jueves, 25 de diciembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas que te gustaría saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Y los neutrinos? ¿sabes algo de ellos?

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados.

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Sin embargo, atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado la masa de los neutrinos, se desechó la idea.

Leer más

Esos pequeños objetos que forman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde que atemorizados mirábamos, en la tormenta, caer los rayos del cielo, oíamos los truenos que seguían a los relámpagos y, hacinados en una curva oscura y humedad nos resguardábamos del frío y de los peligros de la noche, desde entonces digo, muchas cosas han cambiado para nosotros.

El avance de la Humanidad ha sido sorprendente en unos pocos cientos de años. Después e vagar por el mundo descubriendo sus maravillas y sus más recóndidos rincones, los aventureros, guerreros y nómadas, se asentaron en grandes ciudades, y, se construyeron las primeras bibliotecas y hospitales.

Los filósofos naturales, como llamaban a los físicos antiguos, y, también los astrónomos y los investigadores de la medicina junto con los matemáticos que les prestaban las herramientas necesarias para sus investigaciones, fueron avanzando a lo largo y a lo ancho del tiempo y del espacio, y, así, hemos llegado a saber.

Ahora podemos hablar de un sin fin de cuestiones que antes nos eran desconocidas, y, como todas no se pueden abarcar de una sóla vez, comentaremos aquí sobre algunos aspectos del universo y de la materia que lo puebla que, cuando está junta y forma grandes cuerpos, da lugar a eso que llamamos:

Curvatura del espaciotiempo descrita perfectamente por la Toería de la Relatividad General, de Einstein que nos dice de manera perfecta como se comportan las galaxias, las estrellas o los planetas, y, en mundo de lo muy pequeño, está descrito por la Teoría Cuántica, teoría que surgió a raíz de un artículo de ocho páginas escrito por Max Planck y que sentó los cimientos de lo que luego sería una revolución.

Leer más

¿Donde está el origen de la masa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Bosón de Higgs

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.

Una voz potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

Leer más

La Filosofia y la Mecanica Cuantica II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la primera parte se finalizaba diciendo que una buena teoría, una vez fijada, hace predicciones; vamos a ver si otros experimentos confirman esas elecciones filosóficas.

Indiscernebilidad

Ante todo, la identidad de partículas viene, de nuevo, posibilitada por el atomismo democriteo: el atomismo implica que hay un número finito de parámetros para determinar completamente la ontología (NO la posición espacio-temporal) de un sistema atómico. Por ejemplo, un electrón es completamente descriptible como sistema por su masa, su carga eléctrica y el valor de ½ para su espin. La excusa de las “variables ocultas” (Einstein; D. Bohm) es un recurso numantino para no aceptar el atomismo, como decir que hay “subvariables” en el electrón, etc. Ya Leibniz se preocupo de las consecuencias físicas de la identidad de las cosas; pero es solo la teoría quántica, entendemos, quien da el paso, con consecuencias físicas, de la identidad y la indiscernibilidad: si tenemos tres electrones , la teoría de la colectividad debe aplicarse de modo que NUNCA, en la construcción teórica, pueda decirse de que electrón se trata entre los tres: el “fijar” el sistema debe responder a la pregunta de cuantos electrones hay en un estado definido, y no cuales son: esta fue la idea directriz de Hiesenberg y de Dirac, independientemente, en 1926, cuando inventaron las estadísticas cuanticas en el marco de la  (nueva) mecánica quántica.

Hay aquí una postdiccion: estados cuanticos diferentes son compatibles sobre partículas idénticas, por ejemplo superposiciones simétricas o antisimetricas, y de hecho Bose invento la estadística de partículas de espin entero (1924), Pauli encontró empíricamente el Principio de exclusión (enero 1925) y Fermi estableció la estadística de fermiones (1926) aun ANTES de la Mecánica Quántica definitiva (históricamente, Fermi protesto a Dirac que no mencionase su trabajo cuando el segundo estableció la estadística quántica (Fermi-Dirac) para electrones).

Leer más

¿Energía? ¿Campos de Higgs?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Quién no conoce el proyecto del CERN con el LHC? quieren sondear lo que llaman el campo de Higgs y tratar de encontrar las respuesta a la manera en que las partículas adquieren su masa a través del Bosón del Higgs.

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por P. Zeeman, en 1896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Z0, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electro débil (Weinberg-Salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa  los W+, W, Z0 y fotón que llevan la fuerza electro-débil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Leer más