatro que nos son familiares y por qué se atrofiaron en algún momento, no lo sabemos. También, la teoría tiene decenas de miles de alternativas aparentemente posibles que no sabemos si son reales, si corresponden a miles de posibles universos distintos, o si sólo hay una realmente posible. Algunas de estas versiones predicen la existencia de 496 fuerzones, partículas como el fotón, que transmiten la fuerza entre 16 diferentes tipos de carga como la carga eléctrica. Afirmaciones como éstas, no comprobables por la imposibilidad de hacer experimentos, plagan la teoría de cuerdas. Quienes alguna vez intentaron trabajar matemáticamente en las cuerdas, muchas veces deben haber pensado de que lo que estaban calculando más se asemejaba a juegos de ejercicios que la consecución de una base matemática teórica tras objetivo de dar un paso trascendental en el conocimiento de la naturaleza. Ahora, los que tienen puesta su fe en ella suelen afirmar que se trata de una teoría que se desfasó de la natural evolución de la física, que su hallazgo fue un accidente, y no existe aún el desarrollo matemático para formularla adecuadamente.

En las teorías de cuerdas, lo que anteriormente se consideraba partículas, se describe ahora como ondas viajando por las cuerdas, como las notas musicales que emiten las cuerdas vibrantes de un violín. La emisión o absorción de una partícula por otra corresponde a la división o reunión de cuerdas.

La Teoría de cuerdas trata de incorparar la Gravedad a las otras tres fuerzas y completar asíel panorama actual de la Física de Partículas en el Modelo Estándar en el que sólo están incluídas estas tres interacciones de arriba, la Gravedad queda fuera por surgir infinitos no renormalizables que, desaparecen en la Teoría de supercuerdas de 26 dimensdiones de espacio tiempo para los Bosones y de 10 y 11 dimensiones de espacio tiempo para los Ferniones.

El trabajo que aquí hemos leido lo he obtenido de fuentes diversas y, como tantos otros, nos dice más o menos lo que todos. La realidad de la Teoría de supercuerdas está en que no podemos llegar a ese límite necesario de los 10-35 m, donde supuestamente, está instalada la cuerda, y, como llegar a esa distancia nos exige una energía de 1019 GeV con la que no podemos ni soñar. Seguirán, por mucho tiempo, las especulaciones y cada cual, tendrá su idea, su propia teoría, toda vez que, ninguna de ellas podrá ser verificadas y mientras eso sea así (que lo es), todas las teorías tendrán la posibilidad de ser refrendadas…algún día.

 ¿Dónde estarán las respuestas?

Sin embargo, una cosa es cierta, es la única teoría, la de supercuerdas, que nos da cierta garantía de que vamos por el buen camino, en su desarrollo aparecen indicios confirmados por los experimentos, como por ejemplo, la aparici´çon de una partícula de espín 2, el Gravitón que nos lleva a pensar que, en la teoría de supercuerdas está integrada una teoría Cuántica de la Gravedad que nos, podrá llevar, hasta esos primeros momentos del Big Bang que ahora quedan tan oscuros a la vista de los observadores y, de la misma manera, nos dejará entrar en la Singularidad de un Agujero Negro para poder ver (al fin) lo que allí pueda haber, qué clase de partículas o de materia se ha podido formar en un material tan extremadamente denso como el de la singularidad.

Habrá que tener paciencia con la Teoría de cuerdas y con el hallazgo tan esperado del Gravitón que nos confirmará, al fín, que la Gravedad como las demás interacciones, también está cuantizada y tiene su Bosón transmisor. De lo que no acabo de estar seguro es…del hecho en sí, de que podamos univer la Gravedad con la cuántica…¡son tan dispares! y habitan en reinos tan diferentes.

emilio silvera

Siempre plantearemos preguntas

Autor por Emilio Silvera    ~    Archivo Clasificado en Teoría de Supercuerdas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hendrik Antoon Lorentz (Holanda, 1853-1928) combinó las leyes de la mecánica de Newton y las del electromagnetismo de Maxwell para describir el movimiento de los electrones. Los resultados fueron peculiares, apuntando a la necesidad de una teoría nueva radical. Sin Lorentz, dijo Einstein, él nunca habría podido descubrir la relatividad especial.

La relatividad especial de Einstein, ¿habría sido posible sin Maxwell y Lorentz? ¿Qué unidades habría expuesto Planck sin los números de Stoney? ¿Qué sería de la teoría de cuerdas sin la de Kaluza-Klein? y, de esa manera, podríamos continuar llenando páginas y más páginas con preguntas que denotan lo que podía haber pasado si no…

Sí, continuar indefinidamente partiendo incluso del átomo de Demócrito, hace ahora más de 2.000 años. Todos los descubrimientos e inventos científicos están apoyados por ideas que surgen desde conocimientos anteriores que son ampliados por nuevas y más modernas formulaciones.

Precisamente, eso es lo que está ocurriendo ahora con la teoría M de las supercuerdas de Witten. Él se inspira en teorías anteriores que, a su vez, se derivan de la original de A. Einstein que pudo surgir, gracias al conocimiento que en geometría aportó Riemann con su tensor métrico.

Y no sería extraño que, al igual que Einstein pudo salir del callejón sin salida en el que estaba metido, hasta que por fin apareció la geometría de los espacios curvos de Riemann para salvarlo, que, de la misma manera, Edward Witten y otros, puedan salir del escollo en el que han quedado aprisionados con la teoría de supercuerdas, gracias a las funciones modulares de aquel extraño matemático llamado Ramanujan que, como Riemann, murió antes de cumplir los treinta y cinco años, o, a cualquier nuevo matemático que pueda dilucidar en su mente, nuevas formas de “ver” que de momento nadie ha sabido alcanzar.

En el ranking de los científicos más importantes del mundo, elaborado en función del impacto de los artículos publicados por cada cual en las revistas científicas, los trabajos realizados y los libros, etc, que es un buen indicador de la trayectoria de cada uno, no parece haber ninguna duda: Ed Witten, el físico-matemático estadounidense, tiene un número muy elevado de la lista. Aunque es Físico Teórico, en 1.990, la Unión Internacional de Matemáticos le concedió la Medalla Field, algo así como el premio Nobel en matemáticas que no concede la Academia Sueca. Por el momento es,  la figura más destacada en el campo de las supercuerdas, un complicado entramado teórico que supera el gran contrasentido de que las dos vertientes más avanzadas de la física, la teoría relativista de la gravitación y la mecánica cuántica, sean incompatibles pese a que cada una por separado estén más que demostradas.

Conseguido relacionar y hacer vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance hasta la fecha y abre las puertas de la computación cuántica. Para que nos hagamos una idea del hallazgo, en 1935 Einstein lo llegó a denominar como la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

He puesto este ejemplo simplemente para dejar una imagen de lo que ayer era imposible y, sin embargo hoy, se hizo realidad. Y, de la misma manera, esas teorías de cuerdas vienen a confirmar que, aunque nos parezcan imposibles, algunos físicos no dejan de buscar respuestas a cuestiones…de dudosa resolución.

Sí, por falta de conocimientos nos pueden parecer dos mundos antagónicos pero…

Relatividad general y mecánica cuántica, dos mundos antagónicos situados a distancias abismales el uno del otro y que, sin embargo, algunos tratan de enlazar en un escenario único que, hasta el momento ha sido imposible. Ningún físico se siente cómodo con este divorcio recalcitrante que impide, que la Gravedad esté presente en el Modelo Estándar de la Física de partículas, donde sí aparecen las otras tres fuerzas de la Naturaleza.

Aunque no todos tienen la misma confianza en esta nueva concepción de las supercuerdas, en que las partículas elementales (electrones, quarks, etc) son modos de vibración de cuerdas de tamaño inimaginablemente pequeño (10-33 cm) que existen en un universo de 11 dimensiones en lugar de las cuatro que nos son cotidianas, tres de espacio y una temporal de la teoría de Einstein.

Es cierto que las supercueras están en ebullición y que, E. Witten ha posibilitado un gran salto hacia adelante cuando supo aunar, de manera brillante, muchas ideas que andaban dispersas en el ambiente y que nadie había sido capaz de plantear y formular de manera coherente y a plena satisfacción de todos, ya que, esta especialidad de supercuerdas de las 11 dimensiones exige un nivel y una profundidad matemática que solo está al alcance de unos pocos. El trabajo de Witten desembocó en lo que ahora todos conocen como la Teoría M -¿magia, misterio, matriz…?-.

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

Un sistema como el Modelo Estándar, que acoge todas las fuerzas de la naturaleza, dejando aparte la fuerza gravitatoria, no refleja la realidad de la naturaleza, está incompleto. Precisamente por eso, desde hace algunas décadas, los físicos -al menos algunos de eloos-, no dejan de buscar esa nueva teoría que permita la unión tan deseada como ¿imposible?

Hace muchos años que la física persigue ese modelo, la llaman Teoría de Todo y debe explicar todas las fuerzas que interaccionan con las partículas subatómicas que conforman la materia y, en definitiva, el universo, su comienzo y su final, el hiperespacio y los universos paralelos. Esa es la teoría de supercuerdas.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.

De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el movimiento de las galaxias o la expansión del espacio mismo.

emilio silvera

¿La Teoría de Cuerdas? ¿Qué es eso? 2ª Parte

Autor por Emilio Silvera    ~    Archivo Clasificado en Teoría de Supercuerdas    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Ayer, cuando hablaba de la T. de cuerdas, al final decía:

 

Las amplitudes duales, aunque implementaban la idea de democracia nuclear, daban ineludiblemente lugar a un comportamiento de las amplitudes a altas energías mucho más suave del que se observaba en la realidad. Por otro lado los avances formales habían mostrado que la consistencia de la teoría exigía un espacio tiempo de dimensión 26 y que el espectro contenía al menos un taquión (una partícula con masa imaginaria). Estos defectos fueron pronto, parcialmente subsanados, dando lugar a conceptos que han ocupado un papel crucial en la Física de los últimos lustros; estoy hablando de la supersimetría y al renacimiento de las ideas de Kaluza  y Klein sobre espacio-tiempo con más de cuatro dimensiones.

Seguiremos hablando de la Teoría de Cuerdas y llegaremos hasta la actual posición que ocupa ésta compleja idea que algunos físicos han venido desarrollando en los últimos cuarenta años y que, nadie sabe en qué pueda desembocar. Muchas han sido las teorías que han sido desarrolladas y, siempre, nos dieron respuestas a cuestiones que, en un principio, ni podíamos imaginar.

Con la llegada de la QCD (Cromo Dinámica Cuántica) quedó de manifiesto que la democracia nuclear era una ilusión resultado de nuestra ignorancia como tántas veces nos ha pasado a lo largo de la historia de la física y de la astronomía. Las resonancias son objetos compuestos, y la teoría fundamental que describe sus constituyentes no se rige por el principio de democracia nuclaer sino por un principio distinto: el de libertad asintótica.

Lo que este principio nos dice es que la teoría deviene invariante de escala a distancias muy pequeñas, es decir, a altas energías, y que los constituyentes fundamentales son los grados de libertad de esta teoría conforme. Una manera fácil de entender la diferencia entre “democracia” y “libertad” es analizando el comportamiento de las amplitudes de colisión a altas energías.

 

 

El sueño de Einstein es el sueño de la física teórica moderna: unificar la gravedad con las otras interacciones fundamentales de la naturaleza. Un artículo publicado en Nature estudia cómo se ve afectado el electromagnetismo (una teoría gauge abeliana) debido a la existencia de la gravedad. Las constantes de acoplamiento que caracterizan la “fuerza” de las interacciones fundamentales cambian con la energía. A energías muy altas, o distancias muy cortas, las tres constantes convergen entre sí (de forma aproximada en el modelo estándar y de forma exacta en las teorías supersimétricas). Sin embargo, el comportamiento de la gravedad a distancias ultracortas, en el rango entre 10-32 m y 10-35 m, influye o afecta a las constantes de acoplamiento incluso aunque no se conoce la teoría cuántica correcta de la gravedad, ya que dicha teoría solo es necesaria a distancias menores de 10-35 m. El nuevo análisis indica que el efecto de la gravedad sobre las otras interacciones fundamentales podría ser observado a distancias entre 10-33 m y 10-35 m; en concreto se observaría  un cambio en el fenómeno llamado libertad asintótica de las constantes de acoplamiento. La idea ya fue propuesta por Robinson y Wilczek, pero el autor, David J. Toms, va más allá en dicho análisis. Para mí ha sido muy sorprendente encontrar un artículo de física teórica “exótica” en una revista tan poco amante de la teoría “pura” como Nature. Espero que sirva de precedente para futuros análisis. Nos ha comentado el artículo el genial Giovanni Amelino-Camelia, “Fundamental physics: Gravity’s weight on unification,” Nature 468: 40–41, 04 November 2010; el artículo técnico es David John Toms, “Quantum gravitational contributions to quantum electrodynamics,” Nature 468: 56–59, 04 November 2010 [acceso gratis al artículo en ArXiv, 5 oct. 2010]. (De Francis (th)E mule Science’s News).

La Libertad Asintótica nos habla de que las fuerzas entre partículas como los Quarks se hacen más débiles a distancias más cortas (es decir, a altas energías) y se anulan a medida que las distancias entre las  partículas tienden a cero. Este fenómeno se puede observar en la fuerza nuclear fuerte, entre los quarks que si se alejan los unos de los otros aumenta la fuerza y, cuando se juntan, esta disminuye.

En una versión democrática basada en la teoría de Cuerdas todos los constituyentes tienen un tamaño mínimo igual al de la longitud L de la cuerda (si estamos tratando con resonancias nucleares esta longitud será del orden de su tamaño, es decir 1/Λ(QCD). Como consecuencia de ello la colisión con transferencias de momento mayores que 1/L deberá estar muy suprimida. Por el contrario, la libertad asintótica predice que a estas pequeñas distancias la teoría deviene esencialmente libre y como consecuencia la amplitud es invariante de escala, presentando un comportamiento característico que se conoce como “scaling” de Bjorken. La constatación experimental de este hecho constituyó el primer deceso de la Teoría de Cuerdas.

Attwood

(Scaling Bjorken se refiere a una importante simplificación en características ampliación de una gran clase de adimensionales cantidades físicas en partículas elementales, sino que sugiere fuertemente que observados experimentalmente partículas de interacción fuerte (hadrones) se comportan como colecciones de punto-como componentes cuando se probaron a altas energías. Una característica de hadrones probaron en experimentos de dispersión de alta energía se dice que la escala cuando se determina no por la energía absoluta de un experimento, pero por adimensionales cantidades cinemáticas, tales como un ángulo de dispersión o la relación de la energía a una transferencia de momento. Debido a que el aumento de energía implica potencialmente resolución espacial mejorada, escalamiento implica independencia de la escala de resolución favorable, y la subestructura por lo tanto eficaz como un punto. Comportamiento de la escala fue propuesta por primera vez por James Bjorken en 1968 para las funciones de la estructura profunda de dispersión inelástica de electrones en nucleones. Esta idea, junto con el concepto contemporáneo de partons propuestas por Feynman, y el descubrimiento experimental de (aproximadamente) comportamiento de escala, junto inspiró la idea de la libertad asintótica, y la formulación de la cromodinámica cuántica (QCD), la teoría moderna fundamental de las interacciones fuertes.)

Ejemplo de estructura de color de un neutrón. Puede observarse la composición de quarks y la carga de color que adopta.

La QCD no sólo se convirtió en la teoría canónica de dichas formas de interacción, sino también en modelo de Teoría Cuántica de campos, dando lugar a lo que se conoce como el paradigma Wilsoniano de definición de una teoría cuántica relativista como aquella que en el ultravioleta, es decir, a pequeñas distancias, deviene invariante conforme.

Este primer deceso de la Teoría de Cuerdas no fue en absoluto definitivo. La Teoría contenía en su interior secretos que una vez convenientemente entendidos la harían renacer con objetivo muy distinto y mucho más ambicioso: ¡convertirse en el paradigma de la Teoría Cuántica de la Gravedad! ¿Cómo fue eso posible?

  ¿Dónde estará la verdad?

Lo primero que debemos entender es la inevitabilidad de la gravitación en la Teoría de Cuerdas. Una vez conjugamos efectos cuánticos con el carácter extenso de la cuerda aparece inevitablemente en el espectro un gravitón, y es esta inevitabilidad de la gravitación la que nos aporta una comprensión nueva de la escala de longitud de la cuerda. En breves palabras, si parametrizamos por g la amplitud cuántica de que una cuerda se divida en dos y por  L la escala de longitud de la misma, nos encontramos conque gL es precisamente la longitud de Planck:

Dicho de otra manera, la constante de Newton  G, que define la intensidad gravitatoria, ¡es simplemente (gL)! Y, este hecho, tiene importantísimas consecuencias. En efecto, si la longitud de Planck está definida de manera intrínseca, podemos asociar, sin salirnos de la propia teoría, con cualquier modo de vibración de la cuerda de masa M su radio gravitacional, o, si se prefiere, su tamaño gravitatorio: R(M) = MG. Una vez hacemos esto aparece de manera inmediata una masa o energía crítica por encima de la cual el modo de vibración de la cuerda adquiere un tamaño gravitacional mayor que su propia longitud.

Este modo de vibración se ha convertido en ¡un agujero negro! Dicho con otras palabras, cuando profundizamos en el ultravioleta llega un momento en el que las excitaciones de la cuerda no nos desvelan una estructura de constituyentes más elementales sino algo completamente nuevo, a saber: agujeros negros cuyo tamaño en vez de disminuir con la energía aumenta. El paradigma de teoría cuántica de campos Wilsoniana caracterizado por la libertad asintótica, en suma por unos constituyentes casi libres, se transforma, en la Teoría de Cuerdas, en una oscuridad asintótica controlada por agujeros negros. En otras palabras, la cuerda, de manera inevitable, se completa en el ultravioleta gravitacionalmente sin desvelar una subestructura Wilsoniana de constituyentes más fundamentales regidos por alguna teoría conforme.

Es importante que apreciemos que la manera en la que la teoría se completa en el ultravioleta no es en término de un espectro nuevo, como podrían ser los quarks y gluones en el caso de la QCD, sino en término de objetos, como son los agujeros negros, cuya definición no nos exige en ningún momento invocar nuevos grados de libertad, sino tan solo la propia dinámica de la teoría.

Así, la Teoría de Cuerdas es una teoría cuántica cuya física en el ultravioleta profundo, a distancias más pequeñas que la propia longitud de la cuerda, está dominada por agujeros negros clásicos. ¿Cómo derivar estos comentarios a un principio rector y definitorio de la Teoría?

http://www.cosmonoticias.org/wp-content/uploads/2011/07/evento-experimento-cms.jpg

No, la potencia utilizada en estas colisiones, no dejan ver las cuerdas que, están mucho más allá de las energías que ahora podemos utilizar

Hay que conseguir que se puedan hacer consistentes los principios de la Mecánica Cuántica con nuevos postulados: el de la existencia de una longitud mínima. Cuando intentamos combinar estos dos principios de una manera consistente nos encontramos con una teoría en el ultravioleta, es decir, más allá de la longitud mínima, debe poder ser descrita no en términos de constituyentes más primitivos sino necesariamente en términos de configuraciones o entidades de la propia teoría cuyo tamaño efectivo es necesariamente mayor que la longitud mínima. Esta descripción “infrarroja” (grandes distancias) del mundo ultravioleta es lo que se conoce como correspondencia UV/IR y es el corazón de la celebradísima e importantísima correspondencia descubierta hace ya más de diez años por Juan Maldacena.

Calabi-Yau-alternate.png

Juan Maldacena ha realizado importantes avances relacionados con la teoría de cuerdas, un marco de unificación teórica de los dos grandes pilares de la física contemporánea: la mecánica cuántica y la teoría de la relatividad general, de Einstein. Maldacena ha propuesto una relación sorprendente entre dos sistemas aparentemente diferentes:

  1. La teoría de cuerdas IIB propagándose en un espacio-tiempo con una geometría dada por el producto de un espacio anti de Sitter 5-dimensional y una 5-esfera.
  2. Una teoría cuántica de campos en 4 dimensiones con simetría gauge SU(N) y supersimetría N=4.

Su descubrimiento es conocido como “la conjetura de Maldacena”, la “correspondencia AdS/CFT” o la “correspondencia gauge/cuerda”. Se trata de una relación explícita del principio holográfico (de ´t Hooft y Susskind), que relaciona una teoría con interacciones gravitacionales con una teoría sin gravedad y en un número menor de dimensiones. Tiene profundas implicaciones para el estudio de la gravedad cuántica. Por ejemplo, la correspondencia permite en principio estudiar la descripción microscópica y la dinámica de un agujero negro, y el problema de la pérdida de información en agujeros negros, utilizando el punto de vista dual de un proceso en una teoría cuántica de campos. Esto implica automáticamente que la formación y evaporación de agujeros negros es un proceso descrito de forma unitaria en mecánica cuántica, y que la información no se pierde al caer a un agujero negro. Por otro lado, la correspondencia tiene también aplicación al estudio de fenómenos de interacción fuerte en teorías gauge mediante el dual gravitacional. De hecho, el uso de técnicas basadas en la correspondencia AdS/CFT han supuesto nuevos puntos de vista sobre problemas de QCD como el del confinamiento, y están encontrando aplicación en el análisis de las propiedades del plasma de quarks-gluones, experimentalmente obtenido en el experimento RHIC.

La propuesta de esta correspondencia por parte de Maldacena, y su amplia y profunda investigación sobre sus diversas ramificaciones, le han significado un reconocimiento mundial de la comunidad científica.

 

 

Lo cierto es, amigos míos que, entre unos pensadores y otros, vamos acercándonos más y más al saber del mundo. Hemos desvelado importantes secdretos del mundo mágico de las galaxias en el Universo, y, posiblemente, habiendo podido desvelar también, ese otro “mundo” no menos maravilloso de lo muy pequeño donde se encuentra el ámbito de los átomos, no podemos dudar de que, en el futuro, también sabremos llegar a esas cuerdas vibrantes que, de ser cierto que están ahí, nosotros las podremos encontrar, toda vez que, como tenenmos más que demostrado, imaginación no nos falta.

Para finalizar el trabajo de César Gómez, en el que se pregunta qué es la teoría de cuerdas, habrá que cerar con sus mismas palabras:

“De esta forma alcanzamos lo que podría ser una primera definición de la Teoría de Cuerdas: una teoría cuántica con una longitud fundamental mínima. Pero para entender el siggnificado profundo de esta definición deberemos aproximarnos a ella como lo hacemos cuando Einstein nos desveló que la teoría de la Relatividad es una cinemática con una velocidad fundamental máxima. Lo esencial no es entender desde una perspectiva galileana -sobre la base de complicados modelos de éter- cómo es que la de la luz puede ser la velocidad máxima. Lo crucial es postular que es máxima y acomodar la Cinemática y el propio espacio-tiempo a este postulado.

Tiempo de Planck

Ciertamente creo que existe un mínimo para todo:

 

Existe una unidad mínima de tiempo posible, y es o,0000000000000000000000000000000000000000001 seg. Bueno, lo que se conoce como Tiempo de Planck. Sus Unidades, las unidades de Planck, son las que marcan el límite de nuestras teorías, nunca nadie, ha podido sobrepasar lo que miden esas unidades de espacio, masa, tiempo…

Así, continúa diciendo César, al decir que hay una longitud mínima no se trata de explicar desde una perspectiva Wilsoniana cómo surge esta escala o por qué es mínima, sino postular la existencia de una longitud mínima y deducir de ello un paradigma no Wilsoniano de Teoría Cuántica. Y es esto lo que la Teoría de Cuerdas intenta conseguir desde su primer deceso.

Quizás la clave última de la respuesta es que la propia Longitud de Planck es una longitud mínima e intentar entender esta afirmación como un postulado en pie de igualdad con el postulado relativista sobre la imposibilidad de una velocidad mayor a la de la velocidad de la luz en el vacío. “La Velocidad de la Luz y la Longitud de Planck, definen cotas en la teoría de la información; en un caso a la velocidad de transmisión y en el otro a la capacidad de almacenamiento.”

Lo cierto es que, la primera expresión de las TC’s fue desarrollada por Jöel Scherk, de París, y John Schwuarz, del Instituto de Tecnología de California, quienes en el año 1974 publicaron un artículo en el que demostraban que la TC podía describir la fuerza gravitatoria, pero sólo si la tensión en la cuerda se tensiometrara alrededor de un trillón de toneladas métricas. Las predicciones de la teoría de cuerdas serían las mismas que las de la relatividad general a escala de longitudes normales, pero diferirían a distancias muy pequeñas, menores que una trillonésima de un cm. Claro está, que en esos años, no recibieron mucha atención por su trabajo.

Ahora se buscan indicios de la teoría de cuerdas en los grandes aceleradores de partículas donde parece que algunos indicios nos dicen que se va por el buen camino, sin embargo, nuestros aceleradores más potentes necesitarían multiplicar por un número muy elevado su potencia para poder, comprobar la existencia de las cuerda situadas a una distancia de 10-35 m, lugar al que nos será imposible llegar en muchas generaciones. Sin embargo, en las pruebas que podemos llevar a cabo en la actualidad, aparecen indicios de una partlicula de espín 2 que todos asocian con el esquivo Gravitón, y, tal indicio, nos lleva a pensar que, en la teoría de supercuerdad, está implícita una Teoría Cuántica de la Gravedad.

Dibujo20090807__two_gravitons_collision_sum_many_processes_involving_more_and_more_closed_particle_loops

Bueno, buscamos las cuerdas y aún, no henmos encontrado el Gravitón

Los motivos que tuvo la comunidad científica, entonces, para no brindarle la suficiente atención al trabajo de Scherk y Schwuarz, es que, en esos años, se consideraba más viable para describir a la interacción fuerte a la teoría basada en los quarks y los gluones, que parecía ajustarse mucho mejor a las observaciones. Desafortunadamente, Scherk murió en circunstancias trágicas (padecía diabetes y sufrió un coma mientras se encontraba solo en su estudio). Así, Schwuarz se quedó solo, en la defensa de la teoría de cuerdas, pero ahora con un valor tensiométrico de las cuerdas mucho más elevado.

Pero con los quarks, gluones y también los leptones, en la consecución que se buscaba, los físicos entraron en un cuello de botella. Los quarks resultaron muy numerosos y los leptones mantuvieron su número e independencia existencial, con lo cual seguimos con un número sustancialmente alto de partículas elementales (60), lo que hace que la pregunta ¿son estos los objetos más básicos?

Los físicos creen que no, que son las cuerdas vibrantes los objetos más pequeños que componen la materia. Claro que, del dicjho al hecho… ¡va un largo, largo, largo, muy largo trecho!

emilio silvera