El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos c徂mulos de galaxias que, al colisioarn con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.
Jul
10
El Universo siempre asombroso
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
El Universo, la Vida…, y, ¿el destino?
A medida que se expandía a partir de su estado primordial uniforme, el universo se enfriaba. Y con las temperaturas más bajas vinieron nuevas posibilidades. La materia fue capaz de agregarse en enormes estructuras amorfas: las semillas de las galaxias actuales. Empezaron a formarse los átomos allanando el camino para la química y la formación de objetos físicos sólidos.
Comparado con los patrones actuales, el universo en dicha época era sorprendentemente homogeneo. La sustancia cósmica estaba presente por todo el espacio con una uniformidad casi perfecta. La Temperatura era la misma en todas partes. La materia, descompuestas en sus constityentes básicos por el tremendo calor, estaba en un estado de extraordinaria simplicidad.

Nuestro mundo, aunque en la Galaxia existan muchos como él (que no los hemos podido encontrar), es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiopnes diferentes que existen dentro del mismo planeta es asombroso y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.


La Humanidad, esa forma de vida que conforma nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus gravaciones en la piedra de los lejanos confines del cosmos que ellos imaginaban.
Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué había más allá en regiones desconocidas primero y, más tarde, en posesión de tecnologías superiores, hemos querido hurgar en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nunca podría surgir a la vida.
Todo lo que existe está en el Universo: Los pensamientos también


Titán tiene las características similares a las que la Tierra tenía en sus primeros inicios, es decir, hace más de 3.800 millones de años. En aquella época en la que (se cree), surgieron los primeros microorganismos, de los que provinieron las diferentes especies conocidas hoy (según los fósiles hallados en las rocas más antiguas del planeta).
Titán es el satélite mayor de Saturno y la segunda de las mayores lunas del Sistema Solar, la cual sólo rivaliza en tamaño con Ganimedes -satélite de Júpiter-. Este mundo siempre ha resultado de enorme interés a los científicos pues se considera un “laboratorio de la vida”, un lugar que podría ser reflejo -como antes decía y desde el punto de vista biológico- de lo que era el planeta Tierra hace más de 3800 millones de años.
Titán es un mundo único en el Sistema Solar y muy enigmático: su superficie es una incógnita, pues su densa atmósfera formada fundamentalmente por nitrógeno nunca nos ha permitido observar sus rasgos superficiales. A todo ello se le suman una gran cantidad de incógnitas: la posibilidad de existencia de mares o lagos superficiales de hidrocarburos, de materia orgánica e incluso de alguna clase de vida.
Titan, una luna prometedora

Lo grande y lo pequeño
El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema centra la gran aventura de la Física actual y consiste en hallar una formulación que combine las dos grandes teorías de la Ciencia: La Relatividad y la Mecánica Cuántica. Aunque parece que, tal matrimonio, resulta imposible y que, los contrayentes son imcompatibles.
Existen dos pilares fundamentales en los cuales se apoya toda la Física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del Universo a una escala máxima: estrellas, Galaxias, cúmulos(o clusters) de Galaxias, y aún más allá, hasta la inmensa expansión del propio Universo.
El otro pilar es la mecánica cuántica que, en un primer momento, vislumbro Max Planck y posteriormente fue desarrollada por Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr, Feynman y muchos otros. Esta disciplina nos ofrece un marco teórico para comprender el Universo en su escala mínima: Partículas, átomos, moléculas y así hasta llegar a las interacciones fundamentales con la materia, el conjunto del que está formado el universo. Llegó un día en el que, al descubrir cómo era ese “mundo” misterioso lleno de fantáticos objetos.

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.
Pero está claro, como digo, que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares y mundos, la Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.
Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.
Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Microcristales de arcilla
Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.


Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.
La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.
Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.
Los átomos se juntan para formar moléculas
El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Ya son muchas decenas de moléculas encontradas en las nubes interestelares
Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.
Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.
Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.
Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.
Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.



La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.
En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.
El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?
Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presene en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diesmilésima… ¡La Vida no sería posible!

En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima). ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.

Este pulsar pertenece a la Nebulosa del cangrejo, fue captado por el Hubble (parte roja visible) y por el Chandra (parte Azul rayos X) Créditos: NASA
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Representación artística de un Magnetar, se puede apreciar el enorme campo magnético (líneas rojas) y la radiación alrededor del mismo (manchas alrededor de la esfera). Créditos: NASA. También se le llama “Magnetoestrella” esta es una variedad de pulsar con un descomunal campo magnético, su principal característica es la expulsión de rayos X y rayos Gamma en enormes cantidades por periodos cortos (equivalentes a la velocidad de la luz).
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

La densidad de estas estrellas es increiblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

El remanente estelar después de la explosiòn puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
emilio silvera
Jul
5
¿El Universo? ¡Una maravilla!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (1)

En lugares como este, los astrofísicos encuentran un lugar ideal para estudiar sus componentes como si de un Laboratorio natural se tratara. Moléculas de diversos pelajes y elementos aquí presentes que sorprenden en no pocas ocasiones al ver que, en este medio inhóspito de radiación y viento estelares, pueden surgir los ingredientes necesarios para la vida. Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares.

Las primeras estrellas aparecieron después de cientos de millonesde años
Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras evolucionar a partir de la “materia inerte”, apareciéramos nosotros.

Todo en el Universo tiene un principio y un final y, el mismo universo tuvo que nacer y evolucionar para que hoy podamos contemplar, mediante nuestros sofisticados telescopios, un universo en expansión lleno de galaxias que contienen estrellas nuevas y viejas estrellas, muchas de ellas rodeadas de mundos que, aún no hemos podido determinar de qué criaturas estarán poblados muchos de ellos.
Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo, no hay núcleos atómicos estables. El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen rápidamente.
Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos. Aunque en esa época el Universo es más denso que las otras (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos. Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias y si el Big Bang, el modelo de universo que hemos adoptado, es cierto. Es decir, si fue realmente lo que ocurrió aquí para que naciera nuestro universo, o, por el contrario, este pudo surgir de una fluctuación de vacío que rasgo el espacio-tiempo en otro universo. Pero, sigamos con la historia.
Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase. Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).
En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad, el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.
Decaimiento β– de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón que a la vez que emite un electrón (β–) y un antineutrino electroníco. Es un proceso mediante el cual un nucleido o núcleo inestable emite una partícula beta (un electrón o positrón) para compensar la relación de neutrones y protones del núcleo atómico. Esta desintegración viola la paridad.
De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.
Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.
A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de estructura que puede existir se hace cada vez más rudimentario.

Sólo una sustancia cósmica lo invadía todo antes de que formara la materia
Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones. El Universo es un océano de quarks libres y otras partículas elementales.
Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark. La asimetría es importante. Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día. Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.
Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.
La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil. hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

Estas partículas –las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles. En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.
Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia. Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido. Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.
En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas. Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes. Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.
Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.
Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé. Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.
Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos
Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parece que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven a las mil maravillas.
A partir del momento en que se formaron los primeros átomos, estos se unieron para formar moléculas y cuerpos. Pasados cientos de miles de años, millones y millones que el Universo necesitó para forjarse como un un Sistema cerrado coherente, lleno de materia situada en grandes espacios vacíos, donde las cuatro fuerzas fundamentales lo regían todo. Desde entonces, el universo se pobló de fantásticas configuraciones surgidas de la energía devastadoras de las primeras supernovas y colisiones de agujeros negros y un sin fin de fenómenos que ahora podemos observar con los grandes telescopios.

Galaxias que atraídas por la fuerza de gravedad se fusionan

Bellas Nebulosas que son el resultado de grandes explosiones de estrellas moribundas que lanzan sus materiales al espacio interestelar.

Formaciones en cúmulos de estrellas que producen el asombro de los Astrónomos

Monstruos cósmicos que, en forma de agujeros negros, enguyen a las estrellas vecinas para hacerse más y más grande

Miles y millones de galaxias que se reparten por todas las regiones del Universo “infinito”

Y pasado más de 13.000 millones de años, en un planeta rocoso de escasa importancia en el contexto del universo inmenso, aparecímos nosotros, unas criaturas egoistas e instintivas que, caminamos por el planeta durante milenios forjando Civilizaciones, inventando la escritura y las matemáticas, logrando forjar un saber encomiable sobre la Astronomía que nos cuenta, lo que pudo pasar desde el comienzo del Tiempo.
Sí, es cierto que, si somos sinceros, hay que reconocer que andamos un poco perdidos y que las preguntas, son infinitamente más que las pocas respuestas que podemos dar. Nuestra ignorancia es grande pero, nuestra imaginación es mayor y, poco a poco, ésta última le está ganando la batalla a la primera, ese peso que la Humanidad lleva sobre sus hombros desde la noche de los tiempos.
emilio silvera
Jun
13
¡El Universo! ¡Esa Maravilla!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
El Cúmulo Copo de Nieve en la Nebulosa del Cono, es como tántas otras Nebulosas, el resultado de la explosión de una estrella al final de sus días. Las estrellas nunca quieren morir del todo y, cuando lo hacen al finalizar sus ciclos de fusión, se convierten en otros objetos distintos y, sus materiales sobrantes son dejados esparcidos por grandes regiones del espacio interestelar, en forma de bellas nebulosas de las que surgen nuevas estrellas, nuevos mundos y… -seguramente- nuevas formas de vida.
Ahora sabemos que el Universo está constituito de innumerables galaxias que forman cúmulos que, a su vez, se juntan en supercúmulos. Estas galaxias están abarrotadas de estrellas y las estrellas, no pocas veces, están acompañadas de planetas que forman sistemas planetarios. Nosotros, los humanos, hemos realizado profundas observaciones que, con nuestros modernos ingenios, nos han podido llevar hasta el espacio profundo, allí donde habitan galaxias que nacieron hace ahora doce mil millones de años.
Arriba podemos contemplar una especie de incubadora estelar que todos conocemos como la Gran Nebulosa de Orión, una familiar imagen que está cerca de “nuestro barrio” dentro de la Galaxia Vía Láctea y también conocida como M42 con sus resplandecientes nubes y sus jóvenes y masivas estrellas nuevas que radian en el ultravioleta ionizando la región que toma ese familiar tono azulado.
Situada en el borde de un complejo de nubes moleculares gigantes, esta cautivadora nebulosa -laboratorio espacial- es solo una pequeña fracción de la inmensa cantidad de material interestelar en nuestra vecindad galáctica.El campo de la imagen se extiende cerca de 75 años-luz a la distancia estimada a la Nebulosa de Orión de 1.500 años-luz. Es una de las Nebulosas más estudiada por los Astrónomos y astrofísicos debido a su enorme capacidad de crear nuevas estrellas y estar en ella presentes procesos de transmutación de elementos y una vertiginosa actividad que es la mejor muestra del comportamiento de la materia en estos lugares.
Sin salir de nuestra región, nos valos al barrio vecino que conocemos como Cinturón de Orón donde destacan las estrellas azuladas Alnitak, Alnilam y Mintaka, estrellas supermasivas y muy calientes que forman el Cinturón del Cazador. Ahí podemos ver, abajo a la izquierda la famosa Nebulosa oscura Cabeza de Caballo.
Alrededor de figuras como la que arriba podemos contemplar, los humanos siempre hemos sido propensos a creer en predicciones fantásticas y fantasías y, para darle ese tinte de enigma y misterio, algunas veces, no hemos dudado en retorcer los hechos para que parezcan lo que no son. Con lo que los mayas creían, ha pasado algo parecido y, los catastróficos, aprovechan para crear una corriente de opinión en la que, mucha gente ignorante de los hechos suelen caer.
“Según creían los sacerdotes mayas, estos acontecimientos celestes marcaban el amanecer de una nueva era, que se contabilizó usando la “cuenta larga”, un registro lineal de los días que comienza con la cuarta creación maya del año 3114 a.C. y predice que el final del universo actual tendría lugar el 23 de diciembre del año 2012 d.C. Durante este intervalo de vida del universo, que es de unos cinco mil años, numerosos ciclos de tiempo menores marcaban las duraciones de los ritmos astronómicos, naturales y políticos intercalados.”
Curiosamente, las fechas de la cuarta y última creación maya encajan bastante bien con las del cuarto y último ciclo hindú: 13 de agosto del año 3114 a. C. y 5 de febrero de 3112 a.C. para los mayas, según Linda Schele, y 17-18 de febrero del año 3102 a.C. para los hindúes, según Aveni. En la India estas fechas concuerdan con una conjunción planetaria en Aries. En la mitología maya estas fechas representan dos actuaciones de los dioses para crear el universo. El 13 de agosto de 3114 establecieron el corazón cósmico llevando las tres estrellas del cinturón de Orión al centro del cielo; dos años más tarde, el 5 de febrero, levantaron el árbol cósmico, que es la Vía Láctea. Como en la India, ambos días correspondían a acontecimientos astronómicos. Schele, una epigrafista y profesora de historia del arte de la Universidad de Texas, que ve los mitos mayas como “mapas estelares”, afirma que el 13 de agosto del año 3114 a.C. las estrellas de Orión se situaron en el centro del cielo al amanecer. La Gran Nebulosa (M42), desconocida para los europeos hasta 1610, puede verse entre estas estrellas y los mayas la llamaron el humo de la cocina cósmica. Un año más tarde, los dioses plantaron el árbol cósmico, representado por la Vía Láctea, que conectaba las trece capas del cielo con las siete capas del submundo. Según Schele, “ En el año 3112 a.C. la mañana del 5 de febrero, la totalidad de la Vía Láctea ascendió por la parte oriental del horizonte, hasta que al amanecer se extendió de norte a sur por el cielo”. Aveni está de acuerdo con la primera interpretación, pero tiene dudas con respecto a las afirmaciones que hablan de la Vía Láctea del 5 de febrero.
¡Otra vez me ha pasado, aparece un recuerdo en mi mente y lo sigo, lo sigo, lo sigo… dejando de lado lo que estaba haciendo.
Sigamos con el trabajo de hoy.


Del Brazo de Orión, la región que nos acoge y en la que se encuentra situado nuestro Sistema solar, al no poderlo tomar desde fuera y tenerlo tan cerca (de hecho estamos en él inmersos), no podemos tener una imagen como las que hemos captado de otros lugares y regiones más alejadas. También conocido como “brazo local” que es alternativo al Brazo de Orión de nuestra Galaxia, así se define algunas veces al Brazo espiral que contiene a nuestro Sol.
Cuando hablamos de brazo espiral nos estamos refiriendo a una estructura curvada en el disco de las galaxias espirales (y de algunas irregulares) donde se concentran las estrellas jóvenes, las nebulosas (regiones H II) y el polvo. Algunas galaxias tienen un patrón bien definido de dos brazos espirales, mientras que otras pueden tener tres o cuatro brazos, estando en ocasiones fragmentados. Los brazos son visibles por la reciente formación de estrellas brillantes, masivas y de corta vida en ellos. Esta actividad de formación de estrellas es periódica, correspondiendo al movimiento a través del disco de una onda de densidad gravitatoria y de fuertes vientos estelares.
![]()
Nuestra curiosidad nos ha llevado, mediante la observación y estudio del cielo, desde tiempos inmemoriales, a saber de las estrellas, de cómo se forman, viven y mueren y, de las formas que adoptan al final de sus vidas, en qué se convierten cuando llega ese momento final y a dónde va a parar la masa de las capas exteriores que eyectan con violencia al espacio interestelar para formar nuevas nebulosas. De la estrella original, según sus masas, nos quedará una enana blanca, una estrella de neutrones y, un agujero negro. También, en encuentros atípicos o sucesos inesperados, pueden crearse estrellas por fusión que las transforman en otras diferentes de lo que en su origen fueron.


Lo podemos explicar de diferentes maneras
Uno de los acontecimientos más increíbles que podríamos contemplar en el Universo sería, cómo se forma un Agujero negro que, lo mismo es el resultado de la muerte de una estrella masiva que implosiona y se contrae más y más hasta que desaparece de nuestra vista, o, también, se podría formar en otros sucesos como, por ejemplo, la fusión de dos estrellas de neutrones.
La formación de un agujero negro es una de las manifestaciones más grandes de las que tenenmos constancia con la Gravedad. La estrella, en este caso gigante y muy masiva, llega a su final por haber agotado todo su combustible nuclear de fusión y, queda a merced de la fuerza de gravedad que genera su propia masa que, entonces, comienza a contraerse sobre sí misma más y más hasta llegar a convertirse en una singularidad, es decir, un punto matemático en el que ciertas cantidades físicas pueden alcanzar valores infinitos de temperatura y densidad. Por ejemplo, de acuerdo con la relatividad general, la curvatura del espacio-tiempo se hace infinita en un agujero negro en el que, el espacio y el tiempo…¡dejan de existir!
Es tan fuerte la Gravedad generada que nada la puede frenar. Muchas veces hemos hablado aquí de la estabilidad de una estrella que se debe a la igualdad de dos fuerzas antagómicas: por un lado, la fuerza de fusión y de radiación de una estrella que la impulsa a expandirse y que, sólo puede ser frenada por aquella otra fuerza que emite la misma masa estelar, la Gravedad. Las dos se ven compensadas y, de esa manera, la estrella vive miles de millones de años.

Las estrellas implosionan y se contraen sobre sí mismas cuando la fusión finaliza en sus núcleos por falta de combustible nuclear, tales como el hidrógeno, helio, berilio, Carbono, Oxígeno… Entonces, el proceso de contracción no es igual en todas ellas, sino que, está reglado en función de la masa que cada estrella pueda tener. En una estrella como nuestro Sol, cuando comienza a contraerse está obligando a la masa a que ocupe un espacio cada vez menor.
La masa, la materia, como sabemos está formada por partículas subatómicas que, cada una de ellas tienen sus propias singularidades, y, por ejemplo, el electrón, es una partícula que, siendo de la familia de los leptones es, además, un fermión que obedece a la estadística de Fermi-Dirac y está sometido al Principio de exclusión de Pauli que es un principio de la mecánica cuántica aplicable sólo a los fermiones y no a los bosones, y, en virtud del cual dos partículas idénticas en un sistema, como por ejemplo electrones en un átomo o quarks en un hadrón, no pueden poseer un conjunto idénticos de números cuánticos. (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado (El origen de este Principio se encuentra en el teorema de espín-estadística de la teoría relativista).

Toda la explicación anterior está encaminada a que, podáis comprender el por qué, se forman las estrellas enanas blancas y de neutrones debido al Principio de exclusión de Pauli. Sabemos que la materia, en su mayor parte son espacios vacíos pero, si la fuerza de Gravedad va comprimiendo la masa de una estrella más y más, lo que está haciendo es que va juntando, cada vez más, a las partículas que conforman esa materia. Así, los electrones se ven más juntos cada vez y, llega un momento, en el que sienten una especie de “claustrofobia”, su condición de fermiones, no les permite estar tan juntos y, entonces, se degeneran y comienzan a moverse a velocidades relativista. Tal suceso, es de tal magnitud que, la Gravedad que estaba comprimiendo la nasa de la estrella, se ve frenada y se alcanza una estabilidad que finaliza dejando una estrella enana blanca estable.
Pero, ¿qué pasaría si la estrella en vez de tener la masa de nuestro Sol, tiene varias veces su masa? Entonces, ni la degeneración de los electrones puede frenar la fuerza gravitatoria que sigue comprimiendo la masa de la estrella y fusiona electrones con protones para formar neutrones. Los neutrones, que también son fermiones, se ven comprimidos hasta tal punto que, también se degeneran y, ellos, sí son capaces de frenar la fuerza gravitatoria quedando esa masa estabilizada como estrella de Neutrones.

Como el niño que no deja de hacer preguntas, nosotros, llegados a este punto también, podríamos preguntar: ¿Qué ocurriría si la estrella es muy masiva? Entonces amigos míos, el Principio de Excliusión de Pauli haría mutis por el foro, impotente ante la descomunal fuerza gravitatoria desatada y, ni la degeneración de electrones y neutrones podría frenarla. La masa se vería comprimida más y más hasta convertirse en un agujero negro de donde, ni la luz puede escapar.

Pero los mecanismos del Universo son muchos y los sucesos que podemos contemplar son asombrosos. Por ejmplo, si una inocente estrella está situada cerca de una enana blanca de gran densidad, se vería atraída por ella y “vería” como, poco a poco, le robaría su masa hasta que, finalmente, la engulliría en su totalidad.
Si eso ocurre tal y como vemos en la imagen, ¿qué pasaría entonces? Sencillamente que, la estrella enana blanca pasaría a transformarse en una estrella de neutrones, ya que, la masa que a pasado a engrosar su entidad, es demasiado para poder quedar estable como enana blanca y, de nuevo la gravedad hace que electrones y protones se fundan para formar neutrones que, degenerados, estabilizan la nueva estrella.

Sí, hemos llegado a ser conscientes de nuestro entorno y hemos podido crear ingenios que nos hablan y muestran las lejanas regiones del Universo. Ahora podemos hablar de las tremendas energías presentes en el espacio cosmológico y sabemos por qué se generan y cuáles son sus consecuencias. Conocemos de la importancia del Sol para la vida en la Tierra, hemos observado el Sistema solar al que pertenecemos dentro una inmensa galaxia de estrellas y, sobre todo, hemos llegado a comprender que, la Vida en nuestro planeta, puede no ser un privilegio, sino cosa cotidiana repartida por todo el universo infinito.

El Telescopio Espacial Fermi, de Rayos Gamma de la NASA ha descubierto y nos enseña una estructura nunca antes vista en el centro de nuestra galaxía la Vía Láctea. La estructura se extiende a 50.000 años luz y puede ser el remanente de una erupción de un agujero negro de enorme tamaño en el centro de nuestra Galaxia.

El desarrollo de la ciencia tiene su frontera superior en el desarrollo de tecnologías que hacen posible el conocimiento de nuestro universo. Satélites, telescopios, radio telescopios, sondas espaciales, naves, cohetes y transbordadores son el fruto de la investigación de muchos profesionales de diversas áreas del conocimiento que están llevando a toda la Humanidad hacia el futuro.

Con el radiotelescopio ALMA, ubicado en el desierto de Atacama (Chile), a 5.000 metros de altura, los científicos lograron captar moléculas de glicolaldehído en el gas que rodea la estrella binaria joven IRAS 16293-2422, con una masa similar a la del Sol y ubicada a 400 años luz de la Tierra.
El glicolaldehído ya se había divisado en el espacio interestelar anteriormente, pero esta es la primera vez que se localiza tan cerca de una estrella de este tipo, a distancias equivalentes a las que separan Urano del Sol en nuestro propio sistema solar.
“En el disco de gas y polvo que rodea a esta estrella de formación reciente encontramos glicolaldehído, un azúcar simple que no es muy distinto al que ponemos en el café”, señaló Jes Jørgensen, del Instituto Niels Bohr de Dinamarca y autor principal del estudio.

El observatorio espacial Kepler encontró en el sistema planetario Kepler-22, a 600 años luz, el primer planeta situado en la llamada “zona habitable”, un área en la que, por su distancia a su sol, puede haber agua líquida, según anunció este lunes la NASA en una rueda de prensa. Los científicos del Centro de Investigación Ames de la NASA anunciaron además que Kepler ha identificado 1.000 nuevos “candidatos” a planeta, diez de los cuales tienen un tamaño similar al de la Tierra y orbitan en la zona habitable de la estrella de su sistema solar, esto es, ni demasiado cerca ni demasiado lejos de una estrella.

El planeta, Kepler-22b, es el más pequeño hallado por la sonda espacial orbitando en la “zona habitable” -aquella donde las temperaturas permiten la vida- de una estrella similar a la de la Tierra. 55 planetas son aún más grandes que Júpiter, el más grande de nuestro sistema solar Es más grande que la Tierra y todavía no se ha determinado si es rocoso, gaseoso o líquido, pero, según dijo la subdirectora del equipo científico del Centro Ames, Natalie Batalha, “estamos cada vez más cerca de encontrar un planeta parecido a la Tierra”.

Esta escena es del día en que, en 1997, fue lanzada la Misión Cassini-Huygens hacia el vecino Saturno. ¿Qué podemos comentar de esa misión que nos llevó al más grande de los asombros, al podernos mostrar imñágenesa nunca antes vistas?

Imágenes tomadas por Cassini a su paso por Júpiter

La misión Cassini a Saturno y Huygens a Titán, es una de las misiones más ambiciosas hasta el momento jamás llevado a cabo. Todos sabemos ahora de su alta rentabilidad y de los muchos logros conseguidos. Gracias a esta misión sabemos de mucho más sobre el planeta hermano y de su gran satélite Titán del que hemos podido comprobar que es una “pequeña Tierra” con sus océanos de metano y su densa atmósfera inusual en cuerpos tan pequeños.
¡El ingenio humano!
La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.
¿Os dais cuenta de la asombrosa imaginación y los conocimientos que son necesarios para llevar a cabo todo este conglomerado de datos?
Fase de Crucero:
Cassini llevó a cabo un plan de vuelo de baja actividad durante el cuakl sólo se realizaron las actividades de navegación e ingenieria imprescindibles, como maniobras de chequeo o corrección de trayectoria. Los instrumentos científicos fueron desconectados permanentemente, salvo en el transcurso de unas pocas actividades de mantenimiento. Estas incluían sólo un chequeo de todo su instrumento cuando la sonda estaba cerca de la Tierra, así como la calibración del magnetómetro. Las comprobaciones sobre el estado de la sonda Huygens se llevaron a cabo cada seis meses, mientras que las observaciones científicas se realizaron cuando el vehículo se aproximó a Venus, la Tierra y Júpiter.

El sobrevuelo de Júpiter significó una buena oportunidad para las sondas Cassini y Galileo de cara a estudiar varios aspectos de este planeta y su medio circundante desde octubre de 2000 hasta marzo de 2001, es decir, antes, durante y después de la máxima aproximación a Júpiter, el 30 de diciembre de 2000. Las observaciones científicas contaron con la ventaja de disponer de dos sondas espaciales en las cercanías del planeta al mismo tiempo. Algunos de los objetivos llevados a cabo conjuntamente por la Cassini y la Galileo incluyeron el estudio de la magnetosfera y los efectos del viento solar en ésta, así como la obtención de datos sobre las auroras en Júpiter.
Durante este sobrevuelo, la mayor parte de los instrumentos del orbitador Cassini fueron conectados, calibrados y trabajaron recogiendo información. Este estudio conjunto sirvió como buena práctica para comprobar el funcionamiento del instrumental de la sonda tres años antes de su llegada a Saturno.

Llegada a Saturno
Después de un viaje de casi siete años y más de 3500 millones de kilómetros recorridos, la sonda Cassini llegará a Saturno el día 1 de julio de 2004.
La fase más crítica de la misión –además del lanzamiento– es la inserción orbital del vehículo en torno al planeta. Cuando el vehículo alcance el planeta, la sonda pondrá en marcha su motor principal durante 96 minutos a las 04:36 T.U., con la finalidad de reducir su velocidad y permitir que la gravedad de Saturno la capture como un satélite del planeta. Atravesando el hueco entre los anillos F y G, Cassini se aproximará al planeta para iniciar así la primera de sus 76 órbitas que completará durante su misión principal de cuatro años.
Todos hemos podido admirar las imágenes y sabido de los datos científicos que la Cassini ha podido enviar a la Tierra para que, todos podamos saber mucho más del planeta Saturno y de su entorno. Imágenes inolvidables y de increíble belleza forman parte ya de la historia de la misión.

La misión de la sonda Huygens
La sonda Huygens viajó junto a la Cassini hacia Saturno. Anclada a ésta y alimentada eléctricamente por un cable umbilical, Huygens ha permanecido durante el viaje de siete años en modo inactivo, sólo puesta en marcha cada seis meses para realizar chequeos de tres horas de duración de su instrumental y de sus sistemas ingenieriles.
Unos 20 días antes de alcanzar la atmósfera alta de Titán, Huygens fue eyectada por Cassini. Esto ocurrió el 24 de diciembre de 2004. Tras cortar su cable umbilical y abrir sus anclajes, Huygens se separó de su nave madre y voló en solitario hacia Titán, con una trayectoria balística, girando a 7 revoluciones por minuto para estabilizarse. Varios temporizadores automáticos conectarán los sistemas de la sonda espacial antes de que ésta alcance la atmósfera superior de Titán.
Dos días después de la eyección de la sonda, Cassini realizará una maniobra de desviación, de manera que ésta puedo seguir a la Huygens cuando penetró en la atmósfera de Titán. Esta maniobra servió también para establecer la geometría requerida entre el orbitador con Huygens, así como las comunicaciones de radio durante el descenso.
Huygens porta dos transmisores de microondas en la banda S y dos antenas, las cuales enviarán simultáneamente la información recogida hacia el orbitador Cassini. Una de ellas emitirá con un retraso de seis segundos respecto a la otra, para evitar cualquier pérdida de información si tuviesen lugar problemas con las comunicaciones.
El descenso de Huygens tuvo lugar el 15 de enero de 2005. La sonda entró en la atmósfera de Titán a una velocidad de 20.000 Km/h. Este vehículo ha sido diseñado tanto para soportar el extremo frío del espacio (temperaturas de –200°C) como el intenso calor que se encontrará durante su entrada atmosférica (más de 12000°C).
Los paracaídas que transporta Huygens frenaron más la sonda, de tal modo que ésta puedo llevar a cabo un amplio programa de observaciones científicas al tiempo que desciende hacia la superficie de Titán. Cuando la velocidad de la sonda descendido hasta los 1400 Km/h, se desprendió su cubierta mediante un paracaídas piloto. Acto seguido se desplegó otro paracaídas de 8.3 metros de diámetro que frenó aún más el vehículo, permitiendo la eyección del decelerador y del escudo térmico.
Durante la primera parte del descenso, el trabajo de los instrumentos situados a bordo de la sonda Huygens será dirigido por un sistema temporizador, pero en los últimos 10 a 20 Km, será un altímetro radar quien medirá la altura a la que se encuentra el vehículo y controlará el instrumental científico.
Durante el descenso, el instrumento de estructura atmosférica de Huygens medió las propiedades físicas de la atmósfera. El cromatógrafo de gases y el espectrómetro de masas determinarán la composición química de la atmósfera en función de la altitud. El colector de aerosoles y el pirolizador capturarán partículas de aerosol –las finas partículas líquidas o sólidas suspendidas en la atmósfera–, las calentará y enviará el vapor resultante al espectrómetro y el cromatógrafo para su análisis.
El sistema de imagen de descenso y el radiómetro espectral trabajarán en la toma de imágenes de formaciones nubosas y de la superficie de Titán, determinando además la visibilidad en la atmósfera de este mundo. Según se vaya aproximando a la superficie, el instrumento encenderá un sistema de iluminación brillante que para medir la reflectividad superficial. Paralelamente a ello, la señal emitida por la sonda Huygens será recogida por el experimento Doppler de la Cassini, con lo cual se podrán determinar los vientos, ráfagas y turbulencias de la atmósfera. Cuando la sonda sea empujada por el viento, la frecuencia de su señal de radio variará ligeramente –en lo que se conoce como efecto Doppler, similar a la variación de la frecuencia del silbido de un tren que percibimos cuando éste pasa por delante de nosotros. Estos cambios en la frecuencia se emplearán para deducir la velocidad del viento que ha experimentado la sonda.

Pequeños mundos muy cercanos a nosotros y que nos podrían dar buenas sorpresas
La misión principal de la sonda Cassini tenía previsto que finalizaría el 30 de junio de 2008, cuatro años después de su llegada a Saturno y 33 días después de su último sobrevuelo a Titán, el cual tuvo lugar el 28 de mayo de 2008. Este sobrevuelo estaba diseñado para posicionar a la sonda de cara a un nuevo acercamiento a dicho satélite el 31 de julio de 2008, ofreciendo la oportunidad de proceder con más sobrevuelos durante la misión extendida, si es que los recursos disponibles la permiten. No hay ningún factor en la misión principal que impida una misión extendida. Lo cierto es que, Cassini sigue ahí y, como otros ingenios espaciales enviados al espacio, continúan más allá de la misión en principio previstas enviando datos e imagénes que nos acercan al saber del mundo que nos rodea y nos dice cómo y por qué funciona así la Naturaleza.
Me he extendido más de lo previsto en este trabajo y, no puedo seguir nombranbdo otras misiones que, como las enviadas a Marte, tan buenos réditos de conocimiento nos han suministrado. Ya habrá lugar más adelante para continuar profiundizando en todo lo que hicimos y, también, ¿cómo no? en lo mucho nos queda por hacer.
No podemos negar que, escenas como la que arriba contemplamos, no sea algo cotidiano en el devenir de la Humanidad. El futuro que nos aguarda puede ser algo maravilloso y de asombrosos descubrimientos que nos llevaran lejos, hacia otros mundos, otras estrellas… ¡otras amistades!
Pero todo eso amigo míos, sólo podrá ser posible gracias al conocimiento y al hecho de ser conscientes de nuestras limitaciones. No debemos nunca querer superar a la Naturaleza, simplemente debemos aprender de ella.
emilio silvera
Jun
12
El Universo, siempre asombroso
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
Todo lo que existe está en el Universo: Los pensamientos también

La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus gravaciones en la piedra de los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situadas en los confines del Universo. Sin embargo, y, a pesar de todos estos adelantos, continuamos formulando las mismas preguntas esperando esas respuestas que no acaban de llegar.

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, exponemos conjeturas y realizamos comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimendiones espacio-temporales, no contamos con la física necesaria para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embnargo, podríamos teorizar que ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder “conocernos” mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.
Titan, una luna prometedora

Titán en color natural (sonda Cassini-Huygens 2005)
Titán es el mayor de los satélites de Saturno, siendo el único del Sistema Solar que posee una atmósfera importante. Según los datos disponibles su atmósfera podría estar compuesta principalmente de nitrógeno, pero hasta un 6% puede ser metano y compuestos complejos de hidrocarburos. En el año 2005, la sonda Cassini-Huygens descendió en paracaídas por la atmósfera de Titán y aterrizó en su helada superficie para descubrir algunos de sus secretos.
A veces soñamos con una realidad inalcanzable, en este presente, que ya es futuro.

Según los primeros trabajos sobre la teoría cuántica de la gravedad, el propio espaciotiempo varió en su topografía, dependiendo de las dimensiones del universo recien nacido. Cuando el universo era del tamaño de un núcleo atómico (ver imagen de abajo), las condiciones eran relativamente lisas y uniformes; a los 10-30 cm (centro) es evidente una cierta granulidad; y a la llamada longitud de Planck, todavía unas 1.000 veces más pequeño (abajo), el espacio tiempo fluctúa violentamente.
Los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la Física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.
Pero centremos nuestra atención en: El Universo siempre asombroso

El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos cúmulos de galaxias que, al colisionar con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.
Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.
Pero está claro, como digo, que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares y mundos, la Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.
Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.
Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Microcristales de arcilla
Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.


Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los Hadrones.
La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.
Los núcleos, como sistemas dinámicos de nuckleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.
Los átomos se juntan para formar moléculas
El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Ya son muchas decenas de moléculas encontradas en las nubes interestelares
Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.
Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.
Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.
Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.
Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.



La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.
En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.
El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?
Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presene en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diesmilésima… ¡La Vida no sería posible!

En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima). ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que se forma la estrella de neutrones solo dura un efímero lapso de tiempo.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

La densidad de estas estrellas es increiblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

El remanente estelar después de la explosiòn puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
emilio silvera
Jun
2
El Universo asombro
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)

¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas
Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes tienen un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo completo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

El Halo Galáctico está referido a cualquier material situado en una distribicón aproximadamente esférica alrededor de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.
![]()
Alguna vez podemos contemplar una imagen que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604, una región H II gigante en la galaxia del Triángulo. Una región H II es una nube de gas y plasma brillante que puede alcanzar un tamaño de varios cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.
![]()
Las regiones H II son muy abundantes en nuestra Galaxia
Cada átomo de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en radio e infrarrojo. La radioemisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

Las Regiones H II están aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados.8 De ella se ha obtenido información determinante acerca de la formación de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado baja como para que se formen moléculas de hidrógeno, y la luz estyelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrñógeno neutro contrinuye aproximadamernte a la mitad de toda la materia interestelar en masa y en volumen, con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.
Del asomnbroso universo son miuchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.
La de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el espacio interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado datos al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.
![]()
Concepción de un artista de una estrella variable cataclísmica.
Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas y ejemplo de una estrella binaria, en donde dos cuerpos con una pequeña diferencia de masa orbitan alrededor de un centro de masa.
En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!
Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.
Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.
Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

A lo menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.
La edad del Universo visible ≈ 1060 tiempos de Planck
Tamaño del Universo visible ≈ 1060 longitudes de Planck
La masa del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el Universo es un reflejo del hecho de que:
Densidad actual del Universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck

Nosotros, una simple brizna de materia que el Universo elaboró utilizanso la evolución que se produce en el paso del tiempo
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

En todas las regiones del interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.
¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar . La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro solar el magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.

Credit: Emily Lakdawalla/Ted Stryk
La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.
Ahora los Gobiernos más avanzados, están constituyendo un consorcio para colaborar en la detección de estos imprevistos visitantes que nos podrían dar desagradables sorpresas nunca deseadas. Detectarlos a tiempo siempre será mejor que velos llegar de pronto con las rerribles consecuencias que dicha caída en el planeta puede provocar.
emilio silvera
















Totales: 82.057.835
Conectados: 107


























