Mar
24
La NASA nos habla de una estrella muy resistente
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
!Estrella Resistente Sobrevive a una Explosión Supernova!
“20.03.14.- Cuando una estrella masiva se queda sin combustible, se colapsa y explota como una supernova. Aunque estas explosiones son extremadamente poderosas, es posible para una estrella compañera soportar la explosión. Un equipo de astrónomos utilizando el Observatorio de Rayos X Chandra de la NASA y otros telescopios han encontrado pruebas de una de estas supervivientes.
Esta resistente estrella está en el campo de escombros de la explosión estelar – también llamado remanente de supernova – situado en una región HII llamada DEM L241. Una región HII (se pronuncia “H-dos”) se crea cuando la radiación de estrellas jóvenes y calientes se despoja de los electrones de los átomos de hidrógeno neutro (HI) para formar nubes de hidrógeno ionizado (HII). Esta región HII se encuentra en la Gran Nube de Magallanes, una pequeña galaxia compañera de la Vía Láctea.
Región H II en la G. N. de Magallanes
Una nueva imagen compuesta de DEM L241 contiene datos del Chandra (púrpura) que describen el remanente de supernova. El remanente se mantiene caliente y por lo tanto, brillante en rayos X durante miles de años después de que ocurriese la explosión original. También se incluyen en esta imagen los datos ópticos de la Línea de Emisión de la Nube de Magallanes (MCELS), tomados desde telescopios terrestres en Chile (amarillo y cian), que traza la emisión HII producida por DEM L241. También se incluyen los datos ópticos adicionales del Digitized Sky Survey (blanco), que muestra las estrellas en el campo.
Los últimos datos del Chandra revelaron la presencia de una fuente de rayos X puntual en el mismo lugar como una joven estrella masiva dentro del remanente de supernova de DEM L241.
![]() |
Imagen de la estrella resistente a la explosión supernova. Image Credit: NASA/Chandra |
Los astrónomos pueden mirar los detalles de los datos del Chandra para recoger pistas importantes sobre la naturaleza de la fuente de rayos X. Por ejemplo, cómo es el brillo de los rayos X, cómo cambian con el tiempo y la forma en que se distribuyen en todo el rango de energía que observa el Chandra.
En este caso, los datos sugieren que la fuente puntual es un componente de un sistema estelar binario. En un par tan celestial, una estrella de neutrones o un agujero negro (que se forma cuando la estrella se convierte en supernova) está en órbita con una estrella mucho más grande que nuestro Sol. A medida que orbitan entre sí, la densa estrella de neutrones o un agujero negro tira del material lejos de su estrella compañera a través del viento de partículas que fluye lejos de su superficie. Si se confirma este resultado, DEM L241 sería sólo el tercer binario que contiene una estrella masiva y una estrella de neutrones o un agujero negro encontrado como secuela de una supernova.
De remanentes de Supernovas, como el de la Nebulosa del Cangrejo, con sus filamentos de plasma, está lleno el Espacio Interestelar, en el que, periódicamente “muere” alguna estrella masiva eyectando a ese entonro sus capas exteriores para formar una Nebulosa. La estrella se contrae sobre sí misma y queda convertida en un objeto diferente en función de su masa.
Los datos de rayos X del Chandra también muestran que el interior del remanente de supernova es rico en oxígeno, neón y magnesio. Este enriquecimiento y la presencia de la estrella masiva implican que la estrella que explotó tenía una masa superior a 25 veces, o quizás hasta 40 veces, la del Sol. Observaciones ópticas con el telescopio de 1,9 metros del Observatorio Astronómico de Sudáfrica muestran que la velocidad de la estrella masiva está cambiando y que orbita alrededor de la estrella de neutrones o agujero negro con un período de decenas de días. Una medición detallada de la variación de la velocidad de la estrella compañera masiva debería proporcionar una prueba definitiva de si el binario contiene o no un agujero negro.
Ya existen pruebas indirectas de que otros remanentes de supernovas se formaron por el colapso de una estrella para formar un agujero negro. Sin embargo, si la estrella colapsada en DEM L241 resulta ser un agujero negro, esto proporcionaría la evidencia más fuerte hasta ahora para un acontecimiento tan catastrófico.
¿Qué depara el futuro para este sistema? Si el último pensamiento es correcto, la estrella masiva superviviente será destruida en una explosión de supernova dentro de algunos millones de años a partir de ahora. Cuando lo haga, es posible que se forme un sistema binario que contenga dos estrellas de neutrones o una estrella de neutrones y un agujero negro, o incluso un sistema con dos agujeros negros.
Fuente: Noticias NASA
Feb
18
¡Noticia! ¿Una nueva física por “debajo” del cero absoluto?
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
Lo que es normal en invierno para muchas personas, hasta ha sido imposible en la física: Una temperatura por debajo de cero. Para mucha gente, las temperaturas bajo cero en la escala Celsius (grados centígrados) sólo son sorprendentes en verano. En la escala absoluta de temperatura, llamada también escala Kelvin y usada por los físicos, no es posible descender por debajo de cero, al menos no en el sentido de que algo esté más frío que cero grados kelvin.
Según el significado físico de temperatura, la temperatura de un gas está determinada por el movimiento caótico de sus partículas. Cuanto más frío esté el gas, más lentamente se mueven sus partículas. A cero grados Kelvin (273 grados centígrados bajo cero), las partículas dejan de moverse y desaparece todo ese desorden. Por tanto, nada estar más frío que cero grados en la escala Kelvin.
Edificio principal de la Universidad de Múnich
Sin embargo, unos físicos en la Universidad Ludwig-Maximilian de Múnich, y el Instituto Max Planck de Óptica Cuántica en Garching, ambas instituciones en Alemania, han creado en el laboratorio un gas atómico que llega a alcanzar valores negativos en la escala Kelvin, siguiendo las definiciones convencionales adoptadas. Estas temperaturas absolutas negativas tienen varias implicaciones aparentemente absurdas: Aunque los átomos en el gas se atraen entre sí y producen una presión negativa, el gas no se colapsa, una conducta también postulada en la cosmología para el efecto principal de la energía oscura.
Con la ayuda de temperaturas absolutas negativas, se podría, hipotéticamente hablando, crear motores térmicos capaces de proezas imposibles en el mundo físico conocido, por ejemplo un motor de combustión con una eficiencia termodinámica superior al 100 por cien.
Para convertir al agua en vapor, hay que suministrar energía. A medida que el agua se calienta, las moléculas de agua incrementan su energía cinética y en promedio se mueven cada vez más rápido. Sin embargo, las moléculas individuales poseen energías cinéticas distintas, muy lentas hasta muy rápidas. Los estados de baja energía son más comunes que los de alta energía, es decir, sólo unas pocas partículas se mueven con mucha rapidez. En física, esta distribución se conoce como Distribución de Boltzmann. El equipo de físicos de Ulrich Schneider e Immanuel Bloch ha dado ahora con un gas en el que esta distribución está invertida: muchas partículas poseen energías altas, y sólo unas pocas tienen energías bajas. Esta inversión de la distribución de energía implica que las partículas han asumido, al menos en ese aspecto, una temperatura absoluta negativa.
![A una temperatura absoluta negativa, la distribución de energía de las partículas se invierte en comparación con lo que ocurre a una temperatura positiva. (Imagen: © LMU / MPG Munich) [Img #12313]](http://noticiasdelaciencia.com/upload/img/periodico/img_12313.jpg)
La Distribución de Boltzmann invertida es el sello distintivo de la temperatura absoluta negativa, y esto es lo que Schneider y Bloch han logrado. Sin embargo, el gas no está más frío que cero grados Kelvin, sino más caliente, otra aparente paradoja.
Como mejor se puede ilustrar el significado de una temperatura absoluta negativa es con esferas que ruedan en un paisaje en el que los valles representan una energía potencial baja, y las colinas una energía potencial alta. Cuanto más rápido se muevan las esferas, mayor es su energía cinética: Si se parte de temperaturas positivas y se aumenta la energía total de las esferas calentándolas, esas esferas se moverán cada vez más hacia regiones de alta energía. Si fuera posible calentar las esferas hasta una temperatura infinita, las probabilidades de que estuvieran en algún punto del paisaje serían la mismas para cualquier punto, independientemente de la energía potencial. Si en esa situación se pudiera añadir aún más energía y por tanto calentar aún más las esferas, éstas se reunirían preferentemente en estados de alta energía, y estarían aún más calientes que una temperatura infinita. La distribución de Boltzmann se invertiría, y la temperatura sería por tanto negativa. A primera vista, puede parecer extraño que una temperatura absoluta negativa sea más caliente que una positiva. Sin embargo, esto es simplemente una consecuencia de la definición histórica de Temperatura Absoluta; si estuviera definida de manera diferente, contradicción aparente no existiría.
La temperatura en el espacio exterior, según todas las mediciones de satélites de microondas, es de -270,43ºC (2,72 Kelvin) y los átomos y moléculas se mueven más despacio que están en un medio más caliente.
Esta inversión de la población de estados de energía no es posible en el agua o en cualquier otro sistema natural, ya que el sistema tendría que absorber una cantidad infinita de energía, algo imposible. Sin embargo, si existiera un límite superior para la energía de las partículas, como sería el caso de la cima de la colina en el símil del paisaje de energías potenciales, la situación sería completamente diferente. El equipo de Bloch y Schneider parece que ha dado ahora con un sistema de gas atómico de ese tipo, caracterizado por un límite superior de energía. Este aparente logro es fruto de su en el laboratorio, siguiendo las propuestas teóricas de Allard Mosk y Achim Rosch.
Hipotéticamente, la existencia de materia a temperaturas absolutas negativas tiene toda una serie de implicaciones sorprendentes, de las que destaca la ya citada de un motor de combustión con una eficiencia superior al 100 por cien. Sin embargo, esto no significa que se viole la ley de conservación de la energía. Lo que ocurriría es que el motor no sólo podría absorber energía de un medio más caliente, sino también de uno más frío.
El logro de los físicos de Múnich también podría ser interesante para la cosmología, ya que la conducta termodinámica de la temperatura negativa presenta semejanzas con la llamada energía oscura. Los cosmólogos consideran que la energía oscura es la fuerza misteriosa que acelera la expansión del universo, cuando parece lógico que el cosmos debería contraerse por la atracción gravitatoria todas las acumulaciones de masa del cosmos.
Existe un fenómeno similar en la nube atómica creada en el laboratorio de Múnich: El experimento se basa en el hecho de que los átomos en el gas no se repelen sí como en un gas convencional, sino que sus interacciones son de atracción. Esto significa que los átomos ejercen una presión negativa en vez de una positiva. Como consecuencia, la nube de átomos “quiere” contraerse y debería colapsarse, tal como cabría esperar que pasara con el universo bajo el efecto de la gravedad. Pero debido a la temperatura negativa de la nube de átomos, esto no sucede.
Fuente: NCYT Amazings
Ene
21
¡Qué cosas!
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (1)
¡Noticias! del Boletín de Enero de la RSEF
“Gases nobles en el espacio. Un equipo de investigadores, con la participación del CSIC, ha encontrado la primera evidencia de una molécula basada en el gas noble Argón en la Nebulosa del Cangrejo. El trabajo que ha utilizado datos del Observatorio espacial Herschel, aparece publicado en el último número de la revista Sciencie.
La Nebulosa del Cangrejo (Messier 1), ubicada en la Constelación de Tauro, a unos 6.500 años-luz de la Tierra, tiene un diámetro de 11 años-luz (casi 700.ooo vecves la distancia que hay entre el Sol y la Tierra. Esta Nebulosa es una enorme estructura filamentosa formada tras la explosión observada en el año 1054 por astrónomos chinos que fueron testigos de aquella Supernova que nos dejó este remanente.
En el estudio realizado, los investigadores han detectado la emisión de hidrilo de argón (ArH+), un ión molecular que contiene el gas noble Argón. Aunque ya se habían detectado átomos o iones de gases nobles, hasta ahora no se había encontrado ninguno de los compuestos moleculares basados en estos átomos de gases nobles de lo que según ,os investigadores, parecía sugerir que estos elementos requieren un mayor tiempo de reacción en el espacio o que no se dan las condiciones para que se formen.”
Hasta aquí la noticia sobre el encuentro de moléculas de Argón.
Claro que, en el espacio exterior se han hallado muchas cosas y, recientemente también, pudimos leer la noticia deque ALMA encontró azúcar alrededor de una estrella parecida a nuestro Sol. El hallazgo viene a demostrar que los elementos esenciales para la vida se encuentran esparcidos por todo el Universo, tanto en planetas como en estrellas y nebulosas y, cuando algún mundo reúne las condiciones necesarias y está situado en el lugar adecuado… ¡La Vida aparece!
No son pocas las moléculas encontradas en el Espacio exterior: de Oxígeno, Agua, Nitrógeno, Carbobo, Azufre, Azúcar, Alcohol…, y un sin fin de ellas que nos hablan de que el Universo es igual en todas partes y, en todas sus regiones por muy alejadas que estén se producen los mismos sucesos que van siempre acompañados por el ritmo que marcan las leyes fundamentales, esas fuerzas que todo lo rigen y a las que todo está supeditado. El nacimiento de nuevas estrellas, la conformación de nuevos mundos, la transmutación de unos elementos en otros más complejos y, la evolución de la materia hasta llegar a la conciencia… ¡Esa es la verdadera historia de la Naturaleza!
Un paseo desde la “¡Materia Inerte hasta la Vida!”
Nuestro Universo es como es porque las constantes son las que son. La sustancia primera, la clase de materia más sencilla del Universo primitivo, evolucionó y se transformó en las estrellas mediante la fusión nuclear y las explosiones Supernovas que dieron lugar a la existencia de los elementos. Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!
emilio silvera
Ago
19
¡¡Titán!! ¿Qué sorpresas nos espera?
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
El misterio de las olas perdidas en Titán
22 de julio de 2013: Uno de los descubrimientos más sorprendentes de los últimos 10 años es lo mucho que se parece el paisaje de la luna Titán, del planeta Saturno, a nuestro planeta Tierra. Al igual que nuestro planeta azul, la superficie de Titán está salpicada con lagos y mares, tiene canales de ríos, islas, lodo, nubes de lluvia y, tal vez, hasta arcoíris. La gigantesca luna es indudablemente húmeda.
El “agua” de Titán, sin embargo, no es H2O. Con una temperatura en la superficie que está por debajo de los 143o C (290o F) bajo cero, Titán es demasiado fría como para tener agua líquida. En cambio, los investigadores creen que el líquido que esculpe a Titán es una mezcla desconocida de metano, etano y otros hidrocarburos difíciles de congelar.
La idea de que Titán es un mundo húmedo, con “agua” alienígena que le es propia, está ampliamente aceptada por los científicos planetarios. No hay otro modo de explicar las observaciones: la sonda Cassini, de la NASA, ha sobrevolado a Titán más de noventa veces desde el año 2004, enviándole pulsos de radar y construyendo mapas de sus lagos y mares. La sonda Huygens, de la Agencia Espacial Europea, se posó sobre la superficie de Titán usando un paracaídas en el año 2005; descendió a través de nubes húmedas y cayó de hecho sobre suelo mojado.
Sin embargo, algo sigue inquietando a Alex Hayes, quien es un científico planetario del equipo de radar de la misión Cassini, en la Universidad Cornell.

“Pero si Titán es tan húmeda”, se pregunta, “¿dónde están las olas?”
Aquí en la Tierra, los cuerpos de agua raramente están quietos. La brisa que sopla sobre sus superficies causa la formación de olas, que se levantan y rompen; las gotas de lluvia que caen sobre la superficie de los mares también proveen oleaje. Y, sin embargo, de acuerdo con los datos proporcionados por la sonda Cassini, en Titán los lagos están bizarramente quietos, sin acción del oleaje notoria hasta escalas milimétricas.
“Sabemos que hay viento en Titán”, dice Hayes. “Las magníficas dunas de arena en la luna son la prueba”.
Añada a esto la baja gravedad de Titán (apenas un séptimo de la de la Tierra) que ofrece muy poca resistencia al movimiento de las olas, y entonces se tiene un verdadero rompecabezas.
Los investigadores han jugado con varias posibles explicaciones. Tal vez los lagos están congelados. Hayes piensa, sin embargo, que esto es poco probable “debido a que hemos visto evidencia de precipitaciones pluviales y temperaturas en la superficie, las cuales se encuentran muy por encima del punto de fusión del metano”. O tal vez los lagos están cubiertos por una sustancia parecida a la brea, que apacigua el oleaje. “No podemos descartar eso todavía”, añade.
La respuesta podría estar en los resultados de un estudio que Hayes y sus colaboradores publicaron en la edición electrónica, de julio de 2013, de la revista científica Icarus. Teniendo en cuenta la gravedad de Titán, la baja viscosidad de los hidrocarburos líquidos, la densidad de la atmósfera de Titán y otros factores, ellos calcularon qué tan rápidamente debería soplar el viento en Titán para levantar olas: el resultado es que una brisa muy leve, de apenas 1,7 a 3,5 km por hora (1 a 2 millas por hora) podría ser suficiente.
Y esto es lo que sugiere una tercera posibilidad: los vientos no han soplado lo suficientemente fuerte. Desde que Cassini llegó a Saturno, en 2004, el hemisferio norte de Titán (donde se encuentran la mayoría de los lagos) ha estado bajo el yugo del invierno. El aire frío y pesado apenas se mueve, así que mucho menos alcanza el umbral necesario para formar olas.
Pero ahora viene el cambio de estación. En agosto del año 2009, el Sol cruzó el ecuador de Titán, moviéndose hacia el norte. Ya se aproxima el verano, trayendo consigo luz, calor y vientos a la zona de los lagos de Titán.
“De acuerdo con los modelos climáticos, los vientos deberán incrementarse conforme se aproxime el solsticio, en 2017, y deberían ser lo suficientemente fuertes como para levantar olas”, dice el científico.
Si las olas aparecen, la sonda Cassini deberá ser capaz de detectarlas. Los pulsos reflejados de radar que provienen de superficies con oleaje pueden decir muchas cosas a los investigadores. Las dimensiones de las olas, por ejemplo, podrían revelar la viscosidad del líquido que yace a mayor profundidad y, por lo tanto, su composición química. También, la rapidez de las olas podría ayudar a dar seguimiento a los cambios de velocidad de los vientos que soplan sobre ellas, dando de esta manera una medición independiente de los modelos climáticos de Titán.
Fuente: NASA
Jul
24
¿Hasta cuando podremos aguantar?
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
Artículo de Rosa María Tristán para el Huffington Post
“Hay que buscar el dinero fuera de España, presentarse a proyecto europeos, porque aquí no hay dónde rascar”. Este mensaje y la denegación sistemática de plazas para trabajar en España son el pan de cada día para miles de investigadores. Pero ahora se ha dado una vuelta de tuerca: hay quien consigue financiación europea para una investigación, con la que crear empleo, y tiene que regalarla porque las instituciones españolas no la quieren. Es la kafkiana situación que vive el físico catalán Javier Buceta, de 44 años, otro cerebro de los que se rifan en el extranjero y en España está al punto del despido.
Buceta ha tenido que donar a un grupo científico alemán su proyecto y los 200.000 euros que ha conseguido en el selectivo y exigente Séptimo Programa Marco de la UE (principal instrumento de financiación de la ciencia en Europa) porque la institución catalana para la que trabaja “no quiere investigar”. Se trata del Parque Científico de Barcelona (PCB), que tiene previsto despedirle a finales de este año, según le han comunicado.
Especializado en biofísica, Buceta es uno de tantos científicos que tenía su futuro asegurado en el extranjero (en la Universidad de San Diego) cuando decidió aprovechar en 2004 un contrato Ramón y Cajal para volver a su tierra. “Todos queremos regresar y se comprometieron a darme una plaza, como a todos“, asegura.
Lo hizo para trabajar en una unidad de investigación llamada CoSMo (Computer Simulation and Modeling), dentro del PCB, donde consiguió un contrato indefinido cinco años después.
Los problemas comenzaron en 2012, cuando una nueva dirección del Parque, a cuyo frente está el economista Salvador Maluquer, decidió que lo de “Científico” consistiría únicamente en alquilar edificios para que investiguen otros. “Hace un año se decidió no participar en proyectos de investigación, salvo los destinados a mejorar los servicios tecnológicos que ofrecemos. Se debe a los ajustes presupuestarios”, responde una portavoz autorizada por Maluquer a responder a este medio.
La explicación de recorte en los presupuestos no cuadra con el hecho de que Buceta no pidiera dinero al PCB. Además, el científico argumenta que presentó el proyecto en la UE, aun sabiendo que iba a ser despedido, porque pensaba transferirlo a un futuro destino que no dudaba encontrar, y las convocatorias europeas no esperan. “Es una investigación centrada en cómo evitar el rechazo en prótesis de cadera; la financiación global es de cinco millones para todos los participantes. Fue un varapalo cuando me aprobaron los 200.000 euros de mi parte a primeros de mayo y el Parque Científico se negó a firmar el acuerdo, que es un requisito imprescindible, porque dice que no investiga”, explica Buceta.
Seguir leyendo en Huffington Post.